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Outline of the talk 7
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e polymer theories

« self-consistent field theory (SCFT) \\/6 ‘.g'\:ﬁ

 classical density functional theory (DFT)
* intro to end-grafted polymers

« pattern formation in mixed brushes

o« SCFT calculations

e comparison to experiment

* polymer brushes on nanoparticles
 DFT and SCFT calculations

e comparison to experiment




Polymer Theories 3 i,

direct access to free energy
exploration of phase space
but approximate

bulk
*equations of state
*PRISM

inhomogeneous

*self-consistent field theory (SCF)
*classical density functional theory (DFT)
*hybrid SCF/DFT

Laboratories

treat larger length/time scales than simulation
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Balazs, Curr. Opin. Solid St.
& Mat. Sci., 2003




Inhomogeneous Theories )
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SCFT and DFT

basic idea: replace many chain problem with single chain in a field
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input: a model for the system
chain type
interactions

output: minimized free energy
density profiles




Self-Consistent Field Theory me=
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From Particles to Fields
Example: diblock copolymers
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SCFT 7
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Mean-Field Approximation: SCFT

® SCFT is derived by a saddle point approximation to the
FT:

o F =7 /D[w —Hlw]  ,—H[w"]

® The approximation is asymptotic for (' — oo
® Ve can simulate the field theory at two levels:
® “Mean-field” approximation (SCFT): F = H[w*]

® Full stochastic sampling of the complex field theory:
“Field-theoretic simulations” (FTS)

G. H. Fredrickson 6




Typical Features of SCFTs )
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typically (but not always):

» use Gaussian thread model of chain
» leads to PDE for chain propagators
TN

OR(s)
0s

2

Uo[R(s)] = 2%2 /0 ds

» use Flory-Huggins free energy for interactions
UIRA(s) R (9)] = oo [ dexanda(t)én(m

» incompressible (or nearly incompressible)

* many numerical solution methods (nonlinear equations)
* real space
* Fourier space

* model polymers on the length scale of the chain (R;)
« great for phase behavior, structure




To learn more about SCFT

Read Glenn Fredrickson’s book!

ke

The EqU|I|b|"|um Theory Of Erquilibriom Theory

of Inhomogdeneons

Inhomogeneous Polymers Polymers
Glenn H. Fredrickson

Oxford Univ. Press, 2006
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Density Functional Theory (DFT) mgs
Qlp(r)] :V(r)—p(r)

External Density
field profile

Electronic Structure
Minimizing quantum Hamiltonian

Fluid Structure
Minimizing free energy
(Often open system
with fixed chemical
potential)




Structure of Fluids DFT )
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Qpa(r)] = Flpa(r)] + ¥ [ drpa(r) [Va(r) - ud

Helmholtz free energy F. ideal gas, hard sphere,
attractions, bonding, ...

minimize free energy
oQ

= () —> equations to solve for )(r)

op(r)




Typical Features of Polymer DFTs @z
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» use freely-jointed chain of hard spheres for model
* includes segment length scale d
» leads to integral equations for chain propagators

Q|

» use hard sphere repulsions + LJ attractions for interactions
 directly comparable to MD, MC simulations

« compressible
 different types of classical DFTS:
« CMS-DFT (Chandler, McCoy, Singer)
« based on 2"d order expansion of free energy
« weighted DFTs (esp. Wu, Chapman)
» based on perturbations to hard sphere reference fluid

« model packing effects + chain length scale
« great for comparison to simulation

» local structure, phase behavior, mixtures with particles, etc.
11




Tramonto: Sandia’s DFT Code &=
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' http://software.sandia.gov/tramonto

»)'.

F-DFTs = nonlinear integral equations

* solve in 3D, Cartesian grid hard spheres

« modified Newton’s method, Picard solver * polymers

« CMS-DFT

 modified iISAFT
mean-field attractions
charged systems

* includes Poisson solver

* parallel
* sophisticated linear solver algorithms

« arc-length continuation algorithms

The Trilinos Project




Outline of the talk )

intro to end-grafted polymers =




Polymer Brushes )
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N « graft or adsorb polymer to surface
 if dense enough, chains stretch away from surface
|
—
height of brush:
'/\/ balance stretching energy penalty vs. interactions

curved brushes

* more volume than on flat surface at same
grafting density

* chains splay out more

* brush is less extended




Theory for Polymer Brushes @
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DFT and SCFT capture basic physics

