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CC)2 levels are rising! | Atmospheric Carbon Dioxide . o
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Thermal Gas Separation
, Like heat pump, take advantage
% Ef 3 of “free” heat (“free” pumping?)

Sydney Chapman and David Enskog

made an amazing discovery 100 years ago.
A temperature gradient in a gas mixture
causes its components to separate.

* Light species migrate to hot regions

» Heavy species migrate to cold regions
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environmental no moving parts
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cold hot cold hot cold hot cold hot

+ 50 | 50 38 | 34 34 | 38 36 | 36
Thermal separation is enhanced in a
Clusius-Dickel convection column 50 | 50 42 | 38 38 | 42 40 | 40
* Long thin vertical column or slot
* One side cold, other side hot 50 | 50 46 | 42 42 | 46 a4 | 44
« Counter-current convection flow
* Thermal separation laterally
_ ) : 50 | 50 50 | 46 46 | 50 48 | 48
* Flow-driven separation vertically
Schematic example at right
« Start with 50/50 mixture 50 [ 50 54 | 50 S0 | 54 52 | 52
* Thermal separation causes 52/48
* Flow carries light up, heavy down 50 | 50 58 | 54 54 | 58 56 | 56
* Final vertical separation 64/36
Problem divides into two parts 50 | 50 62 | 58 58 | 62 50 | 60
* Vertical convection flow
* Lateral thermal separation
50 | 50 66 | 62 62 | 66 64 | 64
initial diffuse « convect « average «
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HOT

In general, thermal separation analysis divides into two parts
* Free or forced flow used to enhance separation
» Counter-current buoyant convection in column or slot
» Co-current forced flow in modular complex plenum
» Thermal separation induced by lateral temperature gradient
» Dependence on wall-temperature difference
* Dependence on nominal CO, concentration
Focus here is on lateral thermal separation
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Steady one-dimensional case
with no flow (studied here)

temperature = HOT
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Steady two-dimensional case
with flow (not studied here)

Forced flow in a
complex geometry
(not studied here)  concentration
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Direct Simulation Monte Carlo (DSMC) method uses computational f) 'Y ®/
molecules to simulate gas flows (molecular gas dynamics) ./Q m\® [9) *
« Computational “simulators” represent many real molecules S} oo j @/ 6.

« Can treat multi-component mixtures straightforwardly @\ & .%

« Simulators move ballistically and reflect from walls ® © ®
« Walls can be diffuse, specular, or combination ®/. CJ & .®7

G f) ®

» Simulators collide with each other in a pairwise fashion

« Collisions yield correct rate and statistics Molecules move

« Simulator properties are sampled to determine flow properties o
* Number density, velocity, temperature, concentration, etc. © O
Details of intermolecular potential determine thermal separation e P @
« Maximum for hard-sphere potential (o = 1/2) OC © ®
« Zero for Maxwell potential (F ~ 1/r°, @ = 1) PN O
* Intermediate for most molecules (1/2 < ®» < 1) Q O
» Accurate molecular models are required o O © -
o | @@ °
(I O

Molecules collide
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Nitrogen (N,) molecular model
* Energy modes (kgT/2 each)
» Translation: 3 modes, fully populated
* Rotation: 2 modes, fully populated
* Vibration: 1x2 modes, not fully populated
* Harmonic Oscillator (HO) model
* Vibration temperature: 3374.2 K
* Collisions
» Variable Soft Sphere (VSS) model
» VSS parameters: Bird (1994)
» Determine viscosity temperature dependence
* Values: ® =0.74, a. = 1.36

Translation 1

Translation 2

Translation 3

Rotation 1

Rotation 2

Vibration Symmetric Stretching

*Z,and Z,,: Bird (1994)
* Inverses of probabilities to exchange rotational
and vibrational energy during a collision
* Values: Z,,, ~ 5, Z,;, ~ 10820
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Carbon dioxide (CO,) molecular model
* Energy modes (kgT/2 each)
* Translation: 3 modes, fully populated
* Rotation: 2 modes, fully populated
* Vibration: 4x2 modes, not fully populated
« Harmonic Oscillator (HO) model
 Vibration temperatures: 945 K (2), 1903 K, 3339 K
* Collisions
» Variable Soft Sphere (VSS) model
» VSS parameters: modified Bird (1994)
» Determine viscosity temperature dependence
* Values: o = 0.86 (vs. 0.93), a = 1.54 (vs. 1.61)
«Z.and Z,,: Lambert (1977)

