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About Sandia

• DoE national lab.
– Primary mission is develop, engineer, test the non-nuclear 

components of nuclear weapons

– R&D in arms control, nonprolifieration, waste disposal.

– Research in computer science and supercomputing, 
computational biology, mathematics, alternative energy

• Located in Albuquerque, NM and in Livermore, CA



Our digital systems

• Embedded systems for high reliability

• Command and Control networks.

• Software for simulation



We view formal verification as one facet of 
the digital complexity problem

• Includes issues  in cyber security, reliability 
and safety

• Complexity causes digital systems to have 
unknowable, and in general, unanalyzable
faults, vulnerabilities

• Formal methods are currently relegated to 
simple systems or high levels of abstraction

– New approaches are improving on this



Securing an arbitrary code is not
just hard; it’s impossible

• Restated: Generic code has vulnerabilities that are 
unprovable and unknowable
– Not statistical, even in principle

– Turing completeness demands that a generic code is 
undecidable

• So now what?



Complexity makes
cyber threats asymmetric

• Developer, user, and attacker
all don’t know where the 
vulnerabilities are 
(undecidable) 

• Worse, attacker may have 
planted a vulnerability

• Asymmetry: One vulnerability 
compromises the whole code
– Developer has to find all of 

them (impossible in general) 

• No one can guarantee “this 
code is clean” or even 
quantify improvement



What is complexity?

• Complex systems are characterized by large 
numbers of interacting entities where even a few
entities can strongly affect system behavior

• Complex systems are irreducible; their behavior 
is emergent and not evident a priori, but is 
accessible via observation and simulation

• Examples are ubiquitous

– Living things and ecosystems

– Human societies, economies, and institutions

– Highly engineered artifacts – e.g., airplanes, NWs

– Large-scale infrastructure – e.g., power grids

– Computer software, hardware, and networks 



Complexity space illustrates tradeoffs
in device engineering and analysis

• Pink region is 
what cannot be 
built

• Rest of plot shows 
how analysis can 
be done



Formal methods are a bridge
to complexity, filling an important gap

• Formal methods use computer analysis to verify 
digital systems rigorously and exhaustively

– Applicable to less complex systems that are still beyond 
the reach of manual analysis

– Widely used in high-consequence industrial applications

• Verification of components does not generally 
translate to verification of whole system

• Irreducible complexity enters when exploring entire 
state space is infeasible

– Reliability and security assertions become probabilistic

• Both formal verification and complexity science are 
vital for gaining confidence in digital systems



Complexity science offers a new
perspective on modeling and design

• Most real-world systems are too intricate to 
analyze directly; they are irreducible

• Reductionism requires “bottom-up” understanding

– Use expert knowledge to model component entities

– Validate system model vs. observations

– Make each component entity as reliable as possible

– Formal methods are the pinnacle of this approach

• Complexity science provides “top-down” insight 
relating system structure to emergent behavior

– New modeling paradigm: Identify entities by abstraction 
from idealized models with known emergent behavior

– New design paradigm: Build real systems based on 
models with desired emergent behavior



• “Sandbot”: cyber model of 
coordinated malware

• ​SOC is spontaneous
development of multi-scale 
phenomena with power-law 
distributions

– Similar to thermodynamic 
criticality but without tuning

• Illustrated by sandpile 
model: physics-like cellular 
automaton

– Sand is sprinkled randomly

– Avalanches occur at all scales

Self-organized criticality is
a simple example of emergent behavior



Complexity is a fact of “life”

• Biological phenomena are a prototype and 
inspiration for many complex domains

– Life involves a large chemical regulatory network

– “Game of Life” model is based on population dynamics

– Bio concepts pervade computing (viruses, mutations)

• Biology typifies complex couplings of manmade 
systems – economy, energy, cybersecurity

Eukaryotic 
cell-cycle 
regulation



Robustness is key to understanding
real-world systems with “organic” behavior

• Highly optimized tolerance (HOT): Systems designed
or selected to perform well despite perturbations

• Robustness is necessary for biological evolution and 
for effective engineering

• HOT systems exhibit power-law distributions like SOC 
but have organic structure (not self-similar)

• Adapted robustness to one set of perturbations 
induces extra fragility to different perturbations

• Indeed, rare but catastrophic failures are seen in highly 
engineered/evolved systems

– Electrical blackouts, cyber shutdown of Estonia, financial 
panics, hacker penetration of bank database, etc.



Complexity can address 
“whole system” robustness and stability

• Consider designing a digital circuit to add two 1-bit 
numbers (a “half adder”)

– This is among the most basic functions appearing in 
microelectronics

• There are many ways of composing logic gates to 
implement this functionality

• The next slide shows two such circuits; each performs 
as a half adder when run for twenty steps

– Shown correctly adding 1 + 1 to get the binary result 10

– They also give correct answers for the other possible inputs
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What distinguishes the two 
implementations? Resilience

• For this very simple functionality, both circuits can be 
verified by exhaustive testing

• More realistic circuits cannot be tested exhaustively, 
so we need to understand the effect of untested states

• In this example, we introduce occasional gate errors to 
represent unanticipated behavior

• The next slide shows a typical run of each circuit with 
a 1% error rate per gate update

– States that deviate from the ideal run are outlined in red

• Circuit A has much less error in the final output 
(greater resilience) than circuit B – why?

– In this case, average inputs per node (k) makes the difference
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Formal methods can be applied at
various levels of abstraction



PLL diagram (Little et al, 2004)

Analog mixed signal control systems

Hybrid systems: Dynamical systems that exhibit both discrete and 
continuous change

– Their discrete variables are updated in discrete steps that 
consume no time (resulting in jumps)

– Their continuous real-valued variables (clocks and drifting 
clocks) are updated as continuous functions while time elapses 
(during delays, resulting in so-called “flows”)



Today formal verification is
limited to the digital domain

• A computer model is generated for the digital logic

– Very accurate as long as:

• The circuit behaves digitally

• Inputs remain in their expected range

• Not considered in formal verification:

– Digital circuit ceases to behave digitally because of extreme 
environments

– Out-of-nominal digitized analog inputs appear from the 
external environment

• We seek to broaden current techniques to verify 
function for digital systems in extreme environments



• Complex system 
simulation 
leverages HPC but 
confronts issues 
of tractability and 
V&V that current 
research is 
addressing

• HPC, formal 
methods, and 
complexity theory 
can work together 
to expand our 
capabilities

Digital system analysis research will 
increase utility of HPC in simulation



Composition of formally verified systems

…

…

✔

✔

✔

Decomposing a complex digital design may enable 
component-level formal verification using HPC

Composition to the whole device is nontrivial, but 
the formal results can usefully constrain behavior


