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Abstract In a typical optical test, a stereo camera pair is required to mea-
sure the three-dimensional motion of a test article; one camera typically only
measures motions in the image plane of the camera, and measurements in the
out-of-plane direction are missing. Finite element expansion techniques provide
a path to estimate responses from a test at unmeasured degrees of freedom.
Treating the case of a single camera as a measurement with unmeasured de-
grees of freedom, a finite element model is used to expand to the missing third
dimension of the image data, allowing a full-field, three-dimensional measure-
ment to be obtained from a set of images from a single camera. The key to
this technique relies on the mapping of finite element deformations to image
deformations, creating a set of mode shape images that are used to filter the
response in the image into modal responses. These modal responses are then
applied to the finite element model to estimate physical responses at all finite
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element model degrees of freedom. The mapping from finite element model to
image is achieved using synthetic images produced by a rendering software.
The technique is applied first to a synthetic deformation image, and then is
validated using an experimental set of images.

Keywords Optical • Finite Element Expansion • Synthetic Images •
Structural Dynamics

1 Introduction

Optical techniques are becoming popular due to the full-field, three-dimensional
motions that they can obtain on the surfaces of structures. Traditionally, when
3D motions are desired in a structural dynamics test, a stereo pair of cameras
is required to obtain the measurement. A single camera is only able to identify
motions in the image plane, and any motions perpendicular to these directions
are not captured. In many situations, only one camera may be present dur-
ing an event, but it would be useful to be able to estimate 3D motions of a
structure. Considering the example of a building during an earthquake: there
may be cameras throughout the city that have a view of this building, but
likely not a well-calibrated stereo pair. Still, engineers would be interested in
the deformations of that building to determine if any damage occurred.

Knowledge of the test article can be used to supplement the lack of out-
of-plane measurements in a single camera measurement system. If a plate is
set in front of a single camera system and moved towards the camera, it will
appear to grow larger in the camera image; in this case, a single camera cannot
distinguish between out-of-plane motion and expansion of the part. However,
given knowledge of the test article, it is possible to infer what these ambiguous
motions typically mean. In this example, a plate very rarely grows uniformly
in size due to a typical structural dynamic loading; it seems much more reason-
able that the plate would be moving towards the camera. Applying knowledge
of the physics of the test article in order to predict unmeasured responses is
precisely the goal of finite element expansion techniques. In these techniques,
there is some set of measured data, and from that data, unmeasured degrees of
freedom can be predicted using a model. This work aims to apply finite element
expansion techniques, particularly the System Equivalent Reduction Expan-
sion Process (SEREP) technique [1], to expand to full-field, three-dimensional
motions from a set of images from a single camera.

2 Finite Element Expansion using the SEREP Technique

SEREP as an expansion technique is essentially a spatial filter, using finite
element shapes as the basis for the filter. A given response xa, on the part is
measured at some a-set of degrees of freedom, and the responses are filtered
by the finite element mode shape matrix 'Da partitioned to only those a-set
degrees of freedom (using the pseudoinverse + to perform the filtering). This
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results in coefficients q corresponding to a linear combination of the finite
element shapes active in the measured response, which can be multiplied by
the full n-space finite element shapes 43,2 to recover estimates of responses in
the full finite element space xn.

q = 41)„±xa

xn = 4)nC1

(1)

(2)

Combining these two equations gives the typical SEREP expansion equation

xn = .13n43-aFxn (3)

What is not obvious in equation (3) is that the a- or n-set degrees of freedom
need not correspond to physical displacements, they can instead correspond
to any generalized degrees of freedom that correlate to the mode shapes. For
example, in [2], the authors use SEREP to expand from translation degrees of
freedom to full-field strain derived from a linear combination of strain shapes
from the finite element model. In other words, if the same degrees of freedom
that are measured during the test can be extracted or derived from the finite
element shapes, and these finite element degrees of freedom define a unique
linear combination of shapes to reproduce the test degrees of freedom, the
SEREP technique can be used to expand those test degrees of freedom to full
finite element space. Therefore, in order to use SEREP to expand to full-field,
3D deformations of the test article xn, the terms on the right-hand side of
equation (3) must be developed.

