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The Dimits shift is the shift between the threshold of the drift-wave primary instability
and the actual onset of turbulent transport in magnetized plasma. It is generally at-
tributed to the suppression of turbulence by zonal flows, but developing a more detailed
understanding calls for consideration of specific reduced models. The modified Terry—
Horton system has been proposed by St-Onge [J. Plasma Phys. 83, 905830504 (2017)]
as a minimal model capturing the Dimits shift. Here, we use this model to develop an
analytic theory of the Dimits shift and a related theory of the tertiary instability of
zonal flows. We show that tertiary modes are localized near extrema of the zonal velocity
U(z), where z is the radial coordinate. By approximating U(z) with a parabola, we
derive the tertiary-instability growth rate using two different methods and show that the
tertiary instability is essentially the primary drift-wave instability modified by the local
U”. Then, depending on U”, the tertiary instability can be suppressed or unleashed.
The former corresponds to the case when zonal flows are strong enough to suppress
turbulence (Dimits regime), while the latter corresponds to the case when zonal flows
are unstable and turbulence develops. This understanding is different from the traditional
paradigm that turbulence is controlled by the flow shear U’. Our analytic predictions are
in agreement with direct numerical simulations of the modified Terry—Horton system.

1. Introduction

The Dimits shift in magnetized plasmas is the shift between the threshold of drift-
wave (DW) “primary” instability and the actual onset of transport that follows the
scaling laws of developed turbulence (Dimits et al.|2000). The Dimits shift is observed
in both fluid and gyrokinetic simulations (Lin et al.|[1998; Rogers et al.||2000; Ricci et al.
20006} [Numata et al.|2007; Mikkelsen & Dorland|2008; Kobayashi & Rogers|2012; [St-Onge
2017)) and is generally attributed to turbulence suppression by zonal flows (ZFs), which
are generated by the “secondary” instability (Rogers et al.|[2000; Diamond et al.|2001).
However, the Dimits shift is finite, meaning that ZFs cannot completely suppress DW
turbulent transport if the primary-instability threshold is exceeded by far. Because of the
detrimental effect that turbulent transport has on plasma confinement, it is important
to understand this effect in detail.

After the seminal work (Biglari et al.||1990), it is widely accepted that ZFs can
significantly suppress turbulence by shearing turbulent eddies. Based on this paradigm,
the predator—prey model is perhaps the simplest phenomenological model that can
describe how sheared flows help achieve a high-confinement regime (Diamond et al.
1994; Malkov et al.[2001; | Kim & Diamond|2003; [Kobayashi et al.|[2015)). However, this
paradigm may be oversimplified. For example, while direct simulations show that ZF's
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saturate at finite amplitude even in collisionless plasma (Rogers et al. [2000; [St-Onge
2017)), the predator—prey model predicts otherwise. This is because the predator—prey
model assumes statistically homogeneous turbulence, and this assumption is inapplicable
in the Dimits regime, where strong ZF's are present and turbulence is inhomogeneous.

A more elaborate approach to understanding the Dimits shift was based on the concept
of the “tertiary” instability (TI) (Rogers et al.|[2000; Rogers & Dorland|2005)). The idea
is that if ZF's are subject to the TI, then turbulence cannot be completely suppressed by
ZFs and the Dimits regime ends. Despite some criticism (Kolesnikov & Krommes|2005),
this explanation is widely accepted. However, the understanding of the TI and the Dimits
shift has been largely qualitative, arguably because these effects have not been widely
studied within simple enough models.

Recently, |St-Onge| (2017)) proposed the modified Terry—Horton equation (mTHE) as
a minimal model that captures the Dimits shift. |St-Onge| calculated the TI growth rate
using four-mode truncation (4MT) and derived a sufficient condition for ZFs to be stable
within the mTHE. Then, this criterion was used for a “heuristic calculation” of the Dimits
shift. However, that calculation is not entirely satisfactory, because deriving the actual
Dimits shift takes more than a sufficient condition of ZF stability. The direct relation
between [St-Ongef's criterion and the Dimits shift is only an assumption. As a result, the
agreement of |St-Onges theory with numerical simulations is limited (section. Besides,
the 4MT model is only a rough approximation and cannot capture essential features of
the TT in principle, as we shall discuss below. Therefore, a transparent theory of the TI
and the Dimits shift within the mTHE model is yet to be developed.

In our recent letter (Zhu et al.[2020), we sketched a theory of the TT and the Dimits shift
within the modified Hasegawa—Wakatani model, where the mTHE was briefly mentioned
as the “adiabatic limit”. This limit is important in that the mTHE permits a detailed
analytic study of the TT and an explicit quantitative prediction of the Dimits shift;
thus, it deserves further investigation. Here, we present an in-depth study of the mTHE
by expanding on the results presented in |[Zhu et al.| (2020)). We show that assuming a
sufficient scale separation between ZFs and DWs, TI modes are localized at extrema of
the ZF velocity U(x), where z is the radial coordinate. By approximating U(z) with a
parabola, we analytically derive the TT growth rate, 1, using two different approaches:
(i) by drawing an analogy between TI modes and quantum harmonic oscillators and (ii)
by using the Wigner—-Moyal equation (WME). Our theory shows that the TT is essentially
a primary DW instability modified by the ZF “curvature” U” near extrema of U. (The
prime denotes d/dz.) In particular, the WME helps understand how the local U” modifies
the mode structure and reduces the TI growth rate; it also shows that the TI is not the
Kelvin—Helmholtz (KH) instability, or KHI. Then, depending on U”, the TI can be
suppressed, in which case ZFs are strong enough to suppress turbulence (Dimits regime),
or unleashed, so ZF's are unstable and turbulence develops. This understanding is different
from the traditional paradigm (Biglari et al.|[1990), where turbulence is controlled by the
flow shear U’. Finally, by letting yr1 = 0, we obtain an analytic prediction of the Dimits
shift, which agrees with our numerical simulations of the mTHE.

Admittedly, our explicit prediction of the Dimits shift is facilitated by the fact that we
use a simple enough model. Understanding of the Dimits shift is already complicated
when we study the modified Hasegawa—Wakatani model in [Zhu et al.| (2020), when
we observed the presence of avalanche-like structures, which are not supported by the
mTHE. Furthermore, the recent paper by |Ivanov et al|shows that avalanches themselves
can become intricate when additional physics from finite ion temperature is taken into
account. This complicates the problem even further, and more work remains to be done
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to understand the Dimits shift in the general case. Our paper is intended as one of the
first steps in that direction.

This paper is organized as follows. In section 2] we introduce the mTHE. In section [3]
we describe the primary, the secondary, and the tertiary instability within the mTHE.
In section [4] we analytically derive the TI growth rate using two different approaches
mentioned above. In section [b| we derive an analytic prediction of the Dimits shift.

