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Overview
• Problems of Interest

– Composite material fires
• Experimental response
• Phenomenology
• Preliminary modeling approach

– Organic material decomposition
• Experimental response
• Phenomenology
• Current/past modeling approach

• Path forward
– Modeling Approaches

• Porous media
• Fluid region

– Long term plans
• Computationally
• Experimentally
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Composite Material Fire
Background

• Increased numbers of aircraft with 
composite materials

• Boeing 777 (20% composite)
– Used on wings, trailing edge panel, 

flaps, spoilers, floor beams, landing gear 
doors, etc.

• Boeing 787 (50% composite)
– Used on fuselage, wings, tail, doors and 

interior
• F22 (24% composite)

– Used on fuselage, doors, wings, skins
• F35 (40% composite)
• Composite materials behave differently 

from conventional fuel sources and have 
the potential to smolder and burn for 
extended time periods

Boeing 787 

http://www.airforce-technology.com/
projects/f22/f222.html

Quilter, A. “Composites in Aerospace Applications,” An IHS White Paper, 
http://uk.ihs.com/NR/rdonlyres/AEF9A38E-56C3-4264-980C-D8D6980A4C84/0/444.pdf

*Percentages are by weight

http://en.wikipedia.org/wiki/File:B787-1869.jpg

F-22 
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Composite Material
Mid-scale Experiments

Radiant Heat Experiments

SIDE VIEW

TOP VIEW

Thermocouple

Insulation

18.4 x 18.4 cm 
shroudg

14 cm

10 cm x 12 cm test 
specimen (coupon)

Lamp panel array

Radiant 
Heat 

lamps
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Composite Material 
Mid-scale Experiments

Flame Spread Experiments

25 cm x 10 cm test specimen
(23 cm x 8 cm exposed face)

Inconel shroud
(24 cm x 44 cm)

g Thermocouple

Igniter
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Experimental Results 
BMI/Carbon Fiber Woven (Test 3)



7

BMI/Carbon Fiber Composite 
Post-Experiment Pictures

(a) Pre-test coupon in test apparatus 
(b) Post-test top coupon face and zirconia board mask 
(c) Post-test top coupon face (irradiated) surface
(d) Post-test bottom coupon face (insulated)



8

BMI/Carbon Fiber Composite
Post-Experiment Pictures

(a) Pre-test coupon, bottom face
(b) Post-test top coupon face and zirconia board mask 
(c) Post-test top coupon face (irradiated) surface
(d) Post-test bottom coupon face (insulated), showing 

delamination of top surface (flaming did not occur)
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Experimental Results 
Epoxy/Carbon Fiber Tape (Test 10)
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(a) Pre-test coupon, top face
(b) Post-test coupon, top face and fiber blanket mask
(c) Post-test bottom coupon face
(d) Post-test top coupon face

Epoxy/Carbon Fiber Composite
Post-Experiment Pictures
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(a) Pre-test coupon, top face
(b) Post-test coupon, top face showing cracking
(c) Post-test coupon, side-view, showing significant

delamination and expansion
(d) Post-test bottom coupon face, showing cracks

parallel to fiber direction

Epoxy/Carbon Fiber Composite
Post-Experiment Pictures
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Experimental Results
BMI/Carbon Fiber Woven (Test 14)
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BMI/Carbon Fiber Composite
Post-Experiment Pictures

(a)pre-test coupon back 
side (insulated)

(b) pre-test setup 
(c)post-test setup
(d)post-test coupon 

front side (irradiated) 
(e)post-test coupon 

front side
(f) post-test coupon 

back side (insulated
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Computational Modeling: Flame Spread
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Composite Fire Problem of Interest
• What is the heat flux and duration in such fires?
• Materials contributing to fire load

– Composite
– Honeycomb
– Fuel on board aircraft
– Other materials

• Phenomena
– Gas phase combustion
– Condensed phase combustion: pyrolysis, oxidation
– Swelling 
– Complex flow paths
– Complex heat transfer paths

• Further questions: how do you extinguish a 
composite material fire?
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Organic Material Decompositon
Background

• In fire environments, commonly used organic materials liquefy and flow 
during decomposition

• Evolved gases can cause pressurization and failure of sealed systems
• Previous analyses focused on heat transfer to componentsà now focus 

also involves predicting pressurization
• Complex physics

– Liquefaction/flow introduces convective heat transfer
– Erosive channeling by hot gases exacerbates liquefaction/flow
– Pressure depends on rate of gas generation, which depends on temperature history 

Before Response
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Q 
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Duraboard Insulation
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x-ray: 57o

OBJECT

FOAM 

Thermal transport and container 
pressurization experiments

• Plate temperatures: 600°C & 900°C
• Sealed samples for pressurization
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Experiments were performed
at Thermal Test Complex
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X-ray imaging gave insight into physical 
behavior of foam during experiments

TDI (toluene diisocyanate)-based polyurethane (14 lb/ft3): ramp 200 K/min to 1173 K
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Difference between successive images 
showed channeling, liquefaction & flow

