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bulk
•equations of state
•PRISM

inhomogeneous
•self-consistent field theory (SCF)
•classical density functional theory (DFT)
•hybrid SCF/DFT

• treat larger length/time scales than simulation
• direct access to free energy
• exploration of phase space
• but approximate

Balazs, Curr. Opin. Solid St. 
& Mat. Sci., 2003

Polymer Theories



Inhomogeneous Theories
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basic idea:  replace many chain problem with single chain in a field

SCFT and DFT

input:  a model for the system
chain type
interactions

output: minimized free energy
density profiles



Self-Consistent Field Theory
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G. H. Fredrickson



SCFT

6G. H. Fredrickson



Typical Features of SCFTs

7

• use Gaussian thread model of chain
• leads to PDE for chain propagators

• use Flory-Huggins free energy for interactions

• incompressible (or nearly incompressible)
• many numerical solution methods (nonlinear equations)

• real space
• Fourier space

typically (but not always): 

• model polymers on the length scale of the chain (Rg)
• great for phase behavior, structure

R(s)



To learn more about SCFT
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Read Glenn Fredrickson’s book!

The Equilibrium Theory of 
Inhomogeneous Polymers

Glenn H. Fredrickson

Oxford Univ. Press, 2006



Density Functional Theory (DFT)

Density
profile

External
field

Electronic Structure
Minimizing quantum Hamiltoniane-

e-e-

e- e-
e-

e-

e-

Fluid Structure
Minimizing free energy
(Often open system 
with fixed chemical 
potential)



Structure of Fluids DFT

minimize free energy

equations to solve for (r)

Helmholtz free energy F:  ideal gas, hard sphere,        
attractions, bonding, ...



Typical Features of Polymer DFTs
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• use freely-jointed chain of hard spheres for model 

• includes segment length scale d

• leads to integral equations for chain propagators

• use hard sphere repulsions + LJ attractions for interactions

• directly comparable to MD, MC simulations

• compressible

• different types of classical DFTS:

• CMS-DFT (Chandler, McCoy, Singer)

• based on 2nd order expansion of free energy

• weighted DFTs (esp. Wu, Chapman)

• based on perturbations to hard sphere reference fluid

d

• model packing effects + chain length scale
• great for comparison to simulation
• local structure, phase behavior, mixtures with particles, etc.



Tramonto: Sandia’s DFT Code

• solve in 3D, Cartesian grid

• modified Newton’s method, Picard solver

• parallel

• sophisticated linear solver algorithms

• arc-length continuation algorithms

F-DFTs = nonlinear integral equations

http://software.sandia.gov/tramonto

• hard spheres
• polymers

• CMS-DFT
• modified iSAFT

• mean-field attractions
• charged systems 

• includes Poisson solver
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Polymer Brushes
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• graft or adsorb polymer to surface
• if dense enough, chains stretch away from surface

height of brush:
balance stretching energy penalty vs. interactions

• more volume than on flat surface at same 
grafting density

• chains splay out more
• brush is less extended

curved brushes



Theory for Polymer Brushes
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DFT and SCFT capture basic physics

DFT vs. MD simulation

brush in vacuum
N = 100

Jain et al., J. Chem. Phys. 128, 154910 
(2008); (simulations from Grest and 
Murat, 1989)

g
2 = 0.1  

0.03

0.07

SCFT vs. Experiment

Kim and Matsen, Macromolecules 42, 
3430 (2009); (exp. from Taunton et al, 
1988)

DFT vs. SCFT

Jain et al., J Chem Phys 131, 
044908 (2009)

brushes in polymer melt
N = P = 100, g = 0.1

force between brushes 
in solvent
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Mixed Polymer Brushes
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 A mixture of two polymers in which one end 

of each polymer chain is tethered to the 

substrate

 Phase separate in a manner similar to block 

copolymer thin films

“Ripple” phase of symmetric mixed brush 
(PS – PMMA)  under non-selective solvent 

Usov et al., Macromolecules, 40, 8774 (2007) Daniel J.C. Herr, Future Fab. Intl. Sec.5. Issue 18 (2005)

Perpendicular lamella of PS-b-
PMMA block copolymer thin film



Directed Assembly?
 New graphoepitaxy-type technique

 Mixed polymer brushes laterally confined by pure brush region  

30 Rg

3Rg

~ μm                       ~ nm

Laterally confined by pure brush region 



SCFT of Melt Mixed Brush
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x┴

• melt with high grafting density
• brush chains A, B: Flory interaction energy 
• large polymer/air surface tension so flat top surface
• “walls” in z-direction (substrate + top surface)
• periodic boundaries in (x,y)

Free-end: uniform initial condition

Tethered-end: initialized with a delta function 

Generalize to arbitrary grafting density distribution



SCFT Phase Diagram
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Directed Assembly in SCFT
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fA = 0.5
system size 
~ 56 Rg

3Rg

Evolution of 
long-ranged 
ordering

anneal N slowly



Directed Assembly of Cylinders
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fA = 0.3

N = 4.5 

N = 6.0 



Experimental Phases
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• PS-PMMA mixed brushes
• solvent anneal
• PS volume fraction from 

0.0 to 0.68 
• AFM phase contrast 

images

Price et al., Macromolecules 45, 510 (2012)



Why the difference?
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spatial variations in grafting density!