The Box Assembly with Removable Component (BARC) [3], shown in
Figure la, was used as a test article for this work. Contrast was applied using a
computer-generated speckle pattern printed to label paper, which was adhered
to the camera-facing surfaces of the structure. A finite element model was
created of the test article, shown in Figure lb, and used in the expansion
process. The finite element deformations for each mode shape can be used
directly to populate columns of the .1.72 matrix. The (1)n degrees of freedom
will require additional processing to compute, as they will depend on the xn
degrees of freedom extracted from the images.

To define the xn degrees of freedom, a camera view of the test article was
needed. Details of the experimental stereo camera setup are provided in Table
1. The stereo camera setup was necessary to produce 3D "truth date against
which to compare the expanded data; to perform the expansion to 3D motions,
only the images from the left camera were used. Figure 2 shows an example
test image. The degrees of freedom extracted from the left camera images will
represent the xn degrees of freedom. The final part of the equation, 4,n, is
obtained by transforming the finite element displacements into image degrees
of freedom. This is an involved process that is described in Section 3.



4 Daniel P. Rohe et al.

(a) BARC test article set up for optical testing. (b) BARC finite element
model.

Fig. 1: BARC test article and finite element model.

Table 1: Stereo Camera Parameters

Parameter Value
Camera
Lens
Aperture
Image Resolution
Field of View
Image Scale
Stereo-angle
Stand-off Distance
Image Acquisition Rate
Patterning Technique
Approximate Speckle Size

Vision Research Phantom v2640
Zeiss Milvus 85mm
f/11
1536 x 1920 pixels
15x20 cm
8 pixel/mm
30 degrees
80 cm
4096 fps
Printed Sticker
5 pixels

3 Creating Synthetic Images using a Finite Element Model

In order to expand from a measured a-set of degrees of freedom using SEREP,
those same a-set degrees of freedom must be extracted from the finite element
model for each mode. Therefore, to expand from arbitrary image degrees of
freedom, each of the finite element shapes should be reproduced on-image
so that the same degrees of freedom can be extracted. This process involves
determining the intrinsic and extrinsic camera parameters in the finite element
coordinate system, mapping the image texture to the finite element model,
deforming the finite element model into a mode shape, and then rendering an
image of each shape. This is performed using the process developed in [4] using
the open-source Blender software [5] to render the final deformed images. The
image processing is then performed on the synthetic images, using the identical
technique to the actual response images, to generate the finite element a-set
degrees of freedom necessary to evaluate Equation (3).
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Fig. 2: Representative response image from the test.

3.1 Preparing the Finite Element Model

The first step is to prepare the finite element model for import into the Blender
software. The Blender software uses surface meshes to model geometry, so the
volumetric finite element mesh needs to be "skinned!' to produce a surface
mesh. This can be performed by creating a list of all faces of all volumetric
elements in the model, and removing any face that appears twice: exterior
faces will only appear in one volume element, whereas internal faces will always
appear in two. These exterior faces are used to create a connectivity array that
can be assembled in Blender using its Python programming interface.

3.2 Camera Setup

Once the finite element model is loaded into Blender, a camera must be placed
so that there is a view point from which to render the scene. Blender uses a
pinhole camera model that is widely used in computer graphics applications,
where the equation that projects three-dimensional spatial (x, y, z) coordinates
into the two-dimensional image (u, v) coordinates is1cv =,,,][RIt] yzxl (4)

, 1
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Note that equation (4) is constructed using homogeneous coordinates, so the
left hand side may be scaled by an arbitrary factor c, which is the last row of
the resulting vector. Dividing the first and second rows of the left hand side
by c (i.e. scaling the vector so the last row is 1) allows recovery of the image
pixel coordinates u and v.

Here, [K] is a 3 x 3 matrix of camera intrinsic parameters, which is devel-
oped from physical camera parameters as

[K] =
s

P'f"'"'

(112 — su)Pu

(1/2 — sv)p,

1
(5)[

29'f--ssu,
0

0
SSvomn

0

where pu and p, are the image resolution in pixels in the u and v dimensions,
respectively, ssu,„„„„ and ss,,„„,„ are the camera sensor size in millimeters in
the u and v dimensions, respectively, su and 5, are the normalized camera
shift values in fraction of the image in the u and v dimensions, respectively,
and fmm is the lens focal length in millimeters. All of these camera parameters
are specified in the Blender software. Some camera calibration routines return
a camera skew s or a separate focal length fmm, for each of the u and v
directions; however Blender's camera model cannot handle these parameters.
If a significant skew or difference in focal length between dimensions is needed
for the camera and lens combination used in the test, these distortions can be
applied via postprocessing the output images from Blender.