Finally, a brief introduction of the WME and phase-space trajectories are presented
in Appendices [A] and [B]

2. Modified Terry—Horton equation

The mTHE can be considered as a minimal model that simultaneously captures the
primary, secondary, and tertiary instabilities. It is a two-dimensional scalar equation that
describes DW turbulence in slab geometry with coordinates @ = (z,y), where x is the
radial coordinate and y is the poloidal coordinate:

Oww + {p,w} — BOyp + aDw =0, (2.1)

where
w=V3p—n, n=(@—i)p. (2.2)
Here, the system is assumed to be immersed in a uniform magnetic field perpendicular
to the (z,y) plane. The ions are assumed cold while the electrons are assumed to have
a finite temperature T,. The plasma has an equilibrium density profile ng(z), which is
parameterized by the positive constant § = a/L,, where a is a reference length and
L, = (=dlnng/dx)~! is the scale length of the density gradient. (We use = to denote
definitions.) Time is normalized by a/cs, where ¢ = /To/m; is the ion sound speed.
Length is normalized by the ion sound radius ps = ¢/, where (2 is the ion gyro-
frequency. The electrostatic potential fluctuation ¢ is normalized by T,ps/ea where e is
the unit charge, the electron density fluctuation n is normalized by nops/a, and w can be

considered as minus the ion guiding-center density (Krommes & Kim|2000). The Poisson
bracket is defined as

{p,w} =v-Vw, v=2xVy, (2.3)
which describes nonlinear advection of w by the E x B flow with velocity v. Also,
V2 =02+ 85 is the Laplacian. Finally, we note that the parameter 5 can be scaled

out of equation by replacing (d),t,ﬁ) with (d)/ﬁ,ﬂt,D/ﬂ). Therefore, varying 3 is
effectively similar to varying the strength of D.

The mTHE is “modified” compared to the original Terry—Horton model (Terry &
Horton||1982, |1983)) in that the following operator & is used:

b =P =9 —(p), (2.4)

where (...) is the zonal average given by

1 [
=1 [ e (25)
y Jo
and L, is the system length along y. Equation states that electrons respond only to
the fluctuation (or DW) part of the potential, ¢, but do not respond to the zonal-averaged
(or ZF) part, (¢) (St-Onge 2017, Hammett et al|(1993). The operator § describes the
phase difference between n and ¢ and determines the primary DW instability (Terry &
Horton||1982} [1983)). Note that reduces to the modified Hasegawa-Mima equation
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at 0 = 0 (Hasegawa & Mimal[1977; Dewar & Abdullatif/[2007), where the total energy is
conserved. The DW and the ZF part of the energy (per unit area) are given by

.1 L a1 )
Bow = 57 / dody[(V19) + 8], Bar = 51— / dr (0:(0)2, (26

where L, is the system length along x. Various forms of § can be used to model different
primary instabilities (Terry & Horton|[1982; |Tang{|1978]). Here, we follow |St-Onge| (2017)
and use the following simple form:

16 = idok, = 000y, (2.7)

with §p being a positive constant. (Tihis can be used to model trapped-electron dynamics
(Tang|1978).) Finally, the operator D models damping effects such as viscosity. Following
St-Onge, (2017), we use

D=1-0.01V> (2.8)

throughout this paper. (An exception is made in section [5| where another form of D is
introduced for comparison.) Here, the first (friction) term is added in order to prevent
possible energy build up at large scale, as is also done by |St-Onge. (As will be seen
from our results below, this term also increases the Dimits shift and thus facilitates its
numerical observation.) Note that due to & in front of D in 7 the damping applies
only to DWSs, while ZFs are left collisionless. Then, the Dimits regime can be defined
unambiguously as the regime where ZFs persist forever and the DW amplitude decreases
to zero at t — oo.

Beyond the Dimits regime, DWs are not suppressed and ZFs always keep evolving in
the mTHE model, as demonstrated by [St-Onge| (2017). To understand the ZF dynamics,
we take the zonal average of and obtain

QU = =0y (0,0,) — (0,109) + T(t), Ulx,t) = 9 {p). (2.9)

Here, U is the ZF velocity along y, (05, 0y) = (—0y@, 0,¢) is the E x B velocity of DW
fluctuations. The first term on the right-hand side of is the Reynolds stress, while
the second term is specific to the mTHE system. For the form of B given by , the
second term becomes

—(0,16@) = 62(52) > 0. (2.10)
Therefore, the second term will always increase the local ZF velocity U, and meanwhile,
the value of U at other locations will be adjusted by the effect of 7(t), which is an

integration constant that ensures conservation of the total momentum. Specifically,
Oy [Udz = 0 implies
1 A
T =— /(f}mi&ﬁ)dx. (2.11)
Ly
Due to nonzero T, ZFs cannot remain (quasi)stationary in the presence of fluctuations

within the mTHE. In other words, either ZFs completely suppress DW turbulence, or
both ZFs and DWs keep evolving indefinitely.

3. Primary, secondary, and tertiary instability

We have integrated the mTHE numerically using random noise for the initial con-
ditions. Typical simulation results are presented in figures [I] and [2} It is seen that the
primary instability of DWs arises and is followed by ZF generation through the secondary
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FIGURE 1. Snapshots from numerical simulations of the mTHE with do = 1.5 (see )
at (a) B = 4.5 (first row) and (b) f = 6.5 (second row). The simulation domain size is
L, = Ly = 207, with the corresponding numbers of grid points being N, = 128 and N, = 64,
respectively. Periodic boundary conditions are used in both directions, and the nonlinear term
is treated using the pseudospectral method with 2/3 dealiasing rule . The initial
conditions are random noise with a small amplitude. Shown are the fluctuations w (colorbar)
and the ZF velocity U (green curve) at three different moments of time. It is seen that at 8 = 4.5,
the DW amplitude decreases down to zero (Dimits regime), while at 8 = 6.5, fluctuations remain
strong and ZF's keep evolving.

instability. Then, at the fully nonlinear stage, DW turbulence becomes inhomogeneous,
exhibiting signatures of the TI. In the following, we study these stages in detail.

