
Leveraging Formal Methods and
Confronting Complexity for

Digital System Reliability and Security

Computer Sciences and Information Systems
Sandia National Laboratories, Livermore, California

Sandia National Laboratories is a multiprogram laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the United States Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2011-3802P

About Sandia

• DoE national lab.
– Primary mission is develop, engineer, test the non-nuclear

components of nuclear weapons

– R&D in arms control, nonprolifieration, waste disposal.

– Research in computer science and supercomputing,
computational biology, mathematics, alternative energy

• Located in Albuquerque, NM and in Livermore, CA

Our digital systems

• Embedded systems for high reliability

• Command and Control networks.

• Software for simulation

We view formal verification as one facet of
the digital complexity problem

• Includes issues in cyber security, reliability
and safety

• Complexity causes digital systems to have
unknowable, and in general, unanalyzable
faults, vulnerabilities

• Formal methods are currently relegated to
simple systems or high levels of abstraction

– New approaches are improving on this

Securing an arbitrary code is not
just hard; it’s impossible

• Restated: Generic code has vulnerabilities that are
unprovable and unknowable
– Not statistical, even in principle

– Turing completeness demands that a generic code is
undecidable

• So now what?

Complexity makes
cyber threats asymmetric

• Developer, user, and attacker
all don’t know where the
vulnerabilities are
(undecidable)

• Worse, attacker may have
planted a vulnerability

• Asymmetry: One vulnerability
compromises the whole code
– Developer has to find all of

them (impossible in general)

• No one can guarantee “this
code is clean” or even
quantify improvement

What is complexity?

• Complex systems are characterized by large
numbers of interacting entities where even a few
entities can strongly affect system behavior

• Complex systems are irreducible; their behavior
is emergent and not evident a priori, but is
accessible via observation and simulation

• Examples are ubiquitous

– Living things and ecosystems

– Human societies, economies, and institutions

– Highly engineered artifacts – e.g., airplanes, NWs

– Large-scale infrastructure – e.g., power grids

– Computer software, hardware, and networks

Complexity space illustrates tradeoffs
in device engineering and analysis

• Pink region is
what cannot be
built

• Rest of plot shows
how analysis can
be done

Formal methods are a bridge
to complexity, filling an important gap

• Formal methods use computer analysis to verify
digital systems rigorously and exhaustively

– Applicable to less complex systems that are still beyond
the reach of manual analysis

– Widely used in high-consequence industrial applications

• Verification of components does not generally
translate to verification of whole system

• Irreducible complexity enters when exploring entire
state space is infeasible

– Reliability and security assertions become probabilistic

• Both formal verification and complexity science are
vital for gaining confidence in digital systems

Complexity science offers a new
perspective on modeling and design

• Most real-world systems are too intricate to
analyze directly; they are irreducible

• Reductionism requires “bottom-up” understanding

– Use expert knowledge to model component entities

– Validate system model vs. observations

– Make each component entity as reliable as possible

– Formal methods are the pinnacle of this approach

• Complexity science provides “top-down” insight
relating system structure to emergent behavior

– New modeling paradigm: Identify entities by abstraction
from idealized models with known emergent behavior

– New design paradigm: Build real systems based on
models with desired emergent behavior

• “Sandbot”: cyber model of
coordinated malware

• ​SOC is spontaneous
development of multi-scale
phenomena with power-law
distributions

– Similar to thermodynamic
criticality but without tuning

• Illustrated by sandpile
model: physics-like cellular
automaton

– Sand is sprinkled randomly

– Avalanches occur at all scales

Self-organized criticality is
a simple example of emergent behavior

Complexity is a fact of “life”

• Biological phenomena are a prototype and
inspiration for many complex domains

– Life involves a large chemical regulatory network

– “Game of Life” model is based on population dynamics

– Bio concepts pervade computing (viruses, mutations)

• Biology typifies complex couplings of manmade
systems – economy, energy, cybersecurity

Eukaryotic
cell-cycle
regulation

Robustness is key to understanding
real-world systems with “organic” behavior

• Highly optimized tolerance (HOT): Systems designed
or selected to perform well despite perturbations

• Robustness is necessary for biological evolution and
for effective engineering

• HOT systems exhibit power-law distributions like SOC
but have organic structure (not self-similar)

• Adapted robustness to one set of perturbations
induces extra fragility to different perturbations

• Indeed, rare but catastrophic failures are seen in highly
engineered/evolved systems

– Electrical blackouts, cyber shutdown of Estonia, financial
panics, hacker penetration of bank database, etc.

Complexity can address
“whole system” robustness and stability

• Consider designing a digital circuit to add two 1-bit
numbers (a “half adder”)

– This is among the most basic functions appearing in
microelectronics

• There are many ways of composing logic gates to
implement this functionality

• The next slide shows two such circuits; each performs
as a half adder when run for twenty steps

– Shown correctly adding 1 + 1 to get the binary result 10

– They also give correct answers for the other possible inputs

Outputs

Inputs Inputs

Outputs

A B

What distinguishes the two
implementations? Resilience

• For this very simple functionality, both circuits can be
verified by exhaustive testing

• More realistic circuits cannot be tested exhaustively,
so we need to understand the effect of untested states

• In this example, we introduce occasional gate errors to
represent unanticipated behavior

• The next slide shows a typical run of each circuit with
a 1% error rate per gate update

– States that deviate from the ideal run are outlined in red

• Circuit A has much less error in the final output
(greater resilience) than circuit B – why?

– In this case, average inputs per node (k) makes the difference

Outputs
(Average incorrect bits: 0.73)

Inputs Inputs

Outputs
(Average incorrect bits: 0.10)

A B

k = 1.5 k = 2.5

Formal methods can be applied at
various levels of abstraction

PLL diagram (Little et al, 2004)

Analog mixed signal control systems

Hybrid systems: Dynamical systems that exhibit both discrete and
continuous change

– Their discrete variables are updated in discrete steps that
consume no time (resulting in jumps)

– Their continuous real-valued variables (clocks and drifting
clocks) are updated as continuous functions while time elapses
(during delays, resulting in so-called “flows”)

Today formal verification is
limited to the digital domain

• A computer model is generated for the digital logic

– Very accurate as long as:

• The circuit behaves digitally

• Inputs remain in their expected range

• Not considered in formal verification:

– Digital circuit ceases to behave digitally because of extreme
environments

– Out-of-nominal digitized analog inputs appear from the
external environment

• We seek to broaden current techniques to verify
function for digital systems in extreme environments

• Complex system
simulation
leverages HPC but
confronts issues
of tractability and
V&V that current
research is
addressing

• HPC, formal
methods, and
complexity theory
can work together
to expand our
capabilities

Digital system analysis research will
increase utility of HPC in simulation

Composition of formally verified systems

…

…

✔

✔

✔

Decomposing a complex digital design may enable
component-level formal verification using HPC

Composition to the whole device is nontrivial, but
the formal results can usefully constrain behavior