* Inverses of probabilities to exchange rotational
and vibrational energy during a collision

*Values: Z,,,=2.5,7,,=5.3
e Limits: both =1 or both =

Translation 1

Translation 2

Translation 3

Rotation 1

Rotation 2

Vibration Bending 1

Vibration Bending 2

Vibration Stretching Symmetric

Vibration Stretching Asymmetric




Thermophysical Properties from DSMC Simulations

Assess ability of molecular models to
reproduce thermophysical properties

* Both nitrogen and carbon dioxide
* Transport properties

» Specific heat

* Viscosity (shear)

« Thermal conductivity

* Mass self-conductivity
» Wide temperature range

One-dimensional steady flows

* Fourier flow has motionless gas with
different-temperature walls

» Thermal conductivity
* Specific heat

» Couette flow has same-temperature
gas with oppositely sliding walls

* Viscosity (shear)
* Mass self-conductivity (inferred)

Fourier Flow
-
T1 -— T2
-
heat flux q
x=0 x=L

Couette Flow
il o

shear stress 1

V1 ..l.‘.i.’._.:'.‘..

x=0 Xx=L

Temperature Difference T-T, (K)

Velocity v (m/s)

20
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CO,, 10° Pa

— 300K
——=- 400K

500 K
10 —-— 600K

Nom. Temp T,

0.0 0.5

10

1.0 1.5 2.0 25
Position x (um)

CO,, 10° Pa
Nom. Temp T,
300 K

——=- 400K
500 K
ST - 600 K

1.0 1.5 2.0 2.5
Position x (um)
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1500 T 0.10 T T ——
N,, 10°Pa N,, 10°Pa 4
- H.armonic Osc. s : 9:0.74 o=1.36 //
1200 t 70 E{:erature —O‘”J——M‘— Eé 0.08 + OEiltterature ) /,// -
i __:g:itb);ggn@’@._g—/@’o/g’ g OZr & Zv = Bird /O/ ’
% - = //6,, o
Nitrogen properties & 0 | %
f e T e "
» Specific heat, constant pressure %’ 600 | .| Py
* HO model matches experiment 2 ﬁﬂ”
g . o g ?
* Vibration seen above 600 K @ 300 | g 002f o
: . . P 4
* Viscosity, mass conductivity, .
thermal conductivity %0 a0 600 o0 1200 100 %0 300 600 900 1200 1500
. . Temperature T (K) Temperature T (K)
 VSS model fits experiment 5005 , 6005 ‘ . ‘ |
fairly well over 300-600 K L gt B 0V PR
» Significant differences 56-05 | . [iraure o 1 E « et
OZr & 2v = Bird 27 D ge_05 | OZr&zv=Bid 7
observed above 600 K P P = P
- k o S 5e-05 | e
Model is good over 300-600 K < o i = w
T 3e-05 | & 2 4e-05 | '
~ F
3 2005 | P 3 %e-05 | f
]
" a a 205 4
/ 7] //
1051 of S te05| g
7/ //‘
0e+00 : : ' : 0e+00 * : : ' :
0 300 600 900 1200 1500 0 300 600 900 1200 1500