3.1. Primary instability
It is straightforward to show that {¢,w} = 0 for Fourier eigenmodes of the form

-1t 4 ¢ c., (3.1)

¥ = Prc

where k = (ky, ky). Therefore, a Fourier eigenmode is an exact solution of the system
provided that (2 satisfies the following relation:

Bky (1 + k%) Book?
‘<1+k2)2+53k5’ (14 k2)2 + o5k2
Here, k* = k2 +k, Dy = 1+0.01k?, and we have used (2.7). Also, oy = 1 for k,, # 0 and

ag =0 for k, = 0, and hence a ZF (k, = 0) corresponds to {2, =0, i.e., to a stationary
state. From (3.2), it is seen that when Dy = 0, 75 is maximized at (kg,ky) = (0,1). A

We = Re .Qk, = Tk = Im .Qk = - OLk,Dk. (32)

nonzero Dy can modify the value of k that maximizes g, but for the chosen form of D,
, this modification is very small. Therefore, if one numerically simulates with
small random noise as the initial conditions, then nonlinear interactions can be neglected
at first and coherent DW structures will grow exponentially with typical wavenumber
k=~ (0,1), as seen in figure[l]

3.2. Secondary instability

When many Fourier modes are present and have grown to a finite amplitude, the non-
linear term in (2.1) becomes important. This can be seen from the Fourier representation,
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© =" pr(t)exp(ik - x), where (2.1) is written as

d
% - 719k¢k +35 Z k kl’k2 6"7 k1 +ka Pk Pko (33)
kl,kz

and dg, k, is the Kronecker symbol. Also,

. kP — k3
T(k, k1, k2) = T(kl X k) - 2 (3.4)

are the coefficients that govern the nonlinear mode coupling, k? is defined as
k* = ag + k* —idok,, (3.5)

and similarly for &2 and k2.

Due to nonlinear interactions, ZFs can be generated from DWs, which process is known
as the secondary instability. Here, we use the 4MT model to analyze this instability,
namely, by considering a primary DW with k = (0, k,), a ZF with g = (¢5,0), and two
DW sidebands with k+ = (£¢s, ky). Assume that the ZF is small, so the exponential
growth of the primary DW is unaffected; i.e., o = @oexp(—if2t), with o being a
constant. Then, from , the equations that describe the ZF and the sidebands are as
follows (St-Onge [2017)):

d _ kyeykt 2 i * _iwpt 2 i * —iwgt 3.6
1pq = (g2 —10+) i, w5 — (a7 +104) ¥k_poe 7 (3.6)
dt¢k+ - _i‘Qk+ ¢k+ + T(k+7 k? q)g)o(pqe*iﬁkt7 (3'7)

dipr. = —i82%_pr_ +T(k_, kK, —q)<p0<p:;e_m‘“t, (3.8)

where 0, = 0 + 0, = 200ky. We have also used (2 = wg + iyg. These equations can
be combined to yield a single time-evolution equation for the ZF amplitude ¢q:

d390q dz‘Pq dipg
NE A ETE +(B-0) & Dyq = 0. (3.9)
Here, A = 2v,, B = w? "‘7«2%7 C,D o |poe™!2, vy = v + Yy, and wo = Wi — Wi, -
The derivation of can be found in |St-Ongel Expressions for C and D can also be
found there but will not be important for our discussion; however, note that compared
to [St-Onge, we have absorbed the coefficient €7*¢ into the definitions of C and D.
When C and D are much larger than A and B, ¢4 can grow “super-exponentially”
(Rogers et al.[[2000; |St-Onge||2017)), i.e., as an exponential of an exponential. This is also
known as the secondary KH instability (Rogers et al.|[2000). In the opposite case, when
A and B dominate over C and D, the non-constant solution of is approximately

©q oc eHEw-)L (3.10)

Since 4 decreases as |g,| increases (see (3.2))), the growth rate is maximized at the lowest
ZF wavenumber |g,| = 27 /L,. In other words, the box-scale ZF grows fastest, with the
growth rate given by vy = 27, i.e., twice the growth rate of the primary DW instability.

In the following, we show that exponential growth of the ZF at the box scale is more
common than the super-exponential growth, provided that the characteristic amplitude
o of the initial random noise is small enough. At first, both the primary DW and the
sidebands grow exponentially,

|ok| ~ lors| ~ l0ole™, (3.11)

while the ZF amplitude remains at the noise level. Then, DWs grow for some time
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FIGURE 2. The time history of the DW and ZF energies corresponding to figure 1} The
primary and secondary instabilities are clearly seen, with the secondary-instability growth rate
being twice the primary-instability growth rate. The black dashed line is the ZF energy calculated
from that corresponds to the critical ZF amplitude . from (3.14). It is seen that this
energy roughly corresponds to the onset of the fully nonlinear regime. This value is reached by
both Fpw and Ezp at approximately the same time.

t, before they begin to affect ZFs. Assume that at ¢ = ¢, the box-scale ZF with the
amplitude ¢4 ~ g starts to grow with the growth rate v ~ 2vg; then, 5 = 280k, > ¢2,
and we have from (3.6) that

2|prllon [kyds  2k,04 |poer*te|?

3.12
qx qx ( )

|0pq| ~ 27k|o| ~

This leads to

42k |0
200 k2

Therefore, C' and D are small when the initial noise level |gp| is small enough; hence,
the assumptions made above are self-consistent, namely, A and B are indeed much larger
than C and D, and the box-scale ZF with wavenumber ¢, = 27/L, grows fastest with
the growth rate 2.

The secondary instability will persist for some time ¢5 until ZFs grows up to a finite
amplitude that is enough to significantly distort the DW structure. Using the result from
Zhu et al.|(20185)), this amplitude can be estimated as follows (also see (B11])):

B B/
Ye = m (3.14)

C,D (3.13)

At pq < @, DWs do not “see” the ZF and hence keep growing exponentially, while at
©q 2 e the system enters the fully nonlinear regime. Therefore, ¢ is the time when the
ZF amplitude grows from ¢q to ¢, and it can be estimated as follows:

1 Ve
ts = —In—. 3.15
2% wo (3.15)
Note that (3.14) is obtained from the modified Hasegawa—Mima system, so it is based
on the assumption that do = 0. For nonzero dy, it is modified accordingly (see (B 11)),
but the above estimate is sufficient for our qualitative description.
By the time when the system enters the fully nonlinear regime, the DW amplitude
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FIGURE 3. The first four tertiary eigenmodes found numerically using the ZF velocity profile
(13.25). The ordering is such that 71 decreases from left to right. The first two eigenmodes are
runaway and trapped modes, respectively. The parameters are § = 6, dp = 1.5, ¢z = 0.4, and
u = 10. The first row shows the eigenmode structures w(z,y) = Re[w(z)e' v¥] (, color),
the ZF velocity U (green curve), and the analytic mode structure w = Re[Hm (z) exp(S + ikyy)]
((4-6), dashed contour), where m = 0 for (al) and (bl), m = 1 fo&cl), and m = 2 for (d1). The
second row shows the corresponding Wigner function W (z, kz) ((A 5)), color) and the isosurfaces
of the drifton Hamiltoninan H ((B3), dashed contour). The striped structure of W away from

the actual location of DW quanta is a signature of a quantumlike “cat state” (Weinbub & Ferry
2018).

becomes |¢k| ~ o exp Yk (ts + tp), which can be estimated from (3.12) and (3.15)) as

4z VePc
~ e 1
forl ~ [ (3.16)

From ({2.6)), the corresponding DW and ZF energies are as follows:

B Bk

E
ZF 850]@5’

where we assumed ¢2 < 1+ k; Using for 7y, and assuming Dy = 0 for simplicity,
we obtain
e Sk
Epw (14 k2)2°
This shows that the ZF energy and the DW energy are roughly equal to each other when
the system enters the fully nonlinear regime, since dp and k, are of order unity. This
conclusion will be used to estimate the ZF curvature in section Bl
These predictions are in agreement with numerical simulations (ﬁgure. This indicates
that the 4MT captures the basic dynamics of the primary and the secondary instabilities.
However, as shown below, the 4MT does not capture essential features of the TI, and
thus more accurate models are needed to describe the TI and the Dimits shift.