SCFT 

uniform grafting density (left)

Gaussian random distribution of grafting (right)

fA = 0.1

fA = 0.3

fA = 0.4

fA = 0.5

 = 0.5Rg, 
2 = 0.02



Conclusions
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• spatial variations in grafting destroy long-range order
• good qualitative agreement in phase diagram
• can direct self-assembly 

• with sufficiently uniform grafting density

S-M. Hur, A. L. Frischknecht, D. L. Huber, and G. H. Fredrickson, 
Soft Matter 9, 5341 (2013).

Hur et al., Soft Matter 7, 8776 (2011); Price et al., 
Macromolecules 45, 510 (2012)

Acknowledgments:
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Polymer Nanocomposites
majority component: polymer
minority component: particle with dimensions < 100 nm

• improved material properties
• mechanical
• electrical
• optical
‣need control over dispersion

• functional materials
• self-healing
• photovoltaics
• others...
‣need control over interfaces

glass fiber
clay particle

(in nylon)

Kiel et al, Phys Rev Lett, 2010

Cartoon of PCBM/P3HT solar 
cell

Okada & Usuki, Macromol. Mater. Eng., 2006



Digression: NPs in Polymer Films
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nanoparticles tend to go to surfaces

athermal system:  model as hard spheres
only interactions are entropic

polymer and particles are fluid components

ideal for DFT: capture packing interactions

D



Weighted DFT: iSAFT

ideal gas part:

hard sphere functional:

chain bonding contribution:

(“White Bear” FMT, 
Roth et al., 2002)

minimize free energy

equations to solve for (r)

S. Tripathi and W.G. Chapman, Phys. Rev. Lett. 94, 087081 (2005);  J. Chem. 
Phys. 122, 094506 (2005); S. Jain et al., J. Chem. Phys. 127, 244904 (2007) 



N = 40, D=2nm

•fixed total packing fraction

•first-order transition
•entropy-driven

typical fluid structure NP layer, areal coverage 0.82

E. S. McGarrity et al., Phys. Rev. Lett., 99, 238302 (2007).

A Layering Phase Transition



Outline of the talk

30

• polymer theories

• self-consistent field theory (SCFT)

• classical density functional theory (DFT)

• intro to end-grafted polymers

• pattern formation in mixed brushes

• SCFT calculations

• comparison to experiment

• polymer brushes on nanoparticles

• DFT and SCFT calculations

• comparison to experiment



Polymer-Grafted Nanorods
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• gold nanorods
• polymer brush coating
• 5% rods in polymer thin film

• rods confined in the plane of 
the film

athermal systems:
PS brush in PS
PEO brush in PEO

What controls nanorod dispersion/aggregation?



Brush-Brush Interactions
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autophobic dewetting:
• entropy cost for matrix chains to enter brush
• leads to positive brush-matrix surface tension
• brushes are attracted

Matsen, M. W., & Gardiner, J. (2001). J Chem Phys, 115, 2794–2804.

free energy

P/N = 



Brushes on Curved Surfaces
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• more volume than on flat surface at same 
grafting density

• chains splay out more
• brush is less extended

expect wet to dry transition to occur for
• larger grafting densities
• larger P/N

Sunday, D., Ilavsky, J., & Green, D. L. (2012). 
Macromolecules, 45, 4007–4011. 

PS-silica in PS aggregated

dispersed



Nanorods: PS-Au(N):PS(P)

34Hore, M. J. A., Frischknecht, A. L., & Composto, R. J. (2012), ACS Macro Letters, 1, 115–121.