DFT vs. MD simulation SCFT vs. Experiment DFT vs. SCFT

105_....... R R R

SCFT |

po

101III|IIJ|IIIlIIlIlI|J|-J
0 200 400 600 800 1000 1200 1400

D (K)
brush in vacuum force between brushes brushes in polymer melt
N =100 in solvent N =P =100, py = 0.1
Jain et al., J. Chem. Phys. 128, 154910 Kim and Matsen, Macromolecules 42, Jain et al., J Chem Phys 131,
(2008); (simulations from Grest and 3430 (2009); (exp. from Taunton et al, 044908 (2009)

Murat, 1989) 1988)
15



Outline of the talk 7
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pattern formation in mixed brushes

o« SCFT calculations

e comparison to experiment




Mixed Polymer Brushes  mes
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= A mixture of two polymers in which one end

of each polymer chain is tethered to the
substrate

= Phase separate in a manner similar to block
copolymer thin films

“Ripple” phase of symmetric mixed brush Perpendicular lamella of PS-b-
(PS — PMMA) under non-selective solvent PMMA block copolymer thin film
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17
Usov et al., Macromolecules, 40, 8774 (2007) Daniel J.C. Herr, Future Fab. Intl. Sec.5. Issue 18 (2005)




Directed Assembly? 3 i,
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= New graphoepitaxy-type technique
= Mixed polymer brushes laterally confined by pure brush region

h)
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SCFT of Melt Mixed Brush 3 i,
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« melt with high grafting density

* Dbrush chains A, B: Flory interaction energy y

« large polymer/air surface tension so flat top surface
« “walls” in z-direction (substrate + top surface)

» periodic boundaries in (x,y)

) q(x, s; [W(x)]) Free-end: uniform initial condition
Tethered-end: initialized with a delta function
ax, (%, 0; [W]) = 0(x — x1)
( (B Ces[Te0D

Generalize to arbitrary grafting density distribution

gA B(x1,2)




SCFT Phase Diagram
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Directed Assembly in SCFT  me=
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fa=10.5 I 3R,
system size

~ 56 R,

Evolution of
long-ranged
ordering

anneal yN slowly

21



Directed Assembly of Cylinders @

fy=0.3

(a)
(b)

(c)
(d)




Experimental Phases )

Laboratories

« PS-PMMA mixed brushes

* solvent anneal

 PS volume fraction from
0.0to 0.68 | | | | | EN

+ AFM phase contrast BECA Y 2 B H&“r:‘":i‘(“ 2y
images | VR ARG ARV I SN

Price et al., Macromolecules 45, 510 (2012) 23
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Why the difference?

....... =0.1
spatial variations in grafting density!
SCET L
uniform grafting density (left) fa=0.3
ga(x1)=fa
Gaussian random distribution of grafting (right)
((ga(x1) = fa)(ga(x'1) — fa)) = A exp(—|xL —x'1]?/207%) -
 f,=0.4
c=0.5R, A2=0.02
a3 fa=0.5

24




Conclusions
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spatial variations in grafting destroy long-range order
good qualitative agreement in phase diagram
can direct self-assembly

 with sufficiently uniform grafting density
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Soft Matter 9, 5341 (2013).
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Polymer Nanocomposites 3 i,
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majority component: polymer
minority component: particle with dimensions < 100 nm
Silicale laye

=

* improved material properties
* mechanical

* electrical
* optical | <
» need control over dispersion e SRR N
glass fiber clay particle™
(in nylon)

Okada & Usuki, Macromol. Mater. Eng., 2006

a5 cast a

* functional materials

* self-healing

* photovoltaics

* others...

» need control over interfaces

Cartoon of PCBM/P3HT solar
cell

Bopepeer 2!

Kiel et al, Phys Rev Lett, 2010




Digression: NPs in Polymer Films @
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nanoparticles tend to go to surfaces

polymer and particles are fluid components

Spincoat ' ---- athermal system: model as hard spheres
a8l

*' “
only interactions are entropic
il g

ideal for DFT: capture packing interactions

substrate

Krishnan et al., Nano Lett (2007)




Weighted DFT: iSAFT S
Qpa(r)] = F[pa(r)] + Y. [ drpa(e) Vo(r)

F :Fid_I_FhS_l_FCh

ideal gas part: Fpo(r kTZ/drpa ) [Inpg(r) —1]

hard sphere functional: ~ F"*[pa(r)] = kT / dr®|ny(r)]  (‘White Bear” FMT,
Roth et al., 2002)

chain bonding contribution:

(X(X,)

{o'} 1
ch — se —»/ -/ =/ —»// seg r—f/
F [poc kT/d /Z Po g (__ln/d 47T Gococ’ yococ( )pa’ ( )"‘E)

minimize free energy
oQ

op(r)

S. Tripathi and W.G. Chapman, Phys. Rev. Lett. 94, 087081 (2005); J. Chem.
Phys. 122, 094506 (2005); S. Jain et al., J. Chem. Phys. 127, 244904 (2007)

=0 = equations to solve for )(r)




A Layering Phase Transition @
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E. S. McGarrity et al., Phys. Rev. Lett., 99, 238302 (2007).