(3.18)

3.3. Tertiary instability

In the fully nonlinear regime, DW turbulence becomes inhomogeneous and localized
at the extrema of the ZF velocity U (figure [1)). To understand the DW dynamics in this
case, let us linearize (2.1) to obtain

O + Udyiv — (B + U")8y¢ + Db = 0, (3.19)
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where
W= (V:—1+id)pg, U"=d*U(z)/da?. (3.20)
For given boundary conditions in x, eigenmodes of can be searched for in the form
: d2 -1
@ = w(z)e =t 5= (dxz - kf/ -1+ iéoky) w, (3.21)

which leads to the following equation for w(zx):

ww=Hw, H(i ky)=kU+k,B+0"k —iD, (3.22)
where
U=U@), ky=-id/dz, k =1+k

If an eigenvalue w exists and

+ k2 — iGgk,. (3.23)

Y11 =Imw >0, (3.24)

then the perturbation grows exponentially. This is the TT.

Equation does not have an analytic solution for an arbitrary profile U, but
a general understanding can be developed by considering special cases. In |Zhu et al.
(2018¢)), we considered the ZF velocity profile

U(z) = ucos gz, (3.25)

with 6 = D = 0. In this case, the system exhibits an instability of the KH type provided
that ¢2 > 1 and ¢>u > (. In |Zhu et al| (2018¢), we also discussed a generalization
to periodic nonsinusoidal profiles. However, generalizing those results to nonzero § and
D is challenging. The common approach is to adopt the 4MT again, i.e., to assume a
DW perturbation with k = (0,k,) and two sidebands with ki = (%g¢s,k,) as small
perturbations (Kim & Diamond|2002; [St-Onge|2017; [Rath et al.|2018; |Zhu et al.|20184a)).
In particular, |St-Onge| (2017) derived ~p; within the 4MT and estimated the Dimits
shift by finding a sufficient condition for vy = 0. However, the 4MT-based approach
is not entirely satisfactory, because the ZF is typically far from sinusoidal, as seen in
simulations. Even more importantly, the 4MT approach ignores the fact that there are
multiple TT modes with different growth rates. As we show below, understanding the
variety of these modes is essential for understanding the Dimits shift.

Let us assume the same sinusoidal ZF profile (3.25)) as in |St-Onge| for now, and let us
calculate the corresponding eigenmodes numerically, assuming periodic boundary
conditions x. In this case, we can search for solutions in the form

N
wz) = Y wne"T, (3.26)
n=—N

where N is some large enough integer. In other words, we truncate the Fourier series by
keeping only the first 2V + 1 Fourier modes. This turns into a vector equation for
{w_n,...wo,...wy}, where H becomes a (2N +1) x (2N + 1) matrix. Then, one finds
2N 4+ 1 eigenmodes with complex eigenfrequencies. Typical numerical eigenmodes are
illustrated in figure|3| It is seen that the TI-mode structure is localized at the maximum
(x = 0) or minimum (z = —m/q,) of the ZF velocity and has either even or odd parity
because of the symmetry of U. Within the figure, the eigenmodes localized at the ZF
minimum can be labeled by the integer m = 0,1, 2, ..., which also indicates the parity of
w(x). Eigenmodes localized near the ZF maximimum can be labeled similarly. Note that
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in order for a mode to be localized, the ZF must be large-scale, namely, ¢2 < 1 + kg,
which is consistent with numerical simulations.

Apart from the eigenmode structures, we also show in figure [3| their corresponding
Wigner functions W (z, k) (A 5) and contour plots of the drifton Hamiltonian # .
The Wigner function can be understood as the distribution function of “driftons” (DW
quanta) in the (z, k,) phase space (Smolyakov & Diamond|[1999; Ruiz et al.[2016} |Zhu
et al.|2018¢), and its shape is expected to align with the contours of H . Then, eigenmodes
are naturally centered at phase-space equilibria of #, namely,

OH=0,H=0 = U =k, =0. (3.27)

This explains eigenmode localization near extrema of U. [Strictly speaking, (3.27) stems
from our approximation of sinusoidal flow ([3.25)), which ensures that U’ and U"’ become
zero at same locations. Nevertheless, mains a good approximation as long as
ZFs are large-scale, i.e., [U" /k?| < U’] Maxima of U (even n) correspond to phase-
space islands encircled by “trapped” trajectories, and minima of U (odd n) correspond
to saddle points passed by the “runaway” trajectories (Zhu et al.[2018albllc). Hence, we
call the modes localized near maxima and minima of U trapped and runaway modes,
respectively. (See Appendix [B| for more discussions on drifton phase-space trajectories.)
In the next section, we provide analytic calculation of the TI growth rates based on the
above observations.

4. Tertiary-instability growth rate
4.1. Analogy with a quantum harmonic oscillator

As seen in figure |3} tertiary modes are centered at the phase-space equilibria. Based
on this, let us expand the Hamiltonian up to the second order both in z and in k.
Specifically, we approximate the ZF velocity with a parabola:

1
U=~ U0+§Cx2, (4.1)

where Uy is the local ZF velocity and C = U”(0) is the local ZF curvature. For the
sinusoidal velocity (3.25)), this corresponds to Uy = +u and C = Fq2u. We also make the
approximation that D =~ Dy = Dg—(0,x,) and
N

O dz?’

Then, the Hamiltonian operator H 1) is approximated as

k2~ ki +k kg =1+ k; —idoky. (4.2)

- 1 d?
H ~ k,Uy + QkyC:i:Z + ky(B+C) (k0‘2 - k54dm2) —iDy, (4.3)
and the corresponding eigenmode equation (3.22) becomes
d2
<T2d$2 + :172) w = ew. (4.4)

It is the same equation that describes a quantum harmonic oscillator, except that here
the coefficients are complex; specifically,
2. 2 ( 5) . 2w — kyUo +1iDg — ky (B + C) /K3

L2 (.8 - . 4.
T e +C € 7 C (4.5)
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Note that the coefficients are different at minima and maxima of U, as they depend
on the sign of C. Also note that for runaway modes, we have shifted the coordinate as
x — « + /gy to recenter the ZF minimum at z = 0.