[Rlt] is a 3 x 4 matrix of extrinsic camera parameters. The left partition
[R] is a 3 x3 rotation matrix, and the right partition [t] is a 3 x1 vector of
translations. These transformations take vectors specified in the global (finite
element) coordinate system and transform them into the local camera coor-
dinate system where the camera z direction is defined as the view axis of the
camera. However, the camera rotation and position in the global coordinate
system need to be specified in Blender. One important detail is that the local
z directions of camera objects in Blender point opposite of the view axis, so an
additional rotation [R], must be specified that performs a 180 degree rotation
about the local camera x axis.

1 () 0
[R]e = 0 —1 0 (6)

0 0 —1

[R]b = [R]T [R], (7)

[t]b = — [R]b [R] [t] (8)

The matrices [R]b and [t]b are then the orientation and position of the cam-
era in the Blender software. The orientation of an object must be specified
using Quaternions or Euler Angles, so the orientation matrix [R]b must be
transformed into one of those forms.

The intrinsic parameters of the test camera can be derived using a standard
camera calibration that is common in DIC: a calibration target with a dot
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Fig. 3: Representative calibration image showing dot grid calibration target.

grid with known spacing is translated and rotated in front of the camera while
a series of images are captured. Figure 3 shows a representative calibration
image used for this test. Correlated Solutions' VIC3D software was used to
perform the calibration, and the [K] matrix was constructed from its output.
Lens distortion parameters are also obtained from the calibration procedure.
While Blender's pinhole camera model does not include distortions, the Open
Computer Vision (OpenCV) [6] library has functions that can be used to
remove distortion from test images to ensure that they are consistent with
Blender's output.

For a stereo DIC setup, the camera calibration described above will typ-
ically provide extrinsic camera parameters as well; however, with only one
camera only the intrinsic parameters can be derived, and a separate approach
is required to compute the camera pose. Here the Efficient Perspective-n-Point
(EPnP) algorithm [7] was used, as implemented in the OpenCV library [6].
The EPnP algorithm takes as its inputs the camera intrinsic matrix [K] and
distortion parameters, as well as a series of point pairs in the image and spa-
tial domains. Table 2 shows the point pairs used for this pose estimation. The
output of the algorithm is the orientation and position of the camera, from
which the matrix [R1t] was derived. To check the accuracy of the complete
camera projection, the 3D coordinates in Table 2 can be reprojected through
equation (4) to produce estimated pixel locations. These can be compared to
the 2D image locations in Table 2 to compute a reprojection error. In this
case, the average error was 2.5 pixels, which is approximately 0.3 mm.

Once the intrinsic and extrinsic camera matrices are determined, a camera
can be created in the Blender software using physical camera parameters from
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Table 2: Point pairs used in the EPriP algorithm

Image Position
u (px) v (px)

Spatial Position
x (in) y (in) z (in)

Reprojection
Error (px)

201 74 2.5 2.128 -0.5 0.8
1220 105 -2.5 2.128 -0.5 3.6
136 523 2.99 0.0 -1.5 2.4
1398 536 -2.99 0.0 -1.5 3.9
137 1860 2.99 -5.98 -1.5 2.3
1395 1814 -2.99 -5.98 -1.5 2.1

(a) Test Image (b) Rendered Finite Element Model

Fig. 4: Comparison of test image and finite element model projected to test
image.

equations (5) and (7)—(8). A render of the finite element model from this
camera compared to the test image appears in Figure 4.

3.3 Local Texture and Lighting

The next step to matching the test images is to apply a texture to the finite
element model. This texture will be mapped to the undeformed finite element
model; when the model is deformed, the texture will deform with it. If tracking
subsets using DIC, it is not strictly necessary to reproduce the exact image
from the test on the finite element model as long as the subset locations
are chosen identically. However, for other optical techniques such as feature
tracking, marker tracking, or phase-based processing, it will be necessary to
have identical local contrast patterns to ensure the same degrees of freedom
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are being measured. Therefore, this work will proceed with mapping the test
image onto the finite element model.