Temperature T (K) Temperature T (K)
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1500 T 0.10 T T T T
€O, 10°Pa €O, 10°Pa /
- ?.etlrmonic Osc. —O_—’o__ s - (;TO.BG o=1.54 ,/ 7
— Fi i 4 — Fi //
o 1200 [ i el E OB /2
x5 Vib. off g}{ﬂ = ogri§v=1Laomben //ﬂ, '
{ v r V=1 /', »
L : = 900 | ’ > 006 | /°
Carbon dioxide properties % S g y
A 5 74 g s
» Specific heat, constant pressure - 2 ooal w
. Q J
* HO model matches experiment % 2 b
. . o E o
« Vibration seen above 100 K @ 300 8 o /c/
* Viscosity, mass conductivity P
° 1 1 0 300 600 900 1200 1500 0 300 600 900 1200 1500
VSS model fits experiment ’ o
fairly weII over 300-600 K Temperature T (K) Temperature T (K)
} 6e-05 . : : . 8e-05 . : : :
- Significant differences O 6 aet 4 Pl P - oo e
observed above 600 K 5005 | iwaur oA L T
o it < 6605 I 7 g7y  Lambe
- Present o & o fit experiment & 4o 05| casn-io - q | sy
better than Bird (1994) < I
o o :: 3e-05 | /4'/ 2 4e-05 | /
- Thermal conductivity = 5 o =" y.
.. 3 S S 3e-05 7/
*VSS Z,,, & Z,, limiting values & 2e-05 | S 2"
bound experiment o T N
1e-05 | 1 & P
*VSS Lambert Z,,; & Z;, values V4 = 1ad8 |y
/ / ) ) : .
are CIOse over 300-900 K 0e+00 0 300 600 900 1200 1500 0e+00 0 300 600 900 1200 1500
Model is okay over 300-600 K Temperature T (K) Temperature T (K)
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325 T 625 T
CO,~N,, 10° Pa CO,~N,, 10° Pa
+ 320 F CO, Nom. Conc. n,, 620 F CO, Nom. Conc. n,,
s ()05 s ()05
315 p — 010 615  — 0.10
0.20 0.20
2 310 F  oso < 610 F  oao
. . . . = _:0.90 = _:0.90
Thermal diffusion simulations Tl ol
CO,-N, mixtures g g
© = [} [}
2 2 _ S 205 | S 59 |
* 7 nominal CO, concentrations © 290 | - 590 |
5, 10, 20, 50, 80, 90, 95% 285 | 585
« 4 nominal gas temperatures 280 ¢ 580
. 300’ 600’ 900’ 1200 K 2750.0 0.5 po;gionx (1!;)“) 2.0 2.5 5750.0 0.5 po;gionx (1ut:n) 2.0 2.5
* Fourier flow — motionless gas 925 . : 1225 .
with different wall temperatures 920 -88§'N”§;§5°c§ni. 1220 | 83iNom con .
« Temperature difference: 50 K 15 F T 030 1215 F 05
e < 910 F g < 1210 | e
» Total of 28 combinations < — < —
. . t, 905 | — o095 t, 1205 F — 095
All 28 temperature profiles at right g 2 1200 |
[ [
* Temperature jumps at walls S 895 | g 1195 |
- CO, concentration has minimal = 890 = 1190 |
effect on profile although large 883 | n&s
effect on heat flux (not shown) e 1180
« Will need derivative dT/dx %0 o5 10 15 20 25 "0 o5 10 15 20 25

Position x (um) Position x (um)
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0.0024 T T 0.0012 T T
CO,-N,, 10° Pa CO,-N,, 10° Pa
+ o 283'30K,3T=50K o gSG'SOK,éT=50K
g e | g iy v
3 00012 — o 3 0.0006 —
Thermal diffusion simulations 5 " : 5 \ — os5
) S 0.0000 | e — { 5 0.0000 =
* CO,-N, mixtures 5 : 5 :
* 7 nominal CO, concentrations 3 3
6-0.0012 | 6-0.0006 |
5, 10, 20, 50, 80, 90, 95% g g
« 4 nominal gas temperatures © ©
« T =300, 600, 900, 1200 K e YR Pc:éi(:ionx (1u?n) 20 25 %% o5 Pogi(:ionx (1u?n) 20 25
* Fourier flow — motionless gas 0.0008 : : : - 0.0006 . . . -
with different wall temperatures 7300k, AT - 50K T T200 kK AT- 50K
o CO, Nom. Conc. n,, o CO, Nom. Conc. n,,
. 2 . — S — 0.05 S 0.05
Temp. difference: AT =50 K 3 0.0004 | — o10 3 0.0003 | — o0
 Total of 28 combinations o ——pa o —
i i i g —— 090 g —— 090
All 28 concentration profiles at right % 80000 = % 4 5
* Profiles scale roughly with AT/T [ [
. . & @
* Profiles scale roughly Wlt.h 2 00004 | 2 00003 |
product of N, & CO, nominal > >
concentrations © ©
-0.0006

