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Intuition tells us that a rolling or spinning sphere will eventually stop due to the presence of friction
and other dissipative interactions. The resistance to rolling and spinning/twisting torque that stops
a sphere also changes the microstructure of a granular packing of frictional spheres by increasing the
number of constraints on the degrees of freedom of motion. We perform discrete element modeling
simulations to construct sphere packings implementing a range of frictional constraints under a
pressure-controlled protocol. Mechanically stable packings are achievable at volume fractions and
average coordination numbers as low as 0.53 and 2.5, respectively, when the particles experience
high resistance to sliding, rolling and twisting. Only when the particle model includes rolling and
twisting friction, were experimental volume fractions reproduced.

I. INTRODUCTION

A rolling or spinning marble on a table eventually slows
to a stop because of resistance to the rolling and twisting
modes of motion. However, rolling and twisting friction
are often excluded in simulation studies because of the
added complexity of the contact mechanics model. Such
approximations may be valid for some phenomena and
materials, such as materials with low sliding friction [1],
but the validity of this approximation, and the ability to
match experimental properties, must be tested.

Simulations have found that rolling and twisting fric-
tion is necessary to reproduce experimental observations
and can change macroscopic behavior. Only by including
rolling friction were Mort et al. [2] able to reproduce ex-
perimental shear/normal stress ratios in a hopper. Singh
et al. [3] were also unable to reproduce experimental
shear viscosity at relevant sliding friction coefficients with
simulations without rolling friction. Other simulations
found that rolling friction induces columnar granular par-
ticle contact backbones [4], increases stress-dilatancy [5],
causes anisotropic dense granular flows [6] and provides
an explanation of discontinuous shear thickening [7, 8].
Simulations of shear banding [9, 10], rigid flat-punch [11]
and wing-crack extension [12] processes generated large
regions of rotations. Resistance to such rotation could
change behavior, and studies of such processes should
consider including rolling and twisting friction in mod-
els. The magnitude of resistance to rolling and twisting
can be approximated, and explained by, contact mechan-
ics theory.
Long before granular particles were simulated with

rolling and twisting friction, Reynolds [13] and Hertz [14]
used theories of rolling and twisting resistance to suggest
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a substantial impact on packing structure. These theo-
ries focus on single particle-wall interactions using elastic
and inelastic approximations of rolling resistance [15, 16].
Twisting and sliding friction have the same origins —
twisting having rotational instead of translational dis-
placements over the contact area. Rolling friction origi-
nates from a combination of micro-slip at the interface,
inelastic deformation and surface roughness that create a
pressure difference between the leading and trailing ends
of the rolling contact [17]. Constraint counting predicts
that rolling and twisting resistance leads to large changes
in packing structure (see Sec. III A). Particle properties,
including surface morphology and the material [17], sets
the rolling and twisting resistance, and thus can control
packing structure.

Packings of spheres and disks with sliding friction have
shown many interesting phenomena. For example, in 3
dimensions, the coordination number Z decreases grad-
ually with friction from the frictionless value of Z=6 to
the frictional isostatic number Z=4 [18-22]. The volume
fraction 0 follows the decrease in coordination number
with increasing friction. Frictionless hard spheres sets
the densest volume fraction 0 -, 0.64 for random pack-
ings, known as the maximally random jammed state [23].
Simulations [18] and theory [21] have shown that sliding
friction leads to looser granular sphere packings than fric-
tionless sphere packings, as verified by experiments [24].

How loose frictional packings can be depends on the
friction coefficient and the path to packing. Early pack-
ing experiments of monodisperse spheres measured a
range of volume fractions with minimums of 0 ,-,0.57-
0.6 [25-27]. Later experiments demonstrated that mate-
rials with larger friction coefficients can access mechani-
cally stable packings with lower volume fractions [24, 28,
29]. With careful, density matched experiments, Farrell
et al. [29] measured volume fractions 0 <0.54 for very
frictional particles. Silbert [22] used a volume-controlled
simulation protocol to produce stable packings as low as
0 =0.576 for high, but realistic sliding friction coefficient
values (is = 0.5), which is still above the experimental
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value. Because rolling and twisting friction makes mod-
els more realistic, it offers simulations a route to match
the low volume fractions seen in experimental packings
of frictional particles.