The general problem of texture mapping in computer graphics involves
the mapping of a 2D image to a 3D model. One common approach, known
as UV mapping in computer graphics applications, involves "unwrapping"
or projecting the 3D mesh to 2D (u, v) image coordinates. Each face of the
geometry mesh is mapped to a portion of the image, which is applied to the 3D
mesh during the render. Note that the projection from 3D model to test image
space is already defined from the camera projection developed in Section 3.2,
so if the texture to be applied to the finite element model is the test image
itself, the UV mapping is already defined. Blender performs this entire process
in a few mouse clicks; the test reference image is loaded into the software as a
new material and assigned to the geometry, the view in the software is set to
the camera view, and the model is unwrapped via projecting from the current
view.

The texture of the object is only half of what determines its final appear-
ance in a render. The other half is the lighting applied to the texture. One may
be tempted to try to reproduce the lighting that was used in the test, perhaps
using spotlights positioned in approximately the same places pointing at the
test article; however, this is not correct. The lighting, shadows, and specular-
ities in the test image are already embedded into the texture applied to the
model; therefore, only a flat-white uniform light is required. This is achieved
via environmental lighting in the Blender software. Note that depending on
which render engine is being used in the Blender software, the background
color of the render may also change with the applied environment lighting,
so it may be necessary to put a flat-black plane behind the test article in the
Blender scene to accurately reproduce the image. Figure 5 shows a comparison
between the test image and the rendered textured finite element image.

3.4 Deforming and Rendering Images

With the finite element mesh textured, it can be arbitrarily deformed within
the scene and images can be rendered of those deformations. The deforma-
tions that will be rendered will be those of the finite element mode shapes,
and one must chose at what scale to render these shapes in the images. If
the rendered displacements are too small, the image degrees of freedom will
be noisy, which would result in a poor inversion in equation (3). However, if
displacements are too large, image processing techniques could break down.
At large deflections, hidden surfaces may be revealed, and because the tex-
ture was applied from the test image, surfaces that are not visible in the test
image will not be textured correctly. Also, for subset or feature/marker track-
ing approaches, the tracked set of pixels may become distorted due to large
rotations or shearing. Taking these constraints into consideration, a peak dis-
placement of 0.5 pixels was chosen, which resulted in a different scaling factor
for each mode of the system (see Section 5 for a comparison of results using
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(a) Test Image

-

(b) Rendered Finite Element Model

Fig. 5: Comparison of test image and finite element model projected to test
image.

different peak displacement values). To determine each mode's scaling factor,
the undeformed and deformed 3D coordinates of the finite element model were
passed through equation (4), resulting in pixel locations corresponding to the
undeformed and deformed model for each mode shape. Subtracting the de-
formed from the undeformed pixel locations gives pixel displacements for each
shape. The mode shape was then scaled by the reciprocal of the maximum
pixel displacement times the desired maximum pixel displacement. Note that
equation (4) is not linear due to the normalization that must occur in the third
row of the equations to maintain the homogeneous coordinates. Therefore, in
order for this approach to work, the mode shapes were first scaled to a small
value in order to generate an approximately linear relationship between 3D
and image displacements, then scaled to the linear value. Figure 6 shows the
first three elastic modes of the finite element model; these are rendered with
deformations set to 100 x the deformation used in the analysis to ensure the
deformations are visible to the reader.