Outline of the talk

polymer brushes on nanoparticles
 DFT and SCFT calculations

e comparison to experiment
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Polymer-Grafted Nanorods @i
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What controls nanorod dispersion/aggregation?

« gold nanorods
* polymer brush coating
* 5% rods in polymer thin film
* rods confined in the plane of
the film

athermal systems:
PS brush in PS
PEO brush in PEO




Brush-Brush Interactions ) i
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I particle
N T Re20F VS S A<
v D

A >

' AR o N
= | RN
:/\/ (b) particle

autophobic dewetting:

» entropy cost for matrix chains to enter brush
» leads to positive brush-matrix surface tension
* brushes are attracted

free energy

Fq(d)

+ ' ' > ‘ e
do Gmin Ormax d 1 3 10
P/N = O

Matsen, M. W., & Gardiner, J. (2001). J Chem Phys, 115, 2794-2804. 32



Brushes on Curved Surfaces @i

* more volume than on flat surface at same
grafting density

* chains splay out more

* brush is less extended

expect wet to dry transition to occur for
*larger grafting densities
*larger P/N

1

PS-silica in PS

Graft Density (¢)

Graft Density

g> >

Matrix Mn _/ Grafted Mn

0.1 1

Sunday, D., llavsky, J., & Green, D. L. (2012).
Macromolecules, 45, 4007-4011. 33




Nanorods: PS-Au(N):PS(P) @i
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-

48

110

191

26 173 384 586 1459

Hore, M. J. A, Frischknecht, A. L., & Composto, R. J. (2012), ACS Macro Letters, 1, 115-121. 34




PEO-AuU(N):PEO(P) )
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P/N=0.43 P/N =1.58 P/N=19.2




2000

1500

Q. 1000

500

Hore, M. J. A., Frischknecht, A. L., & Composto, R. J. (2012), ACS Macro Letters, 1, 115.

Dispersion “Map” for NRs )
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_ A A |

| | |

i aggregation |

| |

| __--m-

m - dispersion; |

W __g-77E P& O

—-="_ ™ A 1O | A [
0 50 100 150

N

200

dispersion for P < 2N

ignores possible effects of:
* rod curvature

« grafting density

* rod length

squares: PS
triangles: PEO

36




Modeling ) i,

classical DFT and SCFT

- brush chains length N

- matrix chains length P

- athermal (y = 0)

- nanorods with radius R,
- grafting density

note nanorods exclude chains from interior
Y po.ymm are not part of the fluid in the theory

goal: calculate polymer-mediated interaction free energy

variables: o = P/N experimental ranges:
R o/R a=P/N=0.15-30
ro g
R, /R,=1.5-3.2
1/2 ro g
o =Moo N o' = 0.95-2.38
ap,
earlier work: Frischknecht, J. Chem. Phys., 128, 224902 (2008) 37




DFT approach: CMS-DFT 3 i,
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«chains are flexible Chandler, McCoy, Singer (1986);
» 2"d order density expansion McCoy et al. (1990s)
b N i
“G(r)Gi(r
pa(r ) = Po Z S(_B)U (Srg ) Chain density distribution
N, -, e
Ua(r) = Vext(r) _Z j Coy (l"— l"')[py (l’") o pyb]dr' Unknown field
Y C(r)zcrep(r)_uatt(r)
v, | PRISM  RPM
G(r)=e " | wr—r)G_,(r')dr Theory  Approx
G/(r =" | wir-rG.,,(dr Chain Architecture
_ ) (freely-jointed chains)
G =G =™ wy=—1_5(r|-0)
e}

free energy




Single Nanorod: Brush Profiles ()
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Rod/Ry=3.2, PIN =0 =3

0.8

0.6

volume
fraction ¢ o4

0.2

grafting density important

39



Single Nanorod: Brush Profiles ()
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a=2,06"=238

nanorod curvature important

40
-



Single Nanorod: Brush Profiles ()
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Rrod/Ry = 3.2, 0" = 2.38

matrix chain length doesn’t affect brush profiles much




Rod-rod interaction energy s,

PIN=o=3
c*=1.9
1 I I I I I 1 I
a
0.8 4 —R /R =1 ) 0.8 |
ro g
0.6 I — R IR =2 | 0.6 |
rod g
04 | —R /R =3.16 - 04 |
|_m rod g |_
x© 02| 4 ém 02
-0.2 L _ 02 L
0.4 | i 04 |
06 | | | | | | | | 06 L | | | ! | | |
08 16 24 32 4 48 56 64 08 16 24 3.2 4 48 56 64
(r—2R )/R (r—2R )/R
rod” g rod” g

deeper attractive well as:
grafting density increases
R,oq INCreases

42
-



Rod-rod interaction energy @i
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Riog/Rg = 3.2, 6% = 2.4

matrix chain length crucial!