Packings generated with a volume-controlled proto-
col have difficulty forming stable packings at low pres-
sures and volume fractions. By controlling pressure not
volume, final packings repeatably and rigorously sat-
isfy set stress conditions at low pressures. Pressure-
controlled protocols have been used to study granular
packings [19, 30-32], but their application to 3D fric-
tional particles is less common. In this article, a constant
pressure in the x-, y- and z-directions allows the box to
adjust the edge length, and by allowing the box to adopt
triclinic configurations, constant zero shear stresses are
achieved. Packings formed by pressure-controlled proto-
cols are more stable to shear deformation than volume-
controlled methods, as shown by Dagois-Bohy et al. [30]
and Smith et al. [31].
In this article, a constant-pressure protocol is used

to pack three-dimensional, monodisperse particles with
varying degrees of sliding, rolling and twisting friction.
The equations of motion that define contact forces for
the normal, sliding, rolling and twisting modes are pre-
sented in Sec. II A. The appropriate magnitudes of the
rolling and twisting contact force parameters are dis-
cussed in Appendix A. The details and benefits of
the constant-pressure packing protocol are described in
Sec. II B. The effect of rolling and twisting friction on
packing morphology is first predicted using constraint
counting (Sec. III A), and then the results of numerical
simulations are presented and compared to experiment
in Sec. III B.

II. METHODOLOGY

A. Contact model

Granular particles are modeled as spherical particles
with radius Ri and mass m2. Particles only interact
when in contact, through a spring-dashpot-slider interac-
tion potential for the normal, sliding, rolling and twisting
modes of motion. Sliding friction uses the Cundall and
Strack model [33]. Rolling resistance is based on Luding's
implementation [34], and twisting resistence is based on
Marshall's implementation [35]. For two granular parti-
cles in contact, separated by a distance lr23 1 < Ri + R3,
the force on particle i from particle j is

Fij —Fn + F.

Fn =knõn — mefanvn

F, = — min (tislFnl, rnefrsys l) vs
11'81

where (5 = Ri + — n = — m'm' F11- 31 ' meff m,Fm., • n
is the normal force and F, is the sliding force. Sliding
(s), rolling (r) and twisting (t) give rise to torque when

rii

granular particles are in contact. The torque acting on
particle i due to contact with particle j is defined as:

Tij =Ts + Tr Tt

Ts = — (Ri — 
2 
—) n x F,

(2a)

(2b)
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Tt = — min (tit IFnl, —kt6 — 1/00 n (2d)

Riwhere Reff = f f± RT , Note that torque acting on particle

j due to contact with particle i is 73, = —7ii, except for
Ts if Ri R. Each mode of motion m has a Hookean
spring constant km and viscoelastic damping coefficient
-ym, that takes into account the inelasticity of the contact
mechanics. The Coulomb yield criteria is applied to each
frictional mode force or torque and sets the maximum to
be the friction coefficient µm times the normal force.
The displacement accumulated as particles are in con-

tact is an important aspect of this model because it cap-
tures micro-slip and has been observed in experimental
studies of oblique impact [36]. The accumulated displace-

ment is measured by = f 
t 
v (7)d7, where to is theto m

time at first contact. To compensate for the effect of rigid
body rotations, is calculated in the reference frame
of the rotating particle pair [34]. As the contacting pair
rotates as a rigid body, the tangential and rolling dis-
placement vector components that are parallel to n are
subtracted at each time step, and scaled to preserve their
magnitude. The velocity of each of the 4 modes vm is
relative to the contact vector and are defined as:

vn = ((vi — vi) • n) n (3a)

v, =(vi — vi) — ((vi — vi) • n)n — (Rini + Rini) x n
(3b)

vr = — Reff(Sli — 52j) x n (3c)

vt =(ni — ni) • n (3d)

where vi and SZZ are the translational and rotational ve-
locities, respectively. The twisting velocity is a scalar
because it is one component of the rotational degrees of
freedom. Fig. 1 visualizes the three modes of friction and
the associated velocities, forces and torques.
The assumption of linear elastic behavior for inter-

particle contacts is reasonably accurate as a model for
sufficiently stiff particles. Note that as an upper limit,
for example, glass has a yield stress cry 70 MPa and
would be expected to yield/fracture/fragment, deviating
significantly from spherical shape, for Pa » 10-3 if7

Most simulations were run at Pa = 10-4 tt where d is
the diameter.
In all simulations, particles have the same radius RZ =

R = 0.5 and mass mi = m = 1. The particle spring
and damping parameters are set equal to each other
ka = 1cs = kr = kt = 1.0 m/T2 and -yn = -y, =
-yr = -yt = 0.5 7-1 where m is the particle mass and
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FIG. 1. Schematic of the granular particle interaction model
normal F„, and sliding Fs forces, and the sliding Ts , rolling
r, and twisting Tt torques. Resistence to the sliding transla-
tional velocity vs, the rolling f2, and twisting Sit rotational
velocities cause frictional forces and torques.