4 Choosing Image Degrees of Freedom

Once the finite element shapes were rendered, degrees of freedom from the
images were selected. Ideally these degrees of freedom will result in linearly
independent columns of the 41)„ matrix so the pseudoinverse in equation (3)
can be accurately performed. In this case, DIC subset displacements were
chosen as the degrees of freedom to correlate. Because only one camera image
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(a) Mode 7 (b) Mode 8 (c) Mode 9

Fig. 6: Synthetic images created from deforming mode shapes. Note that the
deformations are scaled 100x compared to the half-pixel displacement images
used in the analysis in order to make them visible to the reader.

was available, 2D DIC was performed, resulting in u and v displacements
in pixels for each subset solved. The open-source Digital Image Correlation
Engine (DICe) software [8] was used to perform the DIC analysis. Areas of
interest were defined on the speckle pattern as shown in Figure 7. Subset
and step sizes of 21 and 20 pixels, respectively, were used for the analysis. The
shape functions used in the correlation allowed for translation, rotation, normal
stretch, and shear stretch. These parameters resulted in 814 subsets solved
with two degrees of freedom per subset for each of the rendered mode shape
images. The first 26 modes (up to 3,000 Hz) were solved, which included the
six rigid body modes. Figure 9 shows the subset displacements for each mode,
scaled so they are visible. A Modal Assurance Criterion (MAC)[9] matrix is
shown in Figure 8. The 1628 x 26 41a matrix had a condition number of 148.
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Fig. 8: MAC of the 4),, matrix.

Fig. 7: Areas of Interest and Sub-
set Size defined in DICe.
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Fig. 10: Analytic deformations on which the technique will be demonstrated.

5 Application to Synthetic Deformation

To demonstrate the technique on perfect data, a synthetic deformation image
was created using a random linear combination of modal coefficients q for
the first 20 modes, sampled from a uniform distribution between -0.3 and
0.3. These coefficients were multiplied by unit-pixel scaled mode shapes to
produce deflections that would be on the order of 0.3 pixels per mode. The
synthetic deformation was then created by summing these shapes. Figure 10
shows the analytic displacement, with Figure 10a showing the synthetic render
of the deformations at 50 x scale and Figure 10b showing the solved subset
displacements on the image. These subsets were identical to the subsets used
in Section 4.

The deformed subset displacements from the analytic deflection image
(Figure 10b) and the subset displacement "shapee (Figure 9) were passed
into equation (1) to solve for the shape coefficients of the displacement. Note
that 26 modes were used to predict the response, even though only the first
20 modes were used to create the analytic deflection shape, so the predicted
coefficients for the last 6 modes were expected to be zero. These predicted
coefficients were compared directly to the prescribed modal coefficients used
to create the deflection image. This comparison is shown in Figure 11. The
true displacements were then compared to the prescribed displacements by
passing the prescribed and estimated modal coefficients q through equation
(2) to predict full-field response. This comparison is shown in Figure 12.
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Treating the coefficients, q, as a vector, the magnitude of the error vector
was computed to be 0.058, which was 5.8% of the magnitude of the displace-
ment vector, 0.996. For responses, the magnitude of the error vector was only
3.0% of the magnitude of the response vector, and as seen in Figure 12, the
majority of the error is located at points far from the surfaces where the sub-
sets were solved. This gave confidence that the technique would be able to be
applied to experimental data.

Because the analytical deformations applied during this analysis were known,
it allowed the processing parameters to be investigated to determine which
might provide a better estimate of the modal coefficients, and in turn the 3D
displacements. The maximum pixel displacement of the mode shape images
was of interest as it had been selected using intuition as discussed in Section
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Table 3: Magnitude of the Modal Coefficient Error Vector for given maximum
pixel displacement values.

Pixel Displacement Error Magnitude
3 0.1252
1 0.0725
0.5 0.0580
0.25 0.1422
0.125 0.2010

3.4. Mode shape images were rendered at maximum deflections of 3, 1, 0.5,
0.25, and 0.125 pixel. Table 3 shows the magnitude of the error over these
maximum pixel displacement values. A maximum mode shape pixel displace-
ment of 0.5 was found to give the lowest error of the values investigated, so it
was used to extract 3D motions from the test data.

6 Experimental Results

Given the favorable results using synthetic deformation images, the process
was demonstrated using experimental data. The BARC was excited with a
flat-force (versus a typical flat-voltage) pseudorandom input at 1 lb RMS from
100 to 2000 Hz. The flat-force input was created by measuring the transfer
function between the shaker excitation force and amplifier input voltage in
the test configuration and computing a shaped voltage spectrum that would
result in a flat force spectrum. This voltage spectrum was then translated
into a pseudorandom time history that could be played using the arbitrary
source capabilities of the B+K LAN-XI data acquisition system used in this
test. The data acquisition system also collected accelerometer and force data,
though none of these sensors were used for the expansion; they were only
applied as diagnostics. The cameras were run at 4096 frames per second with
an exposure time of 50 [is to acquire test images. Each measurement frame
was 1 second (4096 images) long and a total of ten frames were collected for
averaging purposes. Image averaging was possible because the input excitation
force was repeated identically for each frame once the start-up transients had
died away. This reduced the total number of images that must be processed
in the DIC software from 40960 to 4096.