Following the standard procedure known from quantum mechanics (Sakurai|1994)), one
can show that the asymptotic behavior of the solution at large |z| is

2

w(z) ~ @ S(z) = o

i(1+E2) + dok,y
2T

z2. (4.6)
24/2(1+5/C)

To ensure that w — 0 at large |z|, we require Im\/1 4 8/C > 01if 1 + 8/C < 0. We also
assumed that dg, k, > 0. Then, letting w = ¢(x) exp S(x), we obtain

2x E—T

¢ — - ¢ + - ¢ =0. (4.7)

Solutions are ¢ = H,,,(z/1/7), where H,, are Hermite polynomials, m =0,1,2,..., and
e=(2m+ )T (4.8)

Therefore, for each sign of C, eigenmodes are labeled by m. In figure[3] these approximate
solutions are compared with numerical solutions of . In the following, we shall focus
on the two modes with m = 0, since they are most unstable. In this case, ¢ = Hy is
constant and € = 7. This corresponds to @ = Re[exp(S +ik,y)], and the eigenfrequencies
are found from to be

W= 24 kU — BCVAEB/C2 g k(BEC) (4.9)

1+ k2 —idoky k2

Here, (2 is the primary-mode eigenfrequency (2% modified by C, k,Up is the local
Doppler shift, and the remaining term in w vanishes at zero C. Note that at C = 0,
w reduces to the primary-mode frequency 2 at k = (0,k,). Hence, TI modes found
here can be interpreted as standing primary modes modified by ZFs. Accordingly, the T1
growth rate ~p; approaches the primary-instability growth rate in the limit C — 0.

Let us examine the validity of our approximation in . First, the parabolic ap-
proximation of U is valid if the mode spatial width in x, which is determined by C,
is much smaller than g, ', which is the characteristic scale of ZFs. Specifically, for the
sinusoidal ZF , we have C = ¢2u, so the parabolic approximation is valid
at small enough ¢, and large enough u = C/q2. Second, the expansion of k=2 in
is valid at |k?| < |k3|, where k, is the characteristic mode wavenumber in x. From
(4.4), k. can be estimated as k, = 1/y/7. Then, the requirement |k2| < |k2| leads to
[v/2(1+ B/C)| > 1, or equivalently, |C| < B, and one expects that the approximation
in becomes invalid as |C| approaches (. Therefore, in the following, we restrict our
consideration to the parameter regime |C| < /3, which is also the regime relevant to our
numerical simulations.

The TT growth rate 71 is obtained by taking the imaginary part of w. Within the
regime |C| < f3, let us introduce the notation

Sok2(8 +C)

y=Im = —*>1L————
(14 k2)2 + 63k2

— Do, (4.10)

which is the primary-instability growth rate v (3.2) modified by C. Then, for the runaway
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mode (labeled with superscript “R”), which corresponds to C > 0, one has

_ 1 8 1+ k2)k,C
Ry a(1+2) — /v 411
=1 2( +c> (1+ k2)2 + 02k2 (4.11)

For the trapped mode (labeled with superscript “T”), which corresponds to C < 0, one

has
[1 /18 Sok2C
T _-. [L(]P]_4 v 4.12
= 2<‘c’ >(1+k§)2+6§k§ (4.12)

Figure c) shows that these formulas are in good agreement with our numerical calcula-
tions of the eigenvalues. Also, we have verified (not shown) that the results in figure [5fc)
are insensitive to ¢, as long as ¢, is small, more specifically, ¢2 < 1+ kz

Notably, while the trapped-mode growth rate always decreases with |C|, the runaway-
mode growth rate can increase at large C if g is large. In fact, at C > 3, becomes

doks, \/T (1+ kp)ky
(14 k2)2 + o5k2 2 (1+Kk2)% + o3k2

which predicts that 45 increases with C if 69 > (k, + k., 1Y/v/2. Therefore, it is possible
that the TT can develop in strong ZFs, but the physical mechanism is very different
from the KH mode, as will be discussed in section (Strictly speaking, becomes
invalid at C > (. Nevertheless, we have verified from numerical calculations (not shown)
that at k, = 1, 7% indeed increases with C at large C, if 5y > 1.7.)

VI A (4.13)

)

4.2. Alternative approach

An alternative formula for ~p; can be obtained using the Wigner—Moyal equation
(WME) for the Wigner function W of the fluctuations w (Appendix . This approach
is somewhat more accurate because the Hamiltonian is expanded only in x but not in
k.. As in section let us assume U = Uy + Cx?/2. Then, U” = C is constant, U"’
vanishes, and the drifton Hamiltonian is simplified down to (Appendix [A)

1 1 1
H = k,Up + 5kycag? + ky (B + C)Re <_) , I'=ky(B+C)Im (122) — Dy, (4.14)

52
where k2 =1+ k2 + kz —i6oky. Then, the WME 1] acquires the form
ow ow ow Q)
—— = — = Vo — 421" — 4.1
ot = T G Ve gy THW A 5y (4.15)
where
L OH ORe(1/k?)
Valhe) = g = k(8 + 0 =512 (4.16)

is the drifton group velocity. (Details of drifton dynamics are discussed in Appendix )
The value of @ is given by 7 but it is not important for our calculations, because
we are interested only in the spatial integral of . Since V; and I" are independent
of z, integrating over z leads to

0
2’7T1fl = kyC (9% + 2Ff1, (417)

where we have replaced 0; with 2y and introduced

filky) = / Wdz, falky) = / aWdz. (4.18)
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-35 Fi(ks)
fZ(kz)
— 2% N
o 2Tfi+kCHE

-0.1 0 0.1 0.2 0.3
fZ(kz)
—2yfi

o 2Tfi+k,CHE

-0.2 0 0.2 0.4

FIGURE 4. The structure of the tertiary modes with m = 0 in the zonal-velocity profile (3.25).
The parameters are 6o = 1.6, 8 =5, ¢z = 0.2, u = 50 (hence, C = £+2), and D given by li
These parameters result in v5; = —0.276 and ~vi; = —0.587. (a) The Wigner function W (z, k)
of the runaway mode (color), the local U (magenta curve), and the runaway trajectory (dashed
curve; see (£.21)). Note that we have shifted the coordinates as & — x + 7/, to recenter the
ZF minimum at z = 0. (b) The structure of each term in calculated from W of the
runaway mode in (a). (¢) The Wigner function W (z, ks) of the trapped mode (color), the local
U (magenta curve), and isosurfaces of H (dashed contours; see (4.14)). In this figure, Az and
Ak, denote the characteristic widths of the mode in the z and k, directions, correspondingly.
(d) Same as (b) but for the trapped mode.

The functions are shown in figure [4] for the runaway mode and for the trapped mode,
respectively. Note that from comparing with , it is seen that f; is associated
with the modified frequency {2, namely, I' = 7 = Im{2; meanwhile, 0f>/0k, is associated
with the additional term in that vanishes at C = 0.

