
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Applications Thrust update
External advisory board review

August 28-29, 2013

SAND2013-7139P

Team

 Richard Barrett, Jon Berry, Todd Jones, Sam Mulder,
Shelley Leger, Cindy Phillips, Brian Rigdon, Marcus
Smith

 External: Michael Bender (Stony Brook), Ben
Moseley (TTIC), Cliff Stein (Columbia).

2

Activities

 Identify computational and data movement primitives that
form the basis of our computational domain areas.

 Establish the link between these primitives and fundamental
algorithms.

 Map primitives and algorithms to capabilities of proposed
system architectural mechanisms, system software
capabilities, etc. and vice versa.

 Iterate

3

Overview

 Scratch pad analysis

 GraphApp

 Enumerate all triangles in a giant, distributed graph

 PathFinder

 Search for a sequence of labels

 miniGhost/AMR

 Refinement driven by object moving through domain.

4

Snapshot of Technologies

MPI Intrins. CUDA OpenAcc OpenCL
Kokkos
Array

OpenMP qthreads

Cilk
ArBB/CE

AN
pthreads

MKL/Mat
h Lib.

Adv.
Lang.

DSLs

DP TP DP TP

NVIDIA (GPU) ?

AMD (CPU) ?

AMD (APU) ? ?

Intel (CPU) ?

Intel (MIC) ?

IBM (BG) ?

ARM ?

miniFE

miniMD Chapel

miniGhost

miniAMR

PathFinder

Vectorization
ThreadingNode Level Future Languages

5

Many other options:

6

• Microbenchmarks and Kernels

• LULESH : Livermore (3d)
Unstructured Lagrangian
Eulerian Shock Hydrodynamics

• Cloverleaf : 2d Eulerian (AWE);
CleverLeaf : SAMRAI

• CoMD : Molecular dynamics

• VPFFT++

Theory Subteam (Berry, Phillips)
Co-Design Efforts
 Design theoretical models and design and analyze algorithms

to support exascale co-design

 Write and profile codes for mini-apps and experiments

 System Software interactions (attend their meetings)
 Co-writing “GraphApp” mini-app

 Co-designed profiling experiments for high-bandwidth sorting

 Architecture interactions
 Learn about components

 Influence prioritization of SST work

 University collaborations
 Ben Moseley (TTIC), full-time during summer, 2013

 Cliff Stein, Columbia

 Michael Bender, SUNY Stony Brook

“Scratchpad” (High Bandwidth Mem)

 Memory bonded to chip

 Compared to DRAM
 Smaller (<8 Gb vs 10-100Gb/node)

 Latency same

 Bandwidth much higher (100x?)

 User controlled, no coherence

 Could algorithm designers
exploit user addressability?
(e.g. smalloc())

 If so , can we influence vendors
while there is time?

DRAM

Co-Designed Algorithms for User-
Addressable Scratchpad
 Sorting

 Sparse matrix-matrix multiplication
 Blocking, sorting to create sparse-formatted output

 Mike Heroux verified importance (still need to check structure)

 K-means (clustering):
 computer vision, geostatistics, astronomy, agriculture, targeted

advertising, industrial applications (e.g. recommender systems,
textile dyes, hedge funds)

Sorting Algorithm Discussion

 I’ll explain our algorithm (called “scratchpad-sort” for now)
 Similar ideas have been used in external memory sorting for decades

 But we have a non-intuitive piece directly motivated by scratchpad

 I’ll give the theoretical memory complexity and plug in
sample numbers comparing our algorithm to a conventional
algorithm

 I’ll describe a sorting experiment with real numbers from
Intel performance counters

In mid-summer, SST couldn’t support scratchpad. We presented our algorithm
to architecture staff and they prioritized this feature; it’s almost ready.