The identical processing that was applied in Section and 5 was then applied
to the left camera images from the experiment. 2D DIC was performed using
the subsets from Section 4 to extract (u, v) displacements for each subset at
each time step. Because the pseudorandom excitation only excited the test
article above 100 Hz, a 4th-order high-pass Butterworth filter with 100 Hz
cut-off frequency was applied to the subset displacements with the goal of
reducing erroneous signals due to heat waves or other low-frequency optical
distortions. The temporally-filtered subset displacements were then spatially
filtered using the finite element shapes <Pa to extract a set of modal coefficients
q at each time step, per equation (1). These coefficients were then multiplied
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Fig. 13: 60 comparison locations shown on the BARC. The locations are
colored by the FRAC between the z-direction responses of the expanded and
truth data.

by the full finite element model shapes to produce full-field, 3D motions at
each time step per equation (2).

Sixty locations were selected to compare expanded results to truth data
from the stereo DIC analysis. At each location and for each coordinate di-
rection the Time Response Assurance Criterion (TRAC) [10] and Frequency
Response Assurance Criterion (FRAC) [11] were computed to compare the
time responses and frequency spectra of the expanded and truth signals. The
TRAC and FRAC are generalizations of the MAC using deflection shapes at
each time step or frequency line rather than mode shapes to perform the cor-
relation. Figure 13 shows the locations of each of these comparison points,
and Figures 14 and 15 show the TRAC and FRAC values for all measurement
locations for the x, y, and z directions. Figure 13 shows a triad that defines
these directions. Note that the x and y directions were most closely aligned
with the image plane of the camera, and the z direction is oriented primarily
out of the image plane. Figure 16 shows time and frequency response compar-
ison of the worst correlation, and Figure 17 shows the same comparison of the
best correlation.



18 Daniel P. Rohe et al.

g

1.0 R
0.50.0  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

1.0 -

1111111111111111111111111111111111111111111111111111111111111111 

i 0.5 -

0.0

1.0

0.50. i111111111111111111111111thimillidiodiiiiiiimmili 
10 20 30 40 50 60

Location Number

Fig. 14: TRAC comparing expanded to truth data for each coordinate direc-
tion for each location.

1.0 R
g 0.50.0  

1.0

g 0.5
0.0

1.0

g. 0.5

0.0

111111111111111111111111111111111111111111111111111111111111
-NiiiiiiioiiiiiiioiiiiiiiiiliiiiiiiiiodiiiiiiiQmdiiii 

0 A 20 30 A A 60

Location Number

Fig. 15: FRAC comparing expanded to truth data for each coordinate direc-
tion for each location.



Zoomed Time History

0.015 -

0.010

0.005

0.000 -

-0.005 -

-0.010 -

0.46 0.48 0.50 0.52

0.004

0.002

E 0.000
11

IN
-0.002

-0.004

-0.006
0.46 0.48 0.50 0.52

0.54

0.54

0.005

0.000

-0.005

0.2

0.002 -

0.001 -

0.000 -

-0.001 -

-0.002 -

Full Time History

0.4 0.6 0.8 1.0

0.2 0.4 0.6
Tirne (s)

0.8 1.0

100

10-0

10-3

10"

10-3

Frequency Spectrum

orAllo\sf„,,,Atev'Irromo
500

500

1000

1000

1500

1500

1000 1500
Frequency (H.)

Fig. 16: Comparison of Location 41 data. This point had the worst correlation in the z direction.
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7 Discussion

While good agreement between truth and expanded signals was demonstrated
in Section 6, there were distinct areas on the test object where the expansion
process struggled. This section discusses some of those issues and potential
remedies.