To obtain ~p; from , one needs to find the relation between f; and fy. Let us
first consider the runaway mode. As shown in figure a), the Wigner function of this
mode peaks along x = xg(k;), which is the runaway trajectory that passes through the
saddle point of H at x = k, = 0, and is given by below. Therefore, let us adopt
fa ~ xR f1; then,

8f2 ~ 61}R 8f1
o, ok, T TR,

With this assumption, let us evaluate (4.17)) at k, = 0, where 9f;/0k, = 0 because f; is

(4.19)
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1 (a) o numerical nr
0.8 6 14k2\ 2 RN
( ok, ) -1 0
~ 0.6
ISy
0.4 o numerical ng

02— 17(5@”)2

1+k2

0 0.5 1 1.5 2
do

€|

FIGURE 5. (a) The empirical factor ngr as a function for do: numerical values of a sinusoidal
ZF (blue circles) versus the fitting formula (black curve). The parameters are 8 = 6,
¢z = 0.4, u = 10, and D given by . It is found that nr is not sensitive to u. (b) Same
as (a) except for nr It is found that nr is not sensitive to u at v < B/¢2. (c) The
TI growth rates versus |C| = q2u at dp = 1.5, 8 = 6, q» = 0.4, and varying u. Black curves:
numerical solutions of indicated by the superscript “N”. Multiple branches are shown,
with the two most unstable branches being the runaway mode and the trapped mode. Blue
dashed curve and red dash-dotted curve: analytic formulas and (4.12). The superscript
“1” corresponds to predictions made using the approach described in section Blue circles and
red squares: analytic formulas with nr = 0.595 and with nt = 1.2. The superscript
“2” corresponds to predictions made using the approach described in section 1.2}

even in k, due to the symmetry of H (see figure ; then, we find

k,C axR
R _ Ryt
11 = (F + 277R ak_L>

(4.20)

k=0

Here, the first term I” is given by . The second term is negative because dzg /0k, <
0 (see below). The coefficient g > 0 is an empirical factor that compensates for the
inaccuracy of . We proceed to determine zg(k,) and nr. The runaway trajectory
xR is determined from by equating H to its value at the origin (z, k,) = (0,0) and
solving x as a function of k,. This gives

B 1+ k2 L+ k2 + k2
ar(ks) = +4/2 (1 + = - , (4.21)
C)\ A+ k2)2+63k2  (1+k2+k2)%+ 63k2
where the plus sign is for k, < 0 and the minus sign is for k, > 0. Figure a)

demonstrates that this solution indeed correlates well with the actual runaway-mode
structure. Also note that xg is finite, namely,

_ - B 1+ k2
J:R(kw—oo)——\/2 (1+C> —(1+k§)2+58k§' (4.22)

From (4.21)), we obtain

\/2(1 +B/C) [(1 4 k2)% — 63k2]
o (1+k2)% + 65k2 ' (4.23)

BacR
Oky

Notably, 0zxg/0k, becomes zero at dy = |k, + k, 1|, which corresponds to the transition
from runaway to trapped trajectory at the ZF minimum, as shown in figure [8]
Now, let us consider the correction factor ng, which can be formally defined as

. (9zr N
MR = ((‘31(:30 W) (4.24)

kz=0
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We determine ng numerically from the eigenmode structures obtained in section [3.3] It

can be shown that if D = 0, then rescaling t — k,Ct/(1+ k2), © — xy/1+ k2, and

ky — ki/y/1+ k2 leaves only two parameters in the WME (4.15), namely, C/3 and

doky /(1 + kf/), hence, nr mainly depends on these two parameters. Numerically, we see
that nr changes little as C/f varies from zero to unity. Meanwhile, the dependence of ng
on ok, /(1+ k;) is shown in figure a), which suggests the following approximation:

Soky \ 2
~4/1— Y . 4.
R <1 +k§) ( 25)

Then, (4.20) is simplified as

1 8\ (1+k2)k,C
Rl —o—y/= (145 ) —— 2 4.2
Y11 |k1—0 2 + C (1+k§)2+(58k5 ( 6)

Remarkably, this formula is identical to that was obtained in section [4.1]by drawing
the analogy with a quantum harmonic oscillator.

The above approach can also be applied to the trapped mode. Similarly to , the
trapped-mode growth rate can be expressed as follows:

k,C Ax
T Y
= (D4 2 ) , 4.27
E-( sl (127
where
A 208/01-D[A+R2-2E] A g Lo
Ak, (1 + k2)% + 62k2 T\ Ak, 920k, ) |, (4.28)

Here, C < 0, and we consider the regime 5/C < —1. Also, Ax/Ak, is not the slope
of the runaway trajectory but the ratio of the x-axis radii and the k,-axis radii of the
elliptic trapped trajectories near (z, k) = (0,0) in figure[dc). (Az/Ak, becomes zero at
do = |ky+ky 1|, which corresponds to the transition from a single island to two islands, as
shown in Fig. ) The coefficient nr is determined numerically. As shown in figure b),
7T can be approximated as

1+ k2\?
o —1 4.29
- (%%) (4.29)
at §/C < —1, when the mode is well localized in phase space. In this case, (4.20]) becomes

identical to (4.12)).

These results show that the alternative approach adopted here is in agreement with
the one we used in section if we use the fitting formula for nr and for
nr. If these factors are calculated numerically instead, then the alternative approach is
slightly more accurate, as seen in figure c).

4.3. Connection with the Kelvin—Helmholtz instability

The above analysis shows that the TI can be considered as a primary instability
modified by ZFs. As seen from ﬁgure the growth rate yry decreases with |C| in general.
Therefore, the TT is very different from the KHI, which develops only in strong ZFs. To
study the relation between the TI and the KHI, we numerically solve for various ¢,
and Jp and explore how the mode structure changes with these parameters. The results
are shown in figure [6]
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FIGURE 6. Numerical solutions of illustrating the relation between the runaway mode and
the KH mode at 8 = 6, u = 10, and various ¢, and do. (a) At do = 0 and ¢, = 1.6, the unstable
mode is the KH mode, which has a global structure as discussed in [Zhu et al| (20184lc). (b)
The KH mode transitions to an “intermediate” mode as ¢ is increased from dg = 0 to 09 = 1.5
while keeping ¢, = 1.6 fixed. (¢) The corresponding evolution of v with dy at constant g, = 1.6.
Blue curves show multiple branches of eigenmodes, but only one branch (the KH mode) is
unstable. (d) v as a function of ¢, at constant dp = 1.5. As ¢, decreases, the intermediate mode
analytically continues into the runaway TT mode in figure 3] See the main text for details.