T = ,Vm1kr, [37]. The model parameters and coeffi-
cients of rolling and twisting friction used in this study
are not based on a specific material. However, the cho-
sen parameters are within relevant values, determined by
simulations and a contact mechanics analysis. The con-
tact mechanics analysis and details of two-overlapping-
spheres simulations are in Appendix A. Changes within
an order of magnitude of km, and ryr did not yield qual-
itative changes in the packing behavior. If kr or kt are
orders of magnitude lower than kr, and the normal force
is small, the torque resistances are negligible. The key
parameters varied in the analysis presented here of pack-
ings are the coefficients of the different friction modes,
not the spring and damping coefficients. A wide range of
friction coefficients are studied that include and go above
values for typical materials. For example, copper, bronze
and steel spheres have coefficients of rolling resistance pi.
of 10-4 to 10-2 [38, 39], while viscoelastic materials have
values of 10-3 to 10-2 [40]. In this study, pr,t varies from
0 to 100 because of precedent set by previous simulation
studies [2, 19, 22] and to understand the range of impact
of rolling twisting friction for this model.

B. Constant pressure packing simulations

The contact model described in Sec. II A was used to
perform discrete element, particle-based simulations in
LAMMPS [41] by integrating Newton's second law with
the velocity-Verlet integration scheme. The particle po-
sitions and orientations are updated based on the inter-
particle forces Fi and torques Ti calculated by Equations
(la) and (2a). The equations of motion include the de-
grees of freedom for a deforming box to simulate gran-
ular particles under a constant applied pressure tensor.
The granular particles are placed within a fully periodic
three-dimensional box which is able to change shape with
triclinic deformations to maintain the applied pressure
tensor. A barostat was used in the NP aH ensemble to
integrate the positions and momenta of the particles and

box, where N is the number of particles, Pa is the applied
pressure tensor and H is the enthalpy. The Shinoda-
Shiga-Mikami [42] formulation used in this study com-
bines the hydrostatic equations of Martyna et al. [43]
with the strain energy proposed by Parrinello and Rah-
man [44].

For each friction state measured, 6 packings of N = 104
diameter d= 1 non-overlapping particles were generated.
Simulations were initialized with particles at random po-
sitions and low volume fraction 00 = 0.05. The initial
volume fraction 00 does not affect the properties of the
final packing studied here, so long as 00 is not too near,
nor above, the final volume fraction (00 < 0-0.3). Initial
particle translational and rotational velocities were set to
zero. The simulation time step was set to 8t = 0.027. A
time step of 0.0027 did not change the results for the
systems studied within the uncertainties.

After initialization, the particles are isotropically com-
pressed. The packing method begins with a system at
00 = 0.05 and P = 0, then at t = 0 a constant pres-
sure Pa with a pressure damping of Pdarap = 2.25 7-1 is
applied until the system jams. The applied pressure has
been shown to affect the final volume fraction and coordi-
nation number with or without friction of any mode, as
observed previously [19, 22, 45-47]. Most of the sim-
ulations presented here are for Pa = 10-4 If7 which,
as we show below, is in the low pressure regime. Sim-
ulations were run until the per-particle kinetic energy
Ukinetic/N < 10-12km a7, which was well after the volume
fraction to stops developing. For Pa = 10-4 d, the total

run time was th- = 2x105, and for Pa = 10-7 ktri' , the
total run time was Or = 4x106. The applied symmetric
pressure tensor Pa is defined as: Pa = Pa,xx = Pa,yy =
Pa,zz and P- a,xy = Pa,xz = Pa,yz = 0 [48]. The applied
and measured pressure tensors equal each other exactly

Pint = Pa in the final packings. Because the shear pres-
sures are so near zero, these packings are stable to small
deformations.
The volume fraction 0 and coordination number Z are

the key parameters measured in this study. These prop-
erties were averaged over the 6 packings generated from
the final simulation configurations. Measured values of
Z are calculated without "rattlers", particles that have
too few contacts to contribute to the mechanical stabil-
ity of the packings. Particles were classified as rattlers if

