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Team

 Richard Barrett, Jon Berry, Todd Jones, Sam Mulder, 
Shelley Leger, Cindy Phillips, Brian Rigdon, Marcus 
Smith

 External: Michael Bender (Stony Brook), Ben 
Moseley (TTIC), Cliff Stein (Columbia).
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Activities

 Identify computational and data movement  primitives that 
form the basis of our computational domain areas.

 Establish the link between these primitives and fundamental 
algorithms.

 Map primitives and algorithms to capabilities of proposed 
system architectural mechanisms, system software 
capabilities, etc. and vice versa.

 Iterate
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Overview

 Scratch pad analysis

 GraphApp

 Enumerate all triangles in a giant, distributed graph

 PathFinder

 Search for a sequence of labels

 miniGhost/AMR

 Refinement driven by object moving through domain.
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Snapshot of Technologies

MPI Intrins. CUDA OpenAcc OpenCL
Kokkos
Array

OpenMP qthreads

Cilk
ArBB/CE

AN
pthreads

MKL/Mat
h Lib.

Adv. 
Lang.
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DP TP DP TP

NVIDIA (GPU) ?

AMD (CPU) ?

AMD (APU) ? ?

Intel (CPU) ?

Intel (MIC) ?

IBM (BG) ?

ARM ?

miniFE

miniMD Chapel

miniGhost

miniAMR

PathFinder

Vectorization
ThreadingNode Level Future Languages
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Many other options:
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• Microbenchmarks and Kernels

• LULESH : Livermore (3d) 
Unstructured Lagrangian
Eulerian Shock Hydrodynamics

• Cloverleaf : 2d Eulerian (AWE); 
CleverLeaf : SAMRAI

• CoMD : Molecular dynamics

• VPFFT++



Theory Subteam (Berry, Phillips) 
Co-Design Efforts
 Design theoretical models and design and analyze algorithms 

to support exascale co-design

 Write and profile codes for mini-apps and experiments

 System Software interactions (attend their meetings)
 Co-writing “GraphApp” mini-app

 Co-designed profiling experiments for high-bandwidth sorting

 Architecture interactions 
 Learn about components

 Influence prioritization of SST work

 University collaborations
 Ben Moseley (TTIC),  full-time during summer, 2013

 Cliff Stein, Columbia

 Michael Bender, SUNY Stony Brook



“Scratchpad” (High Bandwidth Mem)

 Memory bonded to chip

 Compared to DRAM
 Smaller (<8 Gb vs 10-100Gb/node)

 Latency same

 Bandwidth much higher (100x?)

 User controlled, no coherence

 Could algorithm designers 
exploit user addressability? 
(e.g. smalloc())

 If so , can we influence vendors 
while there is time?

DRAM



Co-Designed Algorithms for User-
Addressable Scratchpad
 Sorting

 Sparse matrix-matrix multiplication
 Blocking, sorting to create sparse-formatted output

 Mike Heroux verified importance (still need to check structure)

 K-means (clustering):
 computer vision, geostatistics, astronomy, agriculture, targeted 

advertising, industrial applications (e.g. recommender systems, 
textile dyes, hedge funds)



Sorting Algorithm Discussion

 I’ll explain our algorithm  (called “scratchpad-sort” for now)
 Similar ideas have been used in external memory sorting for decades

 But we have a non-intuitive piece directly motivated by scratchpad

 I’ll give the theoretical memory complexity and plug in 
sample numbers comparing our algorithm to a conventional 
algorithm

 I’ll describe a sorting experiment with real numbers from 
Intel performance counters

In mid-summer, SST couldn’t support scratchpad.  We presented our algorithm
to architecture staff and they prioritized this feature; it’s almost ready. 



Simplified “Scratchpad” Model
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Quicksort of Scratchpad-Resident Data
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Single Node Scratchpad Sort
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Memory Complexity

 Notation: T(n):  number of DRAM cache line accesses

 Conventional quicksort expected case: 

 Scratchpad Quicksort:
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Numerical Thought Experiment

 Sort a trillion 8-byte elements, with O(1GB) scratchpad and 
1024 byte cache line

Predict DRAM accesses:

 Conventional:  T(n) ~  44 * 2^33 cache line loads from DRAM

 Our algorithm: T(n) ~ 5/2 * 2^33 cache line loads from DRAM
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This would be a savings of ~ 17X DRAM accesses 



Memory Bandwidth Experiment

 Profile qthreads “qutil_qsort,” a multithreaded quicksort with 
excellent strong scaling
 Sort 10 billion  8-byte integers

 Actual DRAM cache line accesses:  ~25 billion

 Percentage execution stalls:   32%

 For the same input  we predict that our algorithm would 
make:
 Two O(n/B) pre-fetched sweeps through DRAM, plus

 O(n/B) writing out buckets,

 O(n/B) writing out result

 Predicted DRAM cache line accesses: <=5 billion accesses
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We predict a factor of at least  5x fewer DRAM accesses 



From Sorting to Sparse MAT-MAT and
Beyond
 We have expressed sparse matrix-matrix multiplication in a 

way that relies heavily on sorting as a kernel
 So we believe that we can reduce DRAM accesses for this important 

problem

 But this subteam doesn’t have expertise in sparse MAT-MAT, so we’re 
doing a literature search and consulting with experts.