7.1 SEREP Expansion

For all checked locations, motion in the x and y directions showed very good
agreement between the expanded and truth data. This was expected, as these
degrees of freedom correspond most closely with the subset displacements
used to perform the expansion. The out-of-plane z-direction responses were
not predicted as accurately. Figure 13 shows the expansion struggled most
on the vertical members of the "box" portion of the test article. Predictions
on the component mounted to the box were much more accurate. While a
FRAC or TRAC value of less than 0.5 seemingly indicates poor correlation,
examination of the time and frequency responses of the worst points (e.g. as
shown in Figure 16) does not paint as bleak of a picture. The majority of the
frequency band seems to be accurately predicted, with the main sources of
error coming from the frequency band between 1,050 and 1,100 Hz and to a
lesser extent the frequency band around 250 Hz.

There can be several reasons that SEREP may incorrectly expand exper-
imental data: (1) the finite element modes are not accurate representations
of the true structure modes and therefore do not form adequate interpolation
functions between the measured data to estimate unmeasured response, (2)
the finite element model contains modes which are not necessary to expand
the experimental data, or (3) insufficient degrees of freedom were measured to
uniquely identify all modes which are being expanded.

To investigate, the 3D DIC truth data were combined with force and ac-
celerometer diagnostic measurements, and modes were fit to the data using
experimental modal analysis. This resulted in 13 experimental elastic shapes.
Two SEREP case studies were performed to identify which of the potential ex-
pansion issues listed above were occurring. In the first case, the experimental
mode shapes were filtered by the finite element mode shapes per equation (1)
using all image and accelerometer degrees of freedom to create a set of coeffi-
cient vectors that represented the linear combination of finite element shapes
to produce each experimental shape, shown in Figure 18a. In the second case,
the accelerometer degrees of freedom were not used in the expansion; instead
only the 3D image degrees of freedom from the truth DIC on the front surfaces
of the part were used. This is shown in Figure 18b

Because the accelerometers are spread evenly over the part, the set of coef-
ficients from the first case is thought to represent the true linear combination
of finite element shapes to create each experimental shape. Note that for each
experimental mode, there is primarily one finite element mode that directly
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corresponds to it with smaller amounts of other modes also included to handle
the small differences between the finite element model and test. Much work
has been performed to understand the sensitivity of SEREP to model inaccu-
racies, and it has been shown to be very robust against even egregious model
errors [12,13]. Therefore, for this work, the finite element model was thought to
be sufficiently accurate. Additionally, all the finite element mode shapes used
in the expansion showed significant contributions to the experimental mode
shapes, so the finite element model was not thought to contain any modes that
were unnecessary to expand to the experimental data.

If a set of degrees of freedom is adequate for a given expansion problem,
one would not expect to see the shape coefficients computed by expanding
from that set of degrees of freedom change from the truth value. When the
accelerometer degrees of freedom were removed from the expansion in the
second case study, the modal coefficients were similar to the truth case for
many of the modes; however, the coefficients to reproduce experimental mode
9 have changed significantly. The main contribution to experimental mode 9
from finite element mode 16 has dropped from nearly 1 to less than 0.8, and
several other modes are now contributing significantly to the shape. Mode 8
shows similar changes though they are not as drastic. When the coefficients
to reproduce mode 9 are multiplied by the finite element shape matrix, the
points far from the imaged surface no longer agree with the accelerometer
data measured in the test. This indicates that the optically measured subset
of degrees of freedom are by themselves insufficient to accurately expand modes
8 and 9. These modes, which have natural frequencies at 1,058 and 1,123 Hz,
are likely the reason that poor expansion was obtained in the z direction in
the 1,050-1,100 Hz frequency band.

In this case, the fact that the degrees of freedom were insufficient to expand
specific modes was determined by comparison with truth data; however, in
practice there might not be truth data available. Instead, the authors would
encourage users of this technique to investigate the expansion analytically, as
is shown in Section 5, perhaps even going as far as to perturb the model to
understand the sensitivity of the expansion from the given set of degrees of
freedom to modeling errors. Alternatively, a small number of "trutV sensors
could be placed on the part to investigate how well the process expands to
those sensor locations.