Zi < Nrcatt where Zi is the number of contacts of par-
ticle i and Nrcatt is a friction-dependent minimum num-
ber of constraints on the degrees of freedom of motion.
Each mode of friction contributes constraints to .ATatt.
The friction contributions are determined with constraint
counting (see Sec. III A), and the values of Natt = Nc/2,
where Nc is the value in Table I. An intermediate fric-
tion of µcm = 0.01 was used to determine whether the
sliding, rolling and/or twisting friction mode m would
contribute to Nrcatt which determines the row in Table I.
The value of tem = 0.01 was chosen because it is the
point where friction has an appreciable impact on 0 and
Z. Other choices of µcm did not lead to large changes in
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Z. Rattlers are identified iteratively, so that the number
of contacts per particle decreases based on the number
of rattlers in contact with the particle. If the number
of contacts decreases enough to constitute a rattler, by
removing neighboring rattlers, it is counted as such.

III. RESULTS

Representative packed granular particle configurations
which demonstrate that the inclusion of sliding, rolling
and twisting friction causes major microstructural change
are shown in Fig. 2. Though each system has 10,000
particles, the volume of each is slighty different. Rat-
tlers, which are particles that do not have enough con-
tacts to be mechanically stable because they can move
within a mechanically stable packed system, are not visu-
alized (see Sec. II B for rattler identification details). The
fraction of rattlers increases with the friction coefficient
and the number of friction modes. As the sliding, rolling
and twisting friction coefficients increase, particles are
more likely to have fewer contacts — see the color change
of particles in Fig. 2. The structure and small fraction
of non-rattlers at high sliding ps, rolling pr and twist-
ing itt frictions differ considerably from the case where

lts = tt, = itt = 0 or even tis = µr = tit = 0.3. The
drastic decrease in the average number of contacts per
particle with multiple friction modes can be predicted by
balancing contact forces and constraints for a mechani-
cally stable packing.

1 NM 10

FIG. 2. Configurations of mechanically stable granular parti-
cle packings at three different sliding s, rolling r and twisting
t friction states: low (tts = aar = µt = 0, left), intermediate
(fis = bt, = µt = 0.3, middle) and high (p,s = µT = µt = 1,
right). Rattlers have been removed from the visualization,
and each granular particle is colored based on the number of
local contacts Z.

A. Constraint counting

Constraint counting models a packing as a state where
the total number of forces and torques on the granular
particles equals the total number of constraining con-
tacts to satisfy Maxwell's rigidity criterion [49]. For N
granular particles in d dimensions there are N normal
forces and, if there is friction, (d —1)N tangential forces,
N torques for d = 2, and 3N torques for d = 3. For

friction
sliding rolling twisting

3D
Ne Z

2D
Nc Z

n n n 1 6 1 4
n n 3 4 2 3

n y n 3 4 2 3
n n y 2 6

y n 5 12/5 3 2
n 4 3

n y y 4 3
y 6 2

TABLE I. The average number of contacts per particle Z
needed to satisfy the number of constraints per contact Nc for
a mechanically stale packing due to sliding, rolling, twisting
and the various friction combinations for three-dimensional
and two-dimensional particles. The inclusion 'y' or exclusion
`n' of a friction mode determines Nc. Two-dimensional par-
ticles do not have the twisting mode and values are omitted
accordingly.

mechanical stability, these forces and torques must be
balanced by the total constraining contacts NZ, where
Z is the average number of contacts per particle. The
analysis here assumes that any contact, no matter how
close it is to the friction limit, is constraining. Each con-
straint mode m contributes to the number of constraints
per contact, Nc = EmNren. The normal contact force law
of a hard sphere contributes N = 1, although for real or
simulated hard granular particles, without adhesion, it is
only constrained in the repulsive direction. The number
of constraints per contact for the other modes in 3D are
AT: = 2, = 2 and AT = 1. In 2D Ar; = 1, = 1 and
Nt = 0. The total number of constraints and equations
Nem' are then set to equal each other, so that:

{6N, if 3D, frictional

Negri 3N, if 2D, frictional

3N, if 3D, frictionless

2N, if 2D, frictionless

Nc
Necin =—y-N (Z)

2Neqn

(Z) = NeN 

(4a)

(4b)