Simplified “Scratchpad” Model

11

DRAM (~100 GB)

SCRATCHPAD (~5GB)

$

CPU

M (scratchpad size)

B (cache line size)

n
A

Quicksort of Scratchpad-Resident Data

12

$

Core A_ii

B

A

A_i

Core

DRAM

 M

 MM log

Scratchpad

Scratchpad

DRAM

chunksize O(M)

Sort chunk A_i

Single Node Scratchpad Sort

13

$

CPU P

A_i

A

A_i Extra work avoids binary search

Scratchpad-friendly
B

B_i

 

buckets)oversizedon (recurse

sort SP,bucket toeach Load5)

DRAMinBbuckets towriting

A_i,andP through Stream4)

sortSP,intoALoad3)

sortSP,into themLoad2)

PpivotsSelect 1.)

i

M

scratchpad-sort

Memory Complexity

 Notation: T(n): number of DRAM cache line accesses

 Conventional quicksort expected case:

 Scratchpad Quicksort:

14











B

nn
nT

log
)(

linear almost andsame, thearesrecurrenceM,log If

.scratchpadoffactor expansion bandwidth theiswhere

log
)

/
()(:accessesScratchpad

)log()
/

()(:accessesDRAM /











B

Mn

BM

n
T

B

M
nT

B

n

B

n
O

B

n

BM

n
T

B

M
nT BM

Numerical Thought Experiment

 Sort a trillion 8-byte elements, with O(1GB) scratchpad and
1024 byte cache line

Predict DRAM accesses:

 Conventional: T(n) ~ 44 * 2^33 cache line loads from DRAM

 Our algorithm: T(n) ~ 5/2 * 2^33 cache line loads from DRAM

15

This would be a savings of ~ 17X DRAM accesses

Memory Bandwidth Experiment

 Profile qthreads “qutil_qsort,” a multithreaded quicksort with
excellent strong scaling
 Sort 10 billion 8-byte integers

 Actual DRAM cache line accesses: ~25 billion

 Percentage execution stalls: 32%

 For the same input we predict that our algorithm would
make:
 Two O(n/B) pre-fetched sweeps through DRAM, plus

 O(n/B) writing out buckets,

 O(n/B) writing out result

 Predicted DRAM cache line accesses: <=5 billion accesses

16

We predict a factor of at least 5x fewer DRAM accesses

From Sorting to Sparse MAT-MAT and
Beyond
 We have expressed sparse matrix-matrix multiplication in a

way that relies heavily on sorting as a kernel
 So we believe that we can reduce DRAM accesses for this important

problem

 But this subteam doesn’t have expertise in sparse MAT-MAT, so we’re
doing a literature search and consulting with experts.

 Decades-old external memory algorithms of various types
may be revived by the scratchpad possibility

17

Scratchpad Discussion Conclusion

 Two-part message to vendors: If
1. The bandwidth expansion factor is roughly comparable to the

logarithm of the scratchpad size, and

2. The scratchpad memory is user-addressable

 Then we have some evidence that fundamental, cross-cutting
algorithms might exploit that resource to reduce DRAM access,

 But we haven’t yet characterized any specific speed or power
advantages.

18

“GraphApp” Status

 Implementation Team: B. Barrett (FY13), J. Berry, D. Stark

 We have a graph traversal mini-app running both
multithreaded and distributed in open-shmem

 Initial algorithmic task: compute in-degree of all vertices
 Versions

 1 qthread task per update

 Concurrency via partitioning vertices

 Concurrency via “Manhattan Loop Collapse”

 Status

 Implemented

 No experiments yet

19

GraphApp: Graph Representation

20

A C B C //

1 1 0 1 //

A B END

B B B //

1 0 1 //

A B C END

A

0

A

1

B

0

C

1

B

1

P0 P1

Real Data: “Heavy-Tailed”

21

V

High-degree vertex

V

Partitioning work by vertex leads to load imbalance

index

endpoints

GraphApp: Naïve Adjlist Traversal

Processor p’s code:

For ((v,p) in Vertices(p)) {
For ((w,proc) adjacent to (v,p)) {

Traverse adjacency (v,p)  (w,proc)

}

}

22

How to parallelize? Outer loop? Inner loop?

