Exceptz'onal service in the national interest

Laboratories

Applications Thrust update

External advisory board review
August 28-29, 2013

EN ERGY /ﬁl’ v" m-'ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Nationsl Nuclasr Security Adminis.ration Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Team e () om

=§=1

_
EEP
=

= Richard Barrett, Jon Berry, Todd Jones, Sam Mulder,
Shelley Leger, Cindy Phillips, Brian Rigdon, Marcus
Smith

= External: Michael Bender (Stony Brook), Ben
Moseley (TTIC), Cliff Stein (Columbia).

Sandia

Activities b () e

= |dentify computational and data movement primitives that
form the basis of our computational domain areas.

= Establish the link between these primitives and fundamental
algorithms.

= Map primitives and algorithms to capabilities of proposed
system architectural mechanisms, system software
capabilities, etc. and vice versa.

= [teragte

= Scratch pad analysis

= GraphApp

= Enumerate all triangles in a giant, distributed graph

= PathFinder

= Search for a sequence of labels

= miniGhost/AMR

= Refinement driven by object moving through domain.

Overview S

Sandia
National
Laboratories

Sandia
m National
Laboratories

Snapshot of Technologies T

Node Level Vectorization Threadin Future Languages

ﬁ

MKL/Mat Adv.
h Lib. Lang.

OpenMP | gthreads

Kokkos ArBB/CE

MPI Intrins. | CUDA [OpenAcc| OpenCL AT Cilk AN

Dp| TP [DP | TP

DSLs

pthreads

NVIDIA (GPU)

AMD (CPU)

AMD (APU)

Intel (CPU)

Intel (MIC)

IBM (BG)

ARM

miniFE

miniMD

miniGhost

miniAMR

PathFinder

Microbenchmarks and Kernels

LULESH : Livermore (3d)
Unstructured Lagrangian
Eulerian Shock Hydrodynamics

Cloverleaf : 2d Eulerian (AWE);
CleverLeaf : SAMRAI

CoMD : Molecular dynamics

VPFFT++

Many other options:

NERSC-8 / TRINITY BENCHMARKS

These benchmark programs are for use as part of the jeint NERSC / ACES NERSC-B/Trinity system procurement. Thera are two
basic kinds of benchmarks:

MiniApplications: miniFE, miniGhost, AMG, UMT, GTC, MILC, SNAP, and miniDFT
MicroBenchmarks: Pynamic, STREAM, OMB, SMB, ZiaTest, IOR, Metabench, PSNAF, FSTest, mpimemu, and UPC_FT

Tha SSP is an aggregate measure based on selected runs of the MiniApplications.

The banchmark run rules are available here (FDF, last updated August §, 2013).

+ TheT its Excel spreadshest should be used to report results for all runs included as part of
the Offerar's response.

SsP

Bref descrption, sampe caicuation, and Hopper baseine SSP vake.

Change Lo

miniFE

MiniFE mimics the finite element generation, assembly and solution for an unstructured grid problem

MiniGhost

a Finite Difference mini-appiication that mpiements & difference stenc across a homogenous thres dmensional domain,

AMG

AMG s a paraliel aigetraic muitigrid soiver for inear systems arsing from problems on unstructured grids.

UMT

UMT is a 3-D, deterministic, mutigroup, proton transport cods for unstructured meshes

GTC

3D Gyrokinetic Toroidal Code

SNAP

SNAP is a proxy for the performance of a modem discrets ordnates neutral particle transport application.

MiLC

MILC represents part of 2 set of codes used to study Lattice Guantum CrromoDynamics (G0

MiniDFT

MiniDFT s intended 1o capture the performance-eritical portions of a density functional theory materiais seience computation

NPB UPC-FT

This ia the MAS Parallel Benchmark FFT program written in the UPC language.

Pynamic
Pynamic tests dynamic loading subsystem design and the abiity to handse heavy use of dynamically inked itraries from a large Python-
Ibased scientific application.