(4c)

since a packing has to balance dN forces and 3N (3D)
or 1N (2D) torques for frictional particles. The num-
ber of local constraints N which are used to iden-
tify rattlers in the simulation configuration analysis is
Arle.ocal = NC/2. Table I lists the N, and Z calculated
from constraint counting using Equation (4c). The low
value of Z = 2 when all modes of friction are constrain-
ing was previously calculated by Liu et al. [50]. The
predictions for Z with different modes are compared to
simulation results in Sec. III B.
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B. Packing structure with rolling and twisting

Even though constraint counting predicts that rolling
and twisting resistances cause large changes in Z , sim-
ulations often ignore resistance to rolling and twisting.
Simulations of many particles with the isotropic com-
pression method described in Sec. II B can test the con-
straint counting predictions, and compare with exper-
imental measurements of mechanically stable packing.
Mechanically stable packings were generated with a con-
stant pressure tensor, where diagonal components are set
to Pa = 10-4 kt and off-diagonal components are set
to zero, applied to an initially very dilute system, see
Sec. II B for more details. The pressure damping for all
components is Pdamp = 2.25 T-1. Fig. 3 quantifies the
impact of µr and At on the coordination number with-
out rattlers seen in Fig. 2 and predicted by constraint
counting in Table I. The different panels in Fig. 3 iso-
late the impact of each friction mode. For sliding friction
without rolling and twisting, Z decreases with increas-
ing As as observed in previous volume-controlled pack-
ings [22]. As its —> 0, Z approaches the 3D frictionless
limit Z = 6. As pta increases, Z continuously decreases to
Z = 4, the limit predicted by constraint counting. Con-
straint counting predicts that Z decreases from 6 to 4 for
any nonzero sliding friction. Shundyak et al. [19] found
that, for 2-dimensional particles with sliding friction in
the hard-sphere limit, the Z predicted from constraint
counting equals the number of contacts minus the mobi-
lized or plastic contacts per particle. Rolling and twisting
friction modes have similar effects on Z with some dis-
tinctions.

The center two panels of Fig. 3 show that for low its,
Z is insensitive to rolling and twisting friction. The in-
sensitivity to it, and /it at low µs is due to how friction
is modeled. The contact point can move and disengage
the rolling and twisting torques if the sliding friction
is too low. As sliding friction is increased, its > 10-2,
rolling and twisting friction begin to affect Z in a sim-
ilar way as sliding friction. Increasing sliding friction
decreases Z at the low-J.4.4 values as well as increases
the magnitude of the impact pi. and itt have on Z at
high-µ„t values. The scale of the decrease in Z depends
on how many constraints a friction mode contributes.
Because rolling friction contributes two constraints to
rotational motion compared to one from twisting fric-
tion, rolling friction leads to a larger decrease in mag-
nitude for Z. Constraint counting predicts those mag-
nitudes, see Table I. Whereas with only sliding friction

Z = 4, the inclusion of twisting friction leads
to Z = 3.291 ± 0.009, rolling friction leads
to Z = 2.85 ± 0.05 and for all three frictions

Z = 2.50 ± 0.05 (limiting Z values were taken
as the minimum measured and reported in Fig. 3). Simi-
lar limiting behavior in Z was recently observed in shear
jammed dense suspension simulations [3]. Any process
that includes granular packings is likely impacted by the
large decreases in the average number of contacts per
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FIG. 3. Average coordination number without rattlers Z at
jamming as a function of sliding (us, far left circles), twisting
(At, for different µ,s where µr = 0, center left squares), rolling
(ur, for different fis where µt = 0, center right upward-facing
triangles) frictions and where rolling and twisting frictions are
set equal to each other (for different µ, where it, = ptt, far
right downward-facing triangles). The leftmost panel shows
how Z behaves with it, = aut = 0.0 (violet). For the other
panels, data with different sliding frictions are drawn with the
following distinct colors going from low to high: its = 0.01,
(magenta), 0.1 (turquoise), 0.3 (orange) and 1 (black). Con-
straint counting values (horizontal black dashed lines) corre-
spond with the cases shown in Table I. Packings are generated
at Pa = 10-4 d with Pd." = 2.25 7-- 1. Uncertainties are
similar in size to the symbols, and solid lines are guides for
the eye.

particle from frictionless (Z = 6) to large sliding, rolling
and twisting friction (Z = 2.5).