PEO-Au(N):PEO(P)
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P/N = 0.43 P/N = 1.58 P/N = 19.2



Dispersion “Map” for NRs
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ignores possible effects of:
• rod curvature
• grafting density
• rod length

Hore, M. J. A., Frischknecht, A. L., & Composto, R. J. (2012), ACS Macro Letters, 1, 115.

dispersion for P < 2N

squares: PS
triangles: PEO
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Modeling
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- brush chains length N
- matrix chains length P
- athermal ( = 0)
- nanorods with radius Rrod

- grafting density 

goal: calculate polymer-mediated interaction free energy

variables:   = P/N

Rrod/Rg

  
6 N1/2

a0

experimental ranges: 

 = P/N = 0.15 – 30

Rrod/Rg = 1.5-3.2

 = 0.95-2.38

earlier work: Frischknecht, J. Chem. Phys., 128, 224902 (2008)  

classical DFT and SCFT

note nanorods exclude chains from interior
are not part of the fluid in the theory



DFT approach: CMS-DFT

 (r) 


b
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Chain density distribution

Unknown field

Chain Architecture
(freely-jointed chains)

c(r)  crep (r)  uatt (r)
PRISM 
Theory

RPM
Approx

Chandler, McCoy, Singer (1986); 
McCoy et al. (1990s)

•chains are flexible
• 2nd order density expansion

free energy



Single Nanorod: Brush Profiles
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Rrod/Rg = 3.2, P/N =  = 3

grafting density important
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Single Nanorod: Brush Profiles
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 = 2,  = 2.38

nanorod curvature important
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Single Nanorod: Brush Profiles
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Rrod/Rg = 3.2,  = 2.38

matrix chain length doesn’t affect brush profiles much
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Rod-rod interaction energy
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deeper attractive well as:
grafting density increases
Rrod increases

P/N  = 3
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Rod-rod interaction energy
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Rrod/Rg = 3.2, * = 2.4

matrix chain length crucial!

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8

 = 1
 = 2
 = 3
 = 4


/k

B
T

(r-2R
rod

)/R
g



Rod-rod interaction energy
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Rrod/Rg = 3.2, * = 2.4

matrix chain length crucial!
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Criterion for Aggregation?
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Monte Carlo simulations
square-well potential

assume aggregation for Etot > 5 kT

Hore, M. J. A., et al. (2012), ACS Macro Letters, 1, 115–121.
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Comparison with experiment
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good overall agreement

1 <  < 1.41.9 <  < 2.4

circles = DFT
squares = PS/PS
triangles = PEO/PEO



Conclusions
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• brush profiles remarkably insensitive to 

• interaction energy sensitive to , Rrod, and 

• DFT captures correct trends

• transition to aggregation near P/N = 2

• design: promote dispersion for

• small , Rrod, or 

• can potentially control rod spacing in 

aggregates

• to control optical properties

Frischknecht, Hore, Ford, & Composto, Macromolecules 46, 2856 (2013)
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“One scientific community focused on nanoscience integration”

• Focus on nanoscale integration

• User facility with a diverse portfolio of 
customers (academia, labs, industry)

http://cint.lanl.gov



Effect of Attraction Strength

•van der Waals loop vanishes at high ε
•transition becomes continuous

N = 80
σn = 2



Constant pressure: still a transition

N=30, D=2 



Brush Characteristics vs 

52

0.0001

0.001

0.01

0.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

R = 1
R = 2

R = 3.16
flat


m
(0

)



• brush height insensitive to 
• details of interface matter for 

interactions

brush width volume fraction of matrix chains
at NR surface



Brush Characteristics vs *
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Interactions vs  and 
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grafting density

chain ratio

• depth of well decreases with both 
• rmin increases with increasing , decreases with increasing 



Surface Plasmon Resonance
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Hore, M. J. A., Frischknecht, A. L., & Composto, R. J. (2012), ACS Macro Letters, 1, 115–121.

N = 48 N = 110

N = 191



Fluids-DFT Implementation
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• inputs
• model of the fluid

• freely-jointed tangent chains
• repulsive LJ interactions

• bulk fluid densities (chemical potentials)
• surface geometry

• NR exclude polymer
• sticky ends attracted with LJ energy

• outputs
• fluid density profiles
• equilibrium free energy

• phase diagrams
• adsorption, stress profiles, ...

solve nonlinear integral eqtns
• in 3D, Cartesian grid
• modified Newton solver
• parallel http://software.sandia.gov/tramonto



Input to CMS-DFT: PRISM Theory

 Liquid state theory for homogeneous polymer fluids
 intramolecular correlations AB 

 intermolecular correlations gAB(r), cAB(r)

 Excellent for repulsive interactions

Curro and Schweizer

gAB ABCAB

-12

-6

0

0 0.4 0.8 1.2

c(r)



Calculation Details

• parallel cylinders

• athermal (repulsive interactions)

• adsorbed chains 

• N = 40

•ba
3 = 0.01

• matrix chains

• P = 40,80,120,160

•ba
3 = 0.85

surface interactions:

• repulsive for matrix chains, all except end on adsorbing chains

• attractive to one end of adsorbing chains, depth e