STREAM

Thie STREAM banchmark is designed to measure the sustainabie memary bandwicth and comesponding computation rate for four simple
wvector kemels

OMB MPI Tests

The 08U MicroBenchmarks carry out a variety of message passing performance tests using MPL

SMB

The *Host Processor Overhead' and *Real World Message Rate' banchmarks from the Sanda MPI Micro-Benchmark Sutte (SMB).
PSNAP

P-SNAP is & micro benchmark to measure OS mpact on parallel jobs.

ZiaTest

This test exacutes a new proposed standard benchmark method for MPI startup that is intended to provide a realistic assessment of both

‘aunch and wireup requirements.

mdtest
Used to measuwre file system metadata operation rates

ICR

10 s used for testing performance of paralel fie systems using various interlaces and access patems.

mpimemu
A simple tool that helps approximate MPI lbrary memory usage &s a function of scale.

FLOP Counts for "Small" Single-Node Miniapplication Tests
Provided for reference

Sandia
National
Laboratories

Theory Subteam (Berry, Ph|II|ps) B
Co Design Efforts

Design theoretical models and design and analyze algorithms
to support exascale co-design

= Write and profile codes for mini-apps and experiments

= System Software interactions (attend their meetings)

= Co-writing “GraphApp” mini-app

= Co-designed profiling experiments for high-bandwidth sorting
= Architecture interactions

= Learn about components

= |nfluence prioritization of SST work
= University collaborations

= Ben Moseley (TTIC), full-time during summer, 2013

= (Cliff Stein, Columbia
= Michael Bender, SUNY Stony Brook

“Scratchpad” (High Bandwidth Mem) 2 @,

= Memory bonded to chip

Node
= Compared to DRAM
= Smaller (<8 Gb vs 10-100Gb/node) bt Cores Pad
= lLatency same g g g g
= Bandwidth much higher (100x?) = [ini213 | [
= User controlled, no coherence -
= Could algorithm designers
exploit user addressability?
(e.g. smalloc()) DRAM

= |fso, can we influence vendors
while there is time?

i
°2es

e
R iee, @
i
S

Co-Designed Algorithms for User-*
Addressable Scratchpad

= Sorting

= Sparse matrix-matrix multiplication
= Blocking, sorting to create sparse-formatted output
= Mike Heroux verified importance (still need to check structure)

= K-means (clustering):

= computer vision, geostatistics, astronomy, agriculture, targeted
advertising, industrial applications (e.g. recommender systems,
textile dyes, hedge funds)

0L

Sandia
National
Laboratories

oo
essse

KX E Sandi
@—- rl1 Ng?io:?al

Laboratories

Sorting Algorithm Discussion

= |’ll explain our algorithm (called “scratchpad-sort” for now)
= Similar ideas have been used in external memory sorting for decades
= But we have a non-intuitive piece directly motivated by scratchpad

= |’ll give the theoretical memory complexity and plug in

sample numbers comparing our algorithm to a conventional
algorithm

= |’ll describe a sorting experiment with real numbers from
Intel performance counters

In mid-summer, SST couldn’t support scratchpad. We presented our algorithm
to architecture staff and they prioritized this feature; it’s almost ready.

BN Sandia

Simplified “Scratchpad” Model & @&

CPU SCRATCHPAD (~5GB)
O :
M (scratchpad size)
$

B (cache line size)

DRAM (~100 GB)

A

Scratchpad
Core A il]
B]
[l
$ mm
DRAM

chunksize O(M)

A | |

Al

Quicksort of Scratchpad-Resident Dat&? .

Sort chunk A_i

Scratchpad

|

Core

I

DRAM

6(M log M)

Single Node Scratchpad Sort o .