 Decades-old external memory algorithms of various types 
may be revived by the scratchpad possibility
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Scratchpad Discussion Conclusion

 Two-part message to vendors:  If
1. The bandwidth expansion factor is roughly comparable to the 

logarithm of the scratchpad size, and

2. The scratchpad memory is user-addressable

 Then we have some evidence that fundamental, cross-cutting 
algorithms might exploit that resource to reduce DRAM access,

 But we haven’t yet characterized any specific speed or power 
advantages.
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“GraphApp” Status

 Implementation Team: B. Barrett (FY13), J. Berry, D. Stark

 We have a graph traversal mini-app running both 
multithreaded and distributed in open-shmem

 Initial algorithmic task: compute in-degree of all vertices
 Versions

 1 qthread task per update

 Concurrency via partitioning vertices

 Concurrency via “Manhattan Loop Collapse”

 Status

 Implemented

 No experiments yet
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GraphApp:   Graph Representation
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A B END
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Real Data: “Heavy-Tailed”
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V

High-degree vertex

V

Partitioning work by vertex leads to load imbalance

index

endpoints



GraphApp: Naïve Adjlist Traversal

Processor p’s code:

For ((v,p) in Vertices(p)) {
For ( (w,proc) adjacent to (v,p)) {

Traverse adjacency   (v,p)  (w,proc)

}

}
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How to parallelize?  Outer loop?   Inner loop?



Manhattan Loop Collapse

 Parallelize over the endpoints array, not the vertex array

 Binary search to find the source vertex

 Used in commercial parallelizing compilers (e.g. Cray-XMT)

 We have an implementation in GRAPHAPP
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We’re optimistic that this operation might exploit scratchpad



GRAPHAPP Conclusions

 In-degree code implemented
 Tasking versions with various partitioning strategies

 Loop-based versions

 Next steps
 Experimentation

 Simulation

 Extend algorithm to enumerate triangles

 Continue co-design

 Talk with Lumsdaine (Indiana) about synergies
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What Is PathFinder?

 Asking hard questions about relatively simple graphs
 Graph Pathway Analysis

 Directed acyclic graphs
 Find paths through sequentially labeled nodes

 List of labels is termed a “signature”

 Labeled nodes need not be adjacent
 Paths are unconstrained
 Simply testing for pathway existence (or not)
 Multiple graphs, multiple signatures

 Next steps
 Constrained solutions

 Optimal pathways
 Path lengths smaller than thresholds

 Extended graph analysis (e.g. subgraph isomorphism)
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PathFinder Status

 C language (OO style) 

 OpenMP task parallel

 OpenMP data parallel

 Qthreads next.

 Intel Xeon Phi specific “peer” developed
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Future

 Deeper program understanding tasks

 Finding dominators in graphs

 Value set analysis

 Noisy graphs

 Subgraph isomorphism

 Algorithm equivalency
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BSP programming model
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miniGhost on 
Cielo

* Dedicated resource



Eulerian solver on  a static mesh 
miniGhost : data parallel
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u=0

u=0

u=0 u=0

data parallel, BSP

-(uxx+uyy) = f



Task parallel over-decomposition
Benefits:

 Asynchronous behavior spreads the workload.

 Communication hiding.

 Reduced dependence on interconnect global bandwidth.

 Resilience enabling.

Requires:

 Coordination between MPI and “X” ( MPI + Q )

 Dynamic adaptive scheduler.

 Increased interconnect message injection rate and bandwidth.

Shown to be viable in linear algebra (less MPI in tasks), not yet seen in finite 
difference/volume world. Programming model support, e.g. tbb, Charm++; 
qthreads+MPI. Sandia LDRDs (RAAMP, CarterEd), Sandia@CA group, Intel Phi 
team, ARM, others.
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Eulerian solver on  a static mesh 
miniGhost : task parallel
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u=0

u=0

u=0 u=0

data parallel, BSP

Task parallel 
abstraction moves 
workload management 
decisions to the runtime 
system.

-(uxx+uyy) = f



Eulerian solver on  a dynamic mesh 
miniAMR : currently data parallel, soon task
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u=0

u=0

u=0 u=0
-(uxx+uyy) = f

Task parallel 
abstraction moves 
workload management 
decisions to the runtime 
system.

Dynamic workload 
enables asynchronous 
behavior and 
“automatic” load 
balancing.



miniAMR visualization
Cray XE6, 64 cores
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Performance model driven by:

 Tasks

 Number, size, overhead

 Workload : Computation, bc, communication, etc.

 Computation: 

 vectorization, 

 cache lines, 

 clock speed,

 memory hierarchy

 Communication: 

 Latency and global bw

 Number and length of messages

 Msg inj rate and inj bw

 Msg buffers: memory bw

 MPI, less wait times

 Contention
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Summary of 
miniGhost/AMR task parallel

 Motivated by scaling issues due to BSP.

 Inspired by SPR

 OpenMP+MPI, MPI+Q implementations (so far)

 Sub-blocks
 meta-data -> qthread binning.

 ordering abstracted

 Cartesian, random (Fisher–Yates-Durstenfeld shuffle)

 Plans:
 Additional computation for data driven tasking

 More sophisticated work queue ordering, e.g. task DAGs.

 miniAMR task model
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Shared concerns
Computations of DS&A and NW

• Programming model : task parallelism

• Processors : vectorization : 8-, 16-, 32-, 64-bit

• Intra-node : latency hiding through thread management, and coordination with

• Inter-node : interconnect support for many, small messages

• PathFinder and Solid Mechanics : shared search capabilities?