These values are close to, but consistently greater than,
the values predicted by constraint counting indicated by
the dashed horizontal lines. A portion of the under-
estimation is because the Z reported in Fig. 3 is without
rattlers. Taking rattlers out decreases the number of par-
ticles used to calculate Z, without much change in the
number of contacts, and is not accounted for in constraint
counting. To understand the larger constraint counting-
simulation Z discrepancy, consider the Z = 2 prediction
for all three friction modes. Because there is no cohesion
in this model, a particle with one contact is a rattler.
Therefore, the only way for there to be a mechanically
stable system with Z = 2, is if all non-rattlers have ex-
actly 2 contacts. A stable packing of particles with only
two contacts would be highly unlikely. The present sys-
tem instead forms packings with a few Z > 2 particles
between chains of Z = 2 for an average Z > 2.5. Previ-
ous simulations that included cohesion formed packings
with Z = 2 [50], support this explanation.

From the constraint counting predictions of the num-
ber of constraints per contact Nrcri and the criti-
cal value of mode m friction pin,, at which Z is
half way between the two limiting cases, Zrn,,, =
(Z(itra —> 0) + Z(1..tra pc)) /2, the Z behavior can be
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approximated without simulation data as:

z = Necin — tanh ( Ps )

X [N: Ntanh (  Pr ) .A7 tanh tit )1 (5)
blr,c itt,c

where the number of equations Necin and constraints
Arren are detailed in Table I. For this model,

/-18,C Pr,c itt,c '= 0.3, and thus Z =
6 — tanh (8) [2 + 2 tanh (8) + tanh (8)] . The tanh
function is chosen because it matches the correct limiting
behavior and exponentially connects the limits. The slid-

ing friction term, tanh  ) multiplies the rolling and
s , c

twisting terms because no resistance to the sliding mode
can lead granular particles to loose contact. The rolling
and twisting modes of rotational motion cannot individ-
ually lead to contact disengagement. Because Equation
(5) is informed by constraint counting, its limits of Z are
those predicted by constraint counting and do not match
the simulation results. Equation (5) is a tool to estimate
Z if the sliding, rolling and twisting friction coefficients
are known, and could be used as an initial metric to select
a material or model with desired packing properties.

0.64

0.62

0.6

° 0.58

0.56

0.54
1

0.8

0.6
frattler

0.4

0.2

0

•

o 0310210 110° lot 0410 10210 110° 10' o 4io 310210 11o° oho 4io '100

FIG. 4. Volume fraction (0, top) and fraction of rattlers
(frattler, bottom) at jamming as a function of sliding (µ8, for
different fit = , far left circles), twisting (p,t, for different its
where it, = 0, center left squares), rolling (ur, for different iza
where fit = 0, center right upward-facing triangles) frictions
and where rolling and twisting friction coefficients are equal
(for different it, where itr• = itt, far right downward-facing
triangles). The leftmost panel shows a series of curves that
represent different rolling and twisting friction coefficients:
= µt = 0.0, (violet), µr = /it = 0.01, (red), pir = /It =

0.03, (blue) and tz, = tit = 0.1 (green). For fir, itt >0.1, there
is little change in 0(fts) behavior. Experimental 0 values of
Farerll et al. [29] for different materials with associated tts are
shown as brown diamonds. For the other panels, the colors
are the same as Fig. 3.

The distribution of coordination numbers in high and
low Z packings are visualized in Fig. 2. To be mechani-
cally stable with so few contacts, a large fraction of the

10

granular particles must be rattlers. Not only are there
fewer non-rattler particles, but the distribution of non-
rattlers is very heterogeneous. Fig. 4 quantifies the frac-
tion of rattlers as a function of the various friction modes.
The rattler fraction increases monotonically with the fric-
tion coefficient of each mode. Z and fd rattler transitions
from the low-friction to high-friction limits are similar.
Rattlers become the majority with large friction [int val-
ues if it, > 0.3. Such microstructure must be very fragile
(quantification of packing strength is subject of future
study).

Fig. 4 includes the volume fraction dependence on the
different friction modes. Z and 0 behave similarly, ex-
cept for a minimum in 0 for high its. The minimum in 0
is likely due to contacts saturating at the Coulomb fric-
tion criteria. Once constraining contacts saturate, the
contacts can slide to form a denser packing, while main-
taining their network. As seen with Z and f., rattler slid-
ing, rolling and twisting friction cause a larger decrease
in packing fraction.
The results shown in Figs. 2 — 4 are generated by ap-

plying a pressure Pa =10-4 Ify to an initially dilute sys-

tem. Fig. 5 demonstrates that Pa = 10-4 lit is within
the low-pressure regime for frictionless, intermediate slid-
ing friction and intermediate sliding, rolling and twisting
friction states. Decreasing the pressure by three orders
of magnitude (from Pa = 10-4 to 10-7 ,t) changes the
volume fraction by 0.004 or less for all friction states re-
ported. The impact of increasing the friction coefficient
or number of friction modes on volume fraction and coor-
dination number is considerably larger than the impact
of decreasing the pressure below Pa =10-4 d.