Manhattan Loop Collapse

 Parallelize over the endpoints array, not the vertex array

 Binary search to find the source vertex

 Used in commercial parallelizing compilers (e.g. Cray-XMT)

 We have an implementation in GRAPHAPP

23

We’re optimistic that this operation might exploit scratchpad

GRAPHAPP Conclusions

 In-degree code implemented
 Tasking versions with various partitioning strategies

 Loop-based versions

 Next steps
 Experimentation

 Simulation

 Extend algorithm to enumerate triangles

 Continue co-design

 Talk with Lumsdaine (Indiana) about synergies

24

What Is PathFinder?

 Asking hard questions about relatively simple graphs
 Graph Pathway Analysis

 Directed acyclic graphs
 Find paths through sequentially labeled nodes

 List of labels is termed a “signature”

 Labeled nodes need not be adjacent
 Paths are unconstrained
 Simply testing for pathway existence (or not)
 Multiple graphs, multiple signatures

 Next steps
 Constrained solutions

 Optimal pathways
 Path lengths smaller than thresholds

 Extended graph analysis (e.g. subgraph isomorphism)

25

PathFinder Status

 C language (OO style)

 OpenMP task parallel

 OpenMP data parallel

 Qthreads next.

 Intel Xeon Phi specific “peer” developed

26

Future

 Deeper program understanding tasks

 Finding dominators in graphs

 Value set analysis

 Noisy graphs

 Subgraph isomorphism

 Algorithm equivalency

27

BSP programming model

28

miniGhost on
Cielo

* Dedicated resource

Eulerian solver on a static mesh
miniGhost : data parallel

29

u=0

u=0

u=0 u=0

data parallel, BSP

-(uxx+uyy) = f

Task parallel over-decomposition
Benefits:

 Asynchronous behavior spreads the workload.

 Communication hiding.

 Reduced dependence on interconnect global bandwidth.

 Resilience enabling.

Requires:

 Coordination between MPI and “X” (MPI + Q)

 Dynamic adaptive scheduler.

 Increased interconnect message injection rate and bandwidth.

Shown to be viable in linear algebra (less MPI in tasks), not yet seen in finite
difference/volume world. Programming model support, e.g. tbb, Charm++;
qthreads+MPI. Sandia LDRDs (RAAMP, CarterEd), Sandia@CA group, Intel Phi
team, ARM, others.

30

Eulerian solver on a static mesh
miniGhost : task parallel

31

u=0

u=0

u=0 u=0

data parallel, BSP

Task parallel
abstraction moves
workload management
decisions to the runtime
system.

-(uxx+uyy) = f

Eulerian solver on a dynamic mesh
miniAMR : currently data parallel, soon task

32

u=0

u=0

u=0 u=0
-(uxx+uyy) = f

Task parallel
abstraction moves
workload management
decisions to the runtime
system.

Dynamic workload
enables asynchronous
behavior and
“automatic” load
balancing.

miniAMR visualization
Cray XE6, 64 cores

33

Performance model driven by:

 Tasks

 Number, size, overhead

 Workload : Computation, bc, communication, etc.

 Computation:

 vectorization,

 cache lines,

 clock speed,

 memory hierarchy

 Communication:

 Latency and global bw

 Number and length of messages

 Msg inj rate and inj bw

 Msg buffers: memory bw

 MPI, less wait times

 Contention

34

Summary of
miniGhost/AMR task parallel

 Motivated by scaling issues due to BSP.

 Inspired by SPR

 OpenMP+MPI, MPI+Q implementations (so far)

 Sub-blocks
 meta-data -> qthread binning.

 ordering abstracted

 Cartesian, random (Fisher–Yates-Durstenfeld shuffle)

 Plans:
 Additional computation for data driven tasking

 More sophisticated work queue ordering, e.g. task DAGs.

 miniAMR task model

35

36

Shared concerns
Computations of DS&A and NW

• Programming model : task parallelism

• Processors : vectorization : 8-, 16-, 32-, 64-bit

• Intra-node : latency hiding through thread management, and coordination with

• Inter-node : interconnect support for many, small messages

• PathFinder and Solid Mechanics : shared search capabilities?