CPU

P

scratchpad-sort

A_i

1.) Select Q(M) pivots P
2) Load them into SP, sort

3) Load A, into SP-

4) Stream through P and A 1,
writing to buckets B in DRAM

5) Load each bucket to SP, sort

(recurse on oversized buckets)

Scratchpad-friendly

Sandi
@,, "1 Ng?io:?al

Laboratories

Memory Complexity

= Notation: T(n): number of DRAM cache line accesses

= Conventional quicksort expected case: T(n)_g(nlognj
= Scratchpad Quicksort:
M n n n n
DRAM . T(n)=—T —=0(—1 —
accesses (n) 7 (M/B)+B (B 0L.//5 B)

Scratchpad accesses : 7'(n) = M T(")+ nlog M
B M/B pB

where p is the bandwidth expansion factor of scratchpad.

If p=>log M, recurrences are the same, and almost linear

Numerical Thought Experiment & [JE.

= Sort a trillion 8-byte elements, with O(1GB) scratchpad and
1024 byte cache line

Predict DRAM accesses:
= Conventional: T(n)~ 44 * 2733 cache line loads from DRAM

= Qur algorithm: T(n) ~ 5/2 * 27233 cache line loads from DRAM

This would be a savings of ~ 17X DRAM accesses

ess
o .
BAETAEE

Memory Bandwidth Experiment 8 M.

= Profile gthreads “qutil _gsort,” a multithreaded quicksort with
excellent strong scaling

= Sort 10 billion 8-byte integers
= Actual DRAM cache line accesses: ~25 billion
= Percentage execution stalls: 32%

" For the same input we predict that our algorithm would
make:

= Two O(n/B) pre-fetched sweeps through DRAM, plus
= O(n/B) writing out buckets,
= O(n/B) writing out result

= Predicted DRAM cache line accesses: <=5 billion accesses

We predict a factor of at least 5x fewer DRAM accesses

From Sorting to Sparse MAT-MAT and:s: () i,
Beyond

= We have expressed sparse matrix-matrix multiplicationin a
way that relies heavily on sorting as a kernel

= So we believe that we can reduce DRAM accesses for this important
problem

= But this subteam doesn’t have expertise in sparse MAT-MAT, so we’re
doing a literature search and consulting with experts.

= Decades-old external memory algorithms of various types
may be revived by the scratchpad possibility

Scratchpad Discussion Conclusion®s: .

= Two-part message to vendors: If

1. The bandwidth expansion factor is roughly comparable to the
logarithm of the scratchpad size, and

2. The scratchpad memory is user-addressable

= Then we have some evidence that fundamental, cross-cutting
algorithms might exploit that resource to reduce DRAM access,

= But we haven’t yet characterized any specific speed or power
advantages.

Sandia

“GraphApp” Status 0 () e

= |mplementation Team: B. Barrett (FY13), J. Berry, D. Stark

= We have a graph traversal mini-app running both
multithreaded and distributed in open-shmem

= |nitial algorithmic task: compute in-degree of all vertices

= \ersions
= 1 gthread task per update
= Concurrency via partitioning vertices
= Concurrency via “Manhattan Loop Collapse”

= Status
" Implemented

" No experiments yet

GraphApp: Graph Representatioff

1

P

PO

[[/

|

I
[o R

B

B

END

NN\

|

I

e e

A ([C |B |C

Sandia

Real Data: “Heavy-Tailed” B s

High-degree vertex

index

endpoints J

GraphApp: Naive Adjlist Traversal’s @

Processor p’s code:

For ((v,p) in Vertices(p)) {

For ((w,proc) adjacent to (v,p)) {
Traverse adjacency (v,p) =2 (w,proc)

}

Manhattan Loop Collapse .

= Parallelize over the endpoints array, not the vertex array

= Binary search to find the source vertex

= Used in commercial parallelizing compilers (e.g. Cray-XMT)
= We have an implementation in GRAPHAPP

GRAPHAPP Conclusions -

= |n-degree code implemented
= Tasking versions with various partitioning strategies

" Loop-based versions

= Next steps
= Experimentation
= Simulation
= Extend algorithm to enumerate triangles

= Continue co-design
= Talk with Lumsdaine (Indiana) about synergies

: (7

Sandia
National
Laboratories

Sandia
National
Laboratories

What Is PathFinder?