First, consider figure Eka), which shows a global (not localized) KH mode that corre-
sponds to ¢, = 1.6 and o = 0. This KH mode has been discussed in |Zhu et al| (2018al);
it is global because the ZF is small-scale, specifically, ¢2 > 1. Next, let us increase &y
from zero up to dy = 1.5 while keeping g, = 1.6 fixed. Then, the original KH mode
transforms into an “intermediate” mode shown in figure Ekb) It is not a pure KHI,
because dissipation (i.e., nonzero dy) is now important, but it is not quite the TT either,
because ¢2 is large and the mode localization is less pronounced. Our theory does not
apply to such modes, but we have calculated the growth rate numerically as a function
of gy, as shown in figure |§|(c) Finally, with §p = 1.5 fixed, let us reduce ¢,. The mode
localization improves and the instability rates goes down at first, as seen in figure |§|(d)
But eventually, when ¢, has become small enough (g, ~ 0.6), the mode transforms
into the runaway mode that we introduced earlier (figure @) and our theory becomes
applicable.

This shows that in principle, the KH mode can be continuously transformed into
the runaway mode. However, the KHI and TI are fundamentally different in physical
mechanisms, because the TI is due to dissipation and 7%, is determined by &y, while the
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FIGURE 7. The Dimits shift obtained by simulating the mTHE numerically (colored
markers) versus analytic theory (black curves) for two different choices of the damping operator:
(a) D =1-0.01V? and (b) D = 0.3|k,| + 10~*V*. Green circles indicate the Dimits regime,
in which the system saturates in a state with ZFs and no turbulence. Red crosses correspond
to the situation where the system remains in a turbulent state indefinitely. Dot-dashed curve:
the linear threshold of the primary instability. Solid curve: our prediction of the Dimits shift,
Aps 7 with (a) ¢ = 0.05 and (b) ¢ = 0.025. Ideally, the curve S = Bin + Aps is supposed
to separate regions with green circles and with red crosses. Dashed curve (denoted B7p): the
prediction of S. from [St-Onge| (2017).

KHI requires a strongly sheared flow and has ykur ~ kyu. Since typical large-scale ZF's
seen in simulations have ¢2 < 1, the TT is more relevant to them than the KHI.

5. Dimits shift

As seen from the previous sections, the TI is nothing but the primary instability
modified by nonzero ZF curvature C. The nonzero C modifies the growth rate by Ay =
y11(C) —v71(0). We take yr1 = 75, , since the runaway mode usually has the largest
growth rate in the mTHE model. Letting v11(C) = 0, we obtain an implicit expression
for the critical value of 8, denoted f.:

Biin B = Dy[(1 +k§)2 +5§k§]
(1+0) =8 (ky + by )/ le+e2)/2 dok?

Here, o = C/f., and By, is the linear threshold of the primary instability, which is
obtained by letting v, = 0 (see (3.2)). Due to nonzero C, the value of . differs from Sy,
by a finite value Apg, which represents the Dimits shift:

Aps = B¢ — Biin. (5.2)

Note that the chosen formula for 7%, , is not as accurate as its counterpart ;
nevertheless, we choose because it does not involve the fitting parameter ng.

In section [3.2] we discussed the evolution of the secondary instability, where we found
that the system enters a fully nonlinear stage when the ZF amplitude u reaches ¢, . ~ 3
(see (3.14))). Therefore, we assume that C ~ ¢2u is proportional to 3; hence, o is assumed
constant and will be treated as a fitting parameter. Then, for each value of §y, Apg can
be obtained by minimizing it over k,. The results are in good agreement with numerical
simulation of the mTHE (figure @ A similar figure can be found in figure 7 of |St-Onge
(2017)), where simulation results are compared with a different theory.

Be = (5.1)
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Note that the assumption of constant g is not a rigorous result but only a rough
approximation. In section we showed that the ZF with ¢, = 27/L, grows fastest as
the secondary instability. However, at the fully nonlinear stage, the ZF shape is changed
by additional DW—-ZF interactions, and ¢, is no longer determined by L,. As a result,
the Dimits shift is insensitive to L, as long as L, is large enough. From numerical
simulations, we found that the ZF shape differs from one realization to another, but in
general, ¢, (and hence p) is larger at smaller dg. In fact, we also tried o = 0(dp) such that
o gets larger at smaller §p, but the improvements in predicting the Dimits shift were not
significant compared to the simpler assumption of constant o.

For comparison, the prediction of 5. made by |St-Onge| (2017) is also plotted in ﬁgure
where it is denoted ;. As a reminder, [St-Onge|obtained 5 from a sufficient condition
for the ZF to be stable based on the 4MT approximation and considered f;p as a
“heuristic calculation” of the Dimits shift. Since the 4AMT method misses essential features
of TT modes such as mode localization, |St-Onge’s model is less accurate than ours.
Besides, the direct relation between |St-Ongefs criterion and the Dimits shift is only an
assumption. In contrast, our calculation provides an explicit formula for the Dimits shift,
namely, . Note that our predicts infinite . at dg = |ky—|—ky_1|« /0/2,1.e., small §,
(assuming ¢ < 1), which is in agreement with simulation results. In contrast, 85 is still
finite in this region. Also, St-Onge/s criterion does not have a solution at 6y > |k, + k|,
suggesting zero Apg; however, our theory gives nonzero Apg in this region, which is in
agreement with numerical simulations.

6. Conclusions

In conclusion, this paper expands on our recent theory (Zhu et al.|[2020), where the T1T
and the Dimits shift were studied within reduced models of drift-wave turbulence. Here,
we elaborate on a specific limit of that theory where turbulence is governed by the scalar
mTHE model and the problem becomes analytically tractable. We show that assuming
a sufficient scale separation between ZFs and DWs, TI modes are localized at extrema
of the ZF velocity U(z), where z is the radial coordinate. By approximating U (z) with a
parabola, we analytically derive the TI growth rate, vy, using two different approaches:
(i) by drawing an analogy between TT modes and quantum harmonic oscillators and (ii)
by using the WME. Our theory shows that the TT is essentially a primary DW instability
modified by the ZF curvature U” near extream of U. In particular, the WME allows us
to understand how the local U” modifies the mode structure and reduces the TT growth
rate; it also shows that the TI is not the KHI. Then, depending on U”, the TT can be
suppressed, in which case ZFs are strong enough to suppress turbulence (Dimits regime),
or unleashed, so ZF's are unstable and turbulence develops. This understanding is different
from the traditional paradigm (Biglari et al.|1990), where turbulence is controlled by the
flow shear U’. Finally, by letting yr1 = 0, we obtain an analytic prediction of the Dimits
shift, which agrees with our numerical simulations of the mTHE.
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Appendix A. Wigner—Moyal equation for the mTHE model

Here, we present the WME for the mTHE model following the same method that was
originally used by Ruiz et al.| (2016)) for the modified Hasegawa—Mima model. We start
with the linearized DW dynamics described by . Because the flow velocity U(z,t)
does not depend on y, we assume that the wave is monochromatic in y, namely,