1.5 — ‘
a=1
1L oa=2] |
a=3
a=4
— o05°L i
o0
'
~—~
G
0l
-05 B
l l l l l l




Rod-rod interaction energy s,

Riog/Rg = 3.2, 6% = 2.4

include van der Waal ALR,,
matrix chain length crucial! Include van der Waals gy . _ =" rod

between Au rods: 24 3?2
15 | 15 | ‘
a=1
1L a=2| | 1 i
a=3
oa=4
— 05| i — 05 |
m om
== X
A ~
G S o
0L
0.5 i
05 i
| | | | -1 |




Criterion for Aggregation? @i
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Monte Carlo simulations
square-well potential

assume aggregation for E, ;> 5 kT

Hore, M. J. A, et al. (2012), ACS Macro Letters, 1, 115-121. 45




Comparison with experiment @i
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1.9<0o*<24 1<0*<14
" H \ \
a) b) N
n
10 & aggregated - 10 8 A E
_ - 1 u aggregated
% . °
< O X - _i‘_ T ’ < u ®
o O O T O ¢ - o E e
I = I e
3 1b O O o - = 1k N O o -
- A
dispersed _ dispersed
= A
m
0.1 \ \ \ \ \ 0.1 \ \ \ \ \
0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5
R /R R /R
rod g rod ¢
circles = DFT good overall agreement

squares = PS/PS

triangles = PEO/PEO
46




Conclusions ) i,

* brush profiles remarkably insensitive to o
* interaction energy sensitive to ¢*, R4, and o,
 DFT captures correct trends

 transition to aggregation near P/N = 2

» design: promote dispersion for

* small 6%, R4, Or a | ' |
. o 1t [—P=1459 | :
« can potentially control rod spacing in S5 |
S os i
aggregates 2 | .
< i
. . 0.6
» to control optical properties § _ g
T 0.4 @
S ol z
=z 02 Q
ST
800 700 800 900

Wavelength (nm)

Frischknecht, Hore, Ford, & Composto, Macromolecules 46, 2856 (2013)
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f)‘ Constant pressure: still a transition
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Brush Characteristics vs o

brush width
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h
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* Dbrush height insensitive to a
» details of interface matter for
interactions
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volume fraction of matrix chains
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Brush Characteristics vs o* @i

height h, 1 +
(nearly linear) Pv(ho) = §¢b(0) 21 N i
~» 2 4
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b ; ;i
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Interactions vs o* and o ) i
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Surface Plasmon Resonance

Normalized Abs (a.u.)
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o b -

Normalized Abs (a.u.)
:

(=]
i

e o o
£ o oo -

Fracgon of Isolated Nanorods
o

gw L I
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- .
Wavelength (n

800 ' 900

m)

173 26 384 1459
1459 173 586 26

173 586
384 1459

N=48  N=110
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Hore, M. J. A, Frischknecht, A. L., & Composto, R. J. (2012), ACS Macro Letters, 1, 115-121.
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FIuids-DFTImpIementation ) i
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solve nonlinear integral eqtns
« in 3D, Cartesian grid
modified Newton solver
parallel http://software.sandia.gov/tramonto

e 'é?#

inputs
« model of the fluid
» freely-jointed tangent chains
* repulsive LJ interactions
* bulk fluid densities (chemical potentials)
« surface geometry
* NR exclude polymer
 sticky ends attracted with LJ energy

outputs
 fluid density profiles
« equilibrium free energy
* phase diagrams
« adsorption, stress profiles, ...




1.6
1.4
1.2

0.8
0.6
04
0.2

g(r)

Input to CMS-DFT: PRISM Theory )i,

Curro and Schweizer

Liquid state theory for homogeneous polymer fluids

" intramolecular correlations w,g
= intermolecular correlations g,g(r), cap(r)

Excellent for repulsive interactions

] N=16 hard sphere chain 1
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Calculation Details )

Laboratories

« parallel cylinders
 athermal (repulsive interactions)
» adsorbed chains
*N =40
* ppa = 0.01
» matrix chains
« P =40,80,120,160
* ppa® =0.85

(U

polymer melt

surface interactions:
* repulsive for matrix chains, all except end on adsorbing chains
» attractive to one end of adsorbing chains, depth ¢,