= Asking hard questions about relatively simple graphs

= Graph Pathway Analysis
= Directed acyclic graphs

" Find paths through sequentially labeled nodes
= List of labels is termed a “signature”

= Labeled nodes need not be adjacent

= Paths are unconstrained

= Simply testing for pathway existence (or not)
= Multiple graphs, multiple signatures

= Next steps
= Constrained solutions
= Optimal pathways
= Path lengths smaller than thresholds
= Extended graph analysis (e.g. subgraph isomorphism)

Sandia

PathFinder Status i ()

= Clanguage (OO style)
= OpenMP task parallel
= OpenMP data parallel

= Qthreads next.

= |ntel Xeon Phi specific “peer” developed

SentESS, Sandia
B i 0 "1 National
u u re Laboratories

= Deeper program understanding tasks
" Finding dominators in graphs

= Value set analysis

= Noisy graphs

= Subgraph isomorphism

= Algorithm equivalency

Sandia

BSP programming model R M.

miniGhost on Cielo
40
35
‘§ 30 ~+BSPMA reordered
§ =+=SVAF reordered
)
:‘é 25
~
20
15 | | | I I I I I | I I I I
© AV (X A O NV Ak D o o o D Lo A
Wk 0" 1P A9 AN T QD OF OF L9 A (P
'\«'1«")\9:]9&0%'\(0’5{\()6:@
VYoork 6 N
Number of processor cores

* Dedicated resource

Eulerian solver on a static mesh Se () e
miniGhost : data parallel

0//0/

u=0 (U tu) = f u=0

i

data parallel, BSP

KX E Sandi
@—- ’11 Ng?io:?al

Laboratories

Task parallel over-decomposition

Benefits:

= Asynchronous behavior spreads the workload.

= Communication hiding.

= Reduced dependence on interconnect global bandwidth.
= Resilience enabling.

Requires:

= Coordination between MPI and “X” (MPI + Q)

= Dynamic adaptive scheduler.

" |ncreased interconnect message injection rate and bandwidth.

Shown to be viable in linear algebra (less MPI in tasks), not yet seen in finite
difference/volume world. Programming model support, e.g. tbb, Charm++;
gthreads+MPI. Sandia LDRDs (RAAMP, Carterkd), Sandia@CA group, Intel Phi
team, ARM, others.

Eulerian solver on a static mesh S ()
miniGhost : task parallel

Laboratories

data parallel, BSP

Task parallel
abstraction moves
workload management
decisions to the runtime
system.

Eulerian solver on a dynamic mesh S8 () i
miniAMR : currently data parallel, soon task

u=0

Task parallel
abstraction moves
workload management
decisions to the runtime
system.

u=0 Wum+uw)=f u=0

Dynamic workload
enables asynchronous
behavior and
“automatic” load
balancing.

miniAMR visualization S
Cray XE6, 64 cores

Sandia
National
Laboratories

Performance model driven by:

= Tasks
= Number, size, overhead
= Workload : Computation, bc, communication, etc.

= Computation:
= vectorization,
= cache lines,
= clock speed,
= memory hierarchy

= Communication:
= Latency and global bw
= Number and length of messages
= Msg inj rate and inj bw
= Msg buffers: memory bw
= MPI, less wait times

= Contention
e

Summary of Sa ()
miniGhost/AMR task parallel

Laboratories

= Motivated by scaling issues due to BSP.

= |nspired by SPR

= OpenMP+MPI, MPI+Q implementations (so far)
= Sub-blocks

" meta-data -> gthread binning.
= ordering abstracted
= Cartesian, random (Fisher—Yates-Durstenfeld shuffle)
= Plans:
= Additional computation for data driven tasking
= More sophisticated work queue ordering, e.g. task DAGs.
= miniAMR task model

Shared concerns e - A
Computations of DS&A and NW

« Programming model : task parallelism
* Processors : vectorization : 8-, 16-, 32-, 64-bit
* Intra-node : latency hiding through thread management, and coordination with

» Inter-node : interconnect support for many, small messages

« PathFinder and Solid Mechanics : shared search capabilities?