0.857
0.8

0.75
sc" 0.7
0.64 ♦ 
0.4 • •

97
87

N

4 7

 • •

106 1 0
-5

10
4

Pa
10

3 10
-2

10
i

FIG. 5. Volume fraction (0, top) and coordination number
(Z, bottom) at jamming as a function of the applied pressure
for three different friction states: As = µt = µr = 0 (green
diamonds), its = 0.1„tit = µr = 0 (red squares) and p,s =
At = µr = 0.1 (black circles). Uncertainties are similar in size
to the symbols, and solid lines are guides for the eye.

Fig. 4 also shows the volume fraction of the packings
generated by experiments. Experimental values are from
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Farrell et al. [29] and were performed by slowly settling
spheres of different sliding friction coefficients, set by the
material (steel, aluminum, acrylic or teflon). The ex-
perimental 0 values are considerably below the simula-
tion 0 values without rolling and twisting friction. As
seen in Fig. 4, there is agreement with experiment for
0 only with rolling and twisting friction. To match ex-
perimental values for various acrylics, teflon and steel,

= = 0.1 is required, while for aluminum our re-
sults for pi. = µt = 0.03 match the experiment. Those
values required to match experiments are similar to the
value of /iv = 0.07 used in recent dense suspension sim-
ulations to match experimental shear viscosities [3]. Not
only do rolling and twisting friction have a major impact
on microstructure, as measured by Z, but they should be
included in experimentally-relevant particle models.

IV. CONCLUSION

Discrete-element, particle based simulations of 3-
dimensional granular particles demonstrated that rolling
and twisting friction leads to large microstructural
changes in mechanically stable packings, as insinuated by
constraint counting. Agreement with experimental vol-
ume fractions was only attained with rolling and twisting
friction (//7. = fit = 0.1) using this simulation protocol.
These loose packings, = 0.53, demonstrated the impor-
tance of different friction modes in real granular systems.
The pressure-controlled compression protocol generated
very loose packings with less computational effort than
other methods. The barostat control parameters, includ-
ing applied pressure, pressure damping and drag, does
impact the final packing properties, but these effects are
small compared to the effect of friction. A deeper inves-
tigation into pressure-controlled simulation parameters
and packing methods (compression, relaxation and tap-
ping) is the subject of a forthcoming article.
The decrease in the coordination number Z was pre-

dicted from constraint counting — both rolling and twist-
ing friction impose extra constraints per contact. The
decrease of the volume fraction and coordination num-
ber from low- to high-friction values were gradual for all
three friction modes, as observed for sliding friction. Un-
like sliding friction, the impact of resistance to rolling
and twisting depended on the sliding resistance magni-
tude. When multiple friction modes were included, such
as sliding with rolling or twisting, the coordination num-
ber predicted by constraint counting is considerably less
than the value measured from simulations. Nonetheless,
for very high friction, its = µT = µt = 1, a jammed sys-
tem with Z = 2.5 was observed. The majority of parti-
cles were rattlers in systems with such low coordination
numbers, generally if Z < 3. Based on the knowledge
gained from this information, an expression to predict
Z(its, /..tt) was proposed to aid constitutive models and
future parametric studies.
The effect of rolling and twisting friction on packing

illustrates the importance of including those modes to
match experimental results and offers insight into the
magnitude of those frictions required to induce property
changes for other granular systems. Future work will
focus on the impact of rolling and twisting friction on
rheology and the material strength of packings. The pub-
licly available rolling and twisting interaction models in
LAMMPS enable the presented and future work.
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Appendix A: Rolling and twisting parameterization

Rolling and twisting resistance depend on the normal
and tangential forces in most contact mechanics mod-
els [17]. Although simple, the spring-dashpot-slider sys-
tem enables the study of each mode independently. This
model allows for resistance to "pure' rolling. However, if
there is no sliding friction contacts can relax the rolling
resistance by sliding off the contact [51-55].