= w(z,t)e*vy, (A1)
Then, equation (3.19) can be written symbolically as

0w = Hw, H(z, ky,t) :kyU—l—ky(ﬁ—I—fJ”)ff —iD, (A2)
where

A ~ 22 ~

U=U(#t), ke=—id/dz, k =1+k +k —idok,. (A3)
This can be considered as a linear Schrédinger equation with an non-Hermitian Hamilto-

nian. From here, we derive the following WME using the same phase-space formulation
that is used in quantum mechanics (Moyal [1949)):

W (x, ke, t) = {H, W + [T, W]]. (A4)
Here, W is the Wigner function defined as

W(z, ky,t) = /ds e Resqy* (2 — 5/2, )w(x + 5/2,t) (A5)

(* denotes complex conjugate), and H and I" are the Hermitian and anti-Hermitian parts
of the Hamiltonian:

yP

H=EF U+Re<k2> ?y(U”*k 225U, (A 6a)

r= Im( yﬁ) (U”*k 2 k2% U") = Dy, (A 6b)

where k2 =1 + k; + k2 — idpky. The symbol % is the Moyal star product:

— —
: A .03 97
where the overhead arrows in £ indicate the directions in which the derivatives act on,
and {{.,.}} and [[,,.]] are the Moyal brackets:

{ABY} = —i(AxB—B+A), [[AB]|=AxB+BxA (A8)

Equation is mathematically equivalent to , and the corresponding equation
for TI eigenmodes is obtained by replacing ;W with 2y W.

If we adopt the parabolic approximation of the ZF velocity, U = U + Cz?/2, then
U"” = C is constant and

H =k, Uy + %kycg@ + ky(8 +C)Re (;) , ky (B + C)Im (/:2) — Di.  (A9)

Then, the z-dependent part and the k,-dependent part in H are separated, and I is
independent of x. This greatly simplifies the WME (|A 4)), such that it acquires the form

(4.15), which we repeat here:

MWy g Wy O aQ
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Here, @ is given by a lengthy expression,

1)n+1 a2n+1f 8271 s 1 n aQnF 82n71W
Q Z 2n+1 X 221 8k%n+1 ox2n Z | % 22n 1 8k2n Ox2n—1 ’

(A11)

with f(ky) = k,Uo+k,(8+C)Re(k~2). However, 0, Q does not contribute to the integral
of (A 11]) over = that we are interested in. Therefore, the WME provides a transparent
description of the TT under the assumption of parabolic U.

Appendix B. Wave-kinetic equation and phase-space trajectories

Here, we briefly overview the derivation and the structure of drifton phase-space
trajectories from the wave-kinetic equation (WKE). This discussion helps clarify the
terms “runaway mode” and “trapped mode” used in the main text. It also illustrates
how the TI-mode structures change with the parameter ;.

The WKE is an approximation of the WME in the limit when, roughly speaking,
the characteristic ZF scales are much larger than the typical DW wavelength. Since a
parabolic U does not have a well-defined spatial scale, we switch to the sinusoidal ZF
velocity,

U = ucosgyz, (B1)

in which case the ZF scale is characterized by g, !. For large enough ZF scale, the WME
reduces to the WKE:
87W _OHOW  OH OW

ot  Ox Ok, Ok, Ox

+2I'W, (B2)

where

H =k, { — Re (%)] ucosqu—i—kyﬂRe(;) (B3)

while I' is not important for the following discussions. The form of the WKE (B 2)
indicates that W can be considered as the distribution function of DW quanta, or driftons,
in the (z, k) phase space. The driftons trajectories are governed by Hamilton’s equations,

dz  OH  dk,  OH

dt 0k, dt Oz’

where H serves as the Hamiltonian. However, unlike true particles, driftons are not
conserved. Instead, I" determines the rate at which W evolves along the ray trajectories.
If ZF's are stationary, as is the case for our calculation of the TI, then H is independent
of time and driftons move along curves that satisfy H(z, k;) = £, where £ is a constant.
In [Zhu et al| (2018b), we systematically studied these trajectories for the modified
Hasegawa—Mima system (5 = 0), and three types of trajectories have been identified,
which we called passing, trapped, and runaway trajectories. Although the mTHE has

nonzero 9, it corresponds to similar drifton dynamics unless § is too large. Note that H
depends on Re(1/k?), which is

1 1+ k2 + k2
Re<2>: 2 22y 27.2° (B5)
k (1+ k2 +k2)2 + 05k2

(B4)

Therefore, Re(1/k?) is a monotonically decreasing function of k2 if ooky < (14 k3)?,
ie., when 6y < |k, + k;!|. However, Re(1/k?) has a maximum at nonzero k2 if 6y >
|ky + K, 1 > 2. In the following, we discuss the two situations separately.
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FiGure 8. Contour plots of the drifton Hamiltonian H at (a) small dp and (b) large do;
the color marks the corresponding value of H. The parameters are § = ky = 1, ¢, = 0.4; also,
(a) do = 1.5 and w = 0.5, and (b) do = 3 and u = 0.1. At small do, trapped trajectories are
found near the ZF maximum x = 0 and runaway trajectories are found near the ZF minimum
x = 7/q=. At large do, two separate trapped islands form at = 0 and trapped trajectory replace
runaway trajectories at © = w/qq.

First, consider 6y < |k, + ky_1| Then, letting H = £ leads to

Ho(x,E) — €
2 = (1 2 ) _—
) = (14 B HABE S, (B6)
where
H®(x) = kyucos gz, (B7)
HO(z,E) = kyucos gx + 1—-]?-1?2(5 — qucosquz) (1— %), (B8)
and
_ . 11— E)?
A=AxleE) =1k \/1_ (B — q2ucos g, x)?’ (B9)

This shows that at given x, there are two solutions for k2 depending on whether A = A or
A = A_. However, it turns out that A = A, corresponds to negative k2 and hence can be
ignored, which is consistent with the fact that # is a monotonic function of k2 at small .
Therefore, only A = A_ is possible, and one could use to identify passing, trapped,
and runaway trajectories as in |Zhu et al.| (20185)). At very small v, ZFs do not matter,
so all trajectories are passing. However, when u exceeds a certain critical amplitude u.,
passing trajectories disappear, which indicates that DWs are strongly affected by ZFs in
this case. The critical ZF amplitude is obtained by letting

max H> = min H°. (B10)

This leads to an implicit expression of uc i:

o B )\O qazcuc
=g |3 (5] By

where

Ao = A_ (= 0,€ = kyue). (B12)
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Therefore, u, is smaller than that in the modified Haseagawa—Mima system, where A\g = 0
(Zhu et al|20180b)). Phase-space trajectories at u > u. are shown in figure a).

At 60 > |ky + K, Y'> 2, A = A_ still gives passing and runaway trajectories as
before. However, because H becomes non-monotonic with respect to k2, the other solution
A = Ay can also give positive k2 for some values of £. As a result, runaway trajectories
are replaced with trapped trajectories near the ZF minimum, and two separate trapped
islands are formed near the ZF maximum. The corresponding phase-space trajectories
are shown in figure [§(b).
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