TDI-based polyurethane (14 lb/ft3): ramp 200 K/min to 1173 K



Phenomenology

• Heat transfer
• Mass transfer
• Chemistry
• Liquefaction/flow of 

decomposition products
– Significantly impacts heat transfer to 

foam / rate of gas generation and 
container pressurization

• Erosive channeling by hot gas-
phase decomposition  products

• Vapor-Liquid Distribution of 
Organic Decomposition 
Products

Q

Q

Channeling

Liquefaction/flow

Liquefaction/flow

Condensation
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Polyurethane Foams
Examining Density Effects

TDI (toluene diisocyanate) PMDI (polymethylene diisocyanate)
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Current Model Formulation
ThermoGravimetric Analysis (TGA)

Differential Scanning Calorimetry (DSC)

Initial Foam  

Reaction 
Front

Q

Gas/Vapors: CO2, 
Cyclopentanone, 
Toluenediamine,

Ethylacrolien, Other

Partially Reacted

1Siegel, R. and Howell, J. R., Thermal Radiation Heat Transfer, 2nd ed., 
Hemisphere Publishing Corp., Cambridge, 1982,  p497-p501.

2Reichman, J., Applied Optics, 12 (8), August 1973, p1811-p1815.
3Erickson et al., BCC 2009.
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Model and Experimental Comparison
Examining Density Effects

24

TDI PMDI



Organic Material Problem of Interest

• Heat transfer
• Mass transfer
• Pressurization
• Material relocation
• Channeling 
• Liquefaction
• Distribution of 

organics in liquid/gas
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Experimental and Modeling Efforts
• Objective: Hierarchal approach with incremental 

improvements to modeling and experimental capabilities 
• Approach:

– Modeling:
• Provide today’s capability with enhancements as appropriate
• Develop a plan for future capabilities to be developed incrementally with 

increasing complexity
• Implement new code capability, verify, validate
• Assess feasibility of approach
• Modify path foward

– Experimentally
• Use small scale experimental data (TGA/DSC/FTIR/Cone) to develop 

decomposition models 
• Perform medium-scale experiments to evaluate models
• Perform large-scale experiments and modeling to determine scalability of 

model
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Near Term Approach: Porous Media 
Capability coupled with Fluid Region

• Solve conservation equations for:
– Mass (gas phase, condensed phase)
– Species (gas phase, condensed phase)
– Energy (gas phase, condensed phase)

• Physics include:
– Condensed phase and gas phase conduction
– Gas phase convection
– Species diffusion
– Saturation
– Darcy flow
– Generalize reaction capability

• Interface with fluid region



Mass and Species Porous 
Media Equations

( ) ( ) =  g g
g fg

g

K
P g

t
yr r

r w
m

¶ æ ö
¢¢¢Ñ × Ñ + +ç ÷ç ÷¶ è ø

ur

&

fgt
r w¶ ¢¢¢= -

¶
&

( )i
fi di

Y
t

r
w w

¶
¢¢¢ ¢¢¢= -

¶
& &

Species Conservation

Gas Phase

Condensed Phase

Species Conservation

Mass Conservation

Mass Conservation

( ) ( ) ( ) , , , ,
g j g j

g g j s fj s dj g fj g dj
g

Y Y K
P g D Y

t
yr r

r yr w w w w
m

¶ æ ö
¢¢¢ ¢¢¢ ¢¢¢ ¢¢¢= Ñ × Ñ + + Ñ × Ñ + - + -ç ÷ç ÷¶ è ø

ur

& & & &



30

Condensed and Gas Phase 
Energy and Momentum Equations

Energy Conservation Gas Phase

Energy Conservation Condensed Phase
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Heterogeneous Reactions
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Path Forward

• Porous media approach coupled with fluid region
– Two phase: gas/solid
– Three phase: gas/liquid/solid
– Material expansion

• Front tracking methods
– Decomposition front with gas domain formation
– Liquefaction and flow
– Vapor/Liquid Equilibrium (approximations?)

• Coupling to structural mechanics
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Path Forward

• Potential Concerns
– Experimental data

• Can we measure properties that we need? 
– Numerical Issues

• Galerkin finite element approach
• Required time step vs. real time run requirements

– Gas phase ignition
– Approach does not resolve fluid flow

• Mitigation
– Assess capability along the way
– Utilize additional codes as appropriate
– Develop modeling approaches to work around numerical issues
– Collaborate with industry, academia, etc.
– Additional experiments, instrumentation, etc.
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Summary
• Difficult multi-physics problems with 

applications in large systems
• An initial approach has been proposed and is 

being implemented and tested
• Approach will have to be assessed along the 

way with the end goal in mind
• Concerns and mitigation strategies 
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Questions
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Channeling, liquefaction, and flow were more 
obvious in inverted orientation

TDI-based polyurethane (14 lb/ft3): ramp 200 K/min to 1173 K
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X-ray imaging provided insight into physical 
behavior of foam during experiments

TDI (toluene diisocyanate)-based polyurethane (14 lb/ft3): ramp 200 K/min to 1173 K
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Thermal Properties
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