-0.0008

» Will need derivative dn,y/dx 00 05 10 15 20 25 00 05 10 15 20 25

Position x (um) Position x (um)
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Thermal diffusion factor a,, is found
from temperature & concentration

* Not VSS a (alas, same symbol)
* Use previously shown profiles
* CO, concentration ny,
* Temperature T
* Position x
» Same 28 values shown two ways
* Plot a;, vS. Ny, for fixed T
* Plot ay, vs. T for fixed n,,
DSMC values have a,, = 0.071%£0.009

» Weak dependence on both
temperature & concentration

Grew & Ibbs have a,, = 0.036-0.061
« Around room temperature

a, =

—T (dn,, /dx)

Ny (1—ny ) (dT/dx)

Thermal Diffusion Factor a,,,

Thermal Diffusion Factor a,,,

0.12

0.10

0.08 | 2
0.06 | ¥

0.04

0.02
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0.10
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0.02
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| B-8 600K

CO,-N,, 10° Pa
Temperature T
G-© 300K

&< 900K
A-A1200 K

.0 0.2 0.4 0.6 0.8 1.0

CO, Nominal Concentration n,

L 3-80.10

I >-0.95 a

CO,-N,, 10° Pa
CO, Nom. Conc. n,,
©-©0.05

>-©0.20
A-A0.50
0.80 A
-
<1090, T

&

0 300 600 900 1200 1500

Temperature T (K)
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0.0024 0.0024

©=0.93 0=1.61 CO,-N,, 10° Pa

+ Gaies) . o
3 00012 | —9® | gooomf =1y
2 : - 3 -
Thermal diffusion factor a,, is 5 -~ s | & = 0%
sensitive to molecular model § 00 S ] g T
* Present: VSS @ = 0.86, o = 1.54 5 5
- Viscosity p over T=300-600 K 8% | g0z
* Clark Jones and Furry (1946) S 8
*Bird: VSS ® =0.93, a = 1.61 00024 T 05 1101 15 20 25 00005 10 15 20 25
* Viscosity pat T = 300 K 042 . Posjmonx “fm) . 012 . raiom)
« Slope dw/dT at T = 300 K EE%“OOS:'? i%%ﬁjé?ﬁlﬁmw
Thermal diffusion a,, values at 300 K &' 010 | 5 50K o 0.10 | 58 000K 0=083 0t &l
« Do not confuse with a for VSS §; o6 MW §; s | o
- Present: a,;, ~ 0.07 5 g |° o
- Bird: a, ~ 0.05 S oos | ¥ Soml e TR
* Expt: a4, ~ 0.036-0.061 : : - g
Apparently both viscosity and its =004y F 004y a1
temperature dependence must be .

0.02

matched for thermal diffusion 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

CO, Nominal Concentration n,, CO, Nominal Concentration n,,
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0.12 T
CO,-N,, 10° Pa
Temperature T
GO 300 K: ©=0.86 a=1.54
dg 0.10 | B8 300K: ©=0.93 0=1.61
S
g o
L 008 "N
S | T
GAS g Wi
£ B =
MIX 8 006 T S "y
© . o 8 ©-9
e N
e " VA4 ,OT) E___
“ '-E 0.04 | \E _
~¢® goro %20 0z 04 06 08 1.0
O ] Q_V,»’/ O . . R . . . .
CO, Nominal Concentration n,,

The Direct Simulation Monte Carlo (DSMC) method can be used to simulate thermal diffusion
» Thermal diffusion is rather sensitive to the fine details of the molecular model employed
The VSS molecular model for carbon dioxide is not accurate enough for quantitative predictions

« If the VSS model is restricted to a small temperature range (e.g., room temperature), its results
are in reasonable agreement with experimental results (which have significant uncertainty)

To represent CO, over a wide temperature range, a more general model than VSS is needed
» Such a model must be compatible with the general architecture of the DSMC algorithm
In hindsight, the following hierarchy of complexity in molecular collision models is clear

* Monatomics (Ar, He) are straightforward, simple diatomics (N,, O,) are tractable,
but complicated polyatomics (CO,, CH,, H,O) are difficult