Sources of twisting and sliding resistance are essen-
tially the same — twisting friction is largely generated by
rotational, versus translational, displacements within the
contact area [17]. Therefore, twisting resistance should
be related both to the tangential mode, from the slid-
ing friction coefficient, and to the normal mode, from
the contact area. There are more identified sources for
rolling than twisting resistance. Micro-slip at the inter-
face, inelastic deformation and surface roughness all lead
to resistance because of the pressure difference between
the leading and trailing ends of the rolling contact [17].
Micro-slip, related to incipient sliding [17], occurs from
creep of the interfacing material and the difference in
shear forces at the interface when material in the con-
tact area slips. Those phenomena arise from differences
in material elastic constants, curvature and torsion. The
difference of strain on either side of the rolling contact
causes inelastic deformation, another source of rolling re-
sistance [38, 56]. In most cases, inelastic deformation cre-
ates the largest rolling resistance contribution, and can
be characterized experimentally by a "hysteresis loss fac-
tor" [17]. Surface roughness and viscoelasticity can lead
to rolling resistance, although likely at a lower magni-
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tude than inelastic deformation and micro-slip. Surface
roughness induces changes in the center-of-mass separa-
tion of the two bodies [57], and increases the real con-
tact pressure [39]. Viscoelastic materials have a velocity-
dependent rolling resistance, because of the balance in
relaxation and observation times in rolling resistance for
viscoelastic materials [58-60]. Approximations for the
relative magnitude of rolling resistance have been made
in the particle-based simulation literature.

Previous particle simulation studies that used spring
interaction models made approximations for how the
rolling spring constant kr relates to more common param-
eters. Iwashita and Oda [10] set kr. = ks11=12 by equat-
ing first-order approximations of the shear and rolling
elastic displacement. Jiang et al. [61] instead assumed
kr = LIcnrc,2 and -yr = 12rynra2, from Hertzian contact
theory by representing a rolling contact as springs in par-
allel, where ra is the contact radius and is calculated for
each contact. A more exact analytical solution for a vis-
cous sphere on a hard plane results in a relatively small
value for kr. that is friction dependent and therefore does
not work for our model [15]. Here, we perform our own
analysis of contact mechanics models to approximate the
parameters of the twisting and rolling pseudo-forces.
The twisting resistive moment in Hertzian theory is:

Ft = V Gra3Ot where Ot is the twisting angle, G is the
shear modulus and ra is the contact radius [62]. This
twisting model is associated with "no slip" which yields
a linear model with O. The contact radius can be esti-

( 3F,,R2(El—v2) 1/3
,

mated from the normal force as ra =

where R is the particle radius, v is the Poisson ra-

tio and E is the elastic modulus [17]. By using the
Hertzian approximation for ra in the Lubkin twisting
force Ft theory and by inserting ktOt and knõt for tan-
gential and normal Hookean-spring contact models, the
following relationship for the twisting spring constant is

found: kt/k., oc 8GR(E1—v2) . For steel G = 79.3 GPa,
E = 200 GPa, v = 0.27 and therefore ktIkr, ̂  1.5.
For rubber G = 0.0003 GPa, E = 0.001 GPa, v = 0.5
and therefore ktIk7, ̂ 0.9. A similar analysis can also
be carried out for the rolling pseudo-force. Based on
Johnson's formulation of elastic deformation [63, 64], the
moment due to elastic creep between spheres is Fr =
32(2, 

2

) 

r'

Grv Using the same assumption for the con-

3c- rva),diuc; of two elastic bodies used for twisting, we get
Fr = 16(2—v)(1—v2) G REnOr Since we model Fr = krO,3(3-2v) E

and FT, = ka6n, the ratio of rolling and normal forces

scales as krIkn oc 16(2—v)(1—v2) G R for elastic deforma-3(3-2v) E

tion. For steel kik, 0.7, and for rubber kik?, 0.5.

To empirically identify realistic parameters for the
rolling and twisting modes, DEM simulations of simple
configurations were performed. Two overlapping sus-
pended spheres, with fixed translational positions (and
fixed Fr,), were given an initial relative rolling or twist-
ing angular velocity. Nonphysical values of km, and -ym
gave long-lived oscillations and/or over-damped decay of
the torque. The rolling spring-dashpot-slider has realistic
behavior for 0 < krkyr < 1, yet kr/yr > 1 is realistic if
kn/kr < 10. Realistic twisting angle and torque behavior
was found for 0 < ktht < 2.
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