7.2 View Angles and Camera Lenses

This process attempts to re-create 3D motion from 2D motion using a finite
element model to inform the missing degrees of freedom. This transformation
relies on perspective to create motion when the part is moving towards or away
from the cameras. Perspective effects will be largest with the test article closer
to the camera with a wide angle lens. As the lens focal length increases the
view angle decreases, so for a given translation towards the camera the relative
enlargement of the part's image on the camera sensor will be smaller. In the
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Fig. 18: Comparison of Modal Coefficients using accelerometer and image
degrees of freedom (a) and only image degrees of freedom (b). Note the change
in composition of experimental mode 9.

limit that the focal length goes to infinity (e.g. an orthographic view which can
be achieved using a telecentric lens), there is zero enlargement due to perspec-
tive. It is clear that this expansion process would break down in such a case,
as at least one of the translation rigid body modes would be indistinguishable
from the linear combination of the other two. Given this argument, if this work
were to be repeated, the authors would investigate using a wider angle lens
than the 85 mm lenses used in this proof-of-concept. Additionally, given the
fact that motions in the x and y directions were extracted nearly perfectly but
the motion in the z direction was less accurate, the authors would try using
a view that was more oblique to the part xy plane so there would be a larger
z component in the image plane. Note that the proximity of the part to the
camera may be limited by the minimum focusing distance of a given lens. It
may also be limited by the required depth of field, which for a given aperture
will become narrower as the part moves closer to the camera.

7.3 Optical Errors due to Heat Waves

This technique uses finite element shapes as a basis for expanding measured
data. It assumes that all the measured motions can be described by those
shapes; however, there are some issues that may arise in optical testing that
can invalidate this assumption. Heat waves are a well-known phenomenon in
DIC analysis often active at temporal frequencies below 100 Hz [14], and these
can distort a given measurement shape. These distorted shapes will not likely
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be found within the finite element model, so the expansion process suffers.
Initially, no high-pass temporal filter was applied to the data, and very poor
results were obtained from the expansion. Once the high-pass filter was added,
as described in Section 6, which removed the effect of the heat waves, the data
matched much better to the truth data.

7.4 Multi-view Analysis

One final point of discussion is the applicability of multiple views to this
technique. As noted in Section 7.1, having all degrees of freedom on one or a
few surfaces may not be sufficient to expand to motions on the entire part. One
option is to supplement with accelerometers in locations that are not in the
optical system line-of-sight. Alternatively, to stay with optical measurements
only, another camera could be used to view additional degrees of freedom (in
this case, a camera viewing the opposite side of the test article would offer
the most improvement), synthetic finite element images could be created and
2D subset displacements could be extracted from that view as well. These
additional degrees of freedom could simply be appended to equation (1) as
extra rows of the <1.a and xa matrices, and the modal coefficients q could
be found for both views simultaneously. The addition of one or more extra
views could significantly improve the expansion process. Note that the entire
expansion process can be investigated analytically, as shown in Section 5, so the
camera views and degrees of freedom used in the expansion could be optimized
prior to the test.

8 Conclusions

This paper introduced a technique to extract 3D motions from a set of images
from a single camera using finite element expansion techniques to estimate
the out-of-plane displacements that have traditionally been considered miss-
ing from a single camera test. This technique utilized the SEREP technique
to perform the expansion, creating synthetic finite element images from which
arbitrary image degrees of freedom could be extracted. The synthetic finite el-
ement images were created such that they matched both the camera viewpoint
as well as the local texture of the part. Because the synthetic images matched
the test images, identical image processing techniques could be performed on
the test and finite element images, meaning identical degrees of freedom could
be produced with which the filtering could be performed. The technique was
first tested using a synthetic deformation image, which was produced using a
randomized set of modal coefficients. These coefficients were accurately repro-
duced by the expansion technique, so the prescribed 3D displacements were
accurately estimated by the technique. The technique was then applied to
an experimental dataset, and compared to truth data obtained using stereo
DIC. Very good agreement was found in the x and y directions, which corre-
sponded closely to the image plane directions. The z-direction motions were
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well predicted, but larger errors were found in some frequency bands due to the
degrees of freedom used in the expansion process. Overall, this technique was
successful in predicting 3D motions from a single set of 2D images. Future work
will involve applying this technique to radiographic images, where degrees of
freedom extracted from an image will not be limited to visible surfaces.
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