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J ; How Can We Handle This?

# Eddy current Maxwell’'s equations:

E
VX/L_1V><E—|—O'%—tzf

#® Current concentrates on surfaces.
# Interfaces are important.
o Material/void interfaces “count” for EM.

# Treatment Options
o Lagrangian Mesh: Not for large-scale deformation.
o Eulerian Mixture Models: OK for hydro, poor for EM.
o “"XFEM”: Interface tracking + local “mesh” refinement.
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}Edge Elements
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® Scalar coefficients for vector basis functions.

® V x V¢ =0 preserved discretely.
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}XFEM 101

# Adds intra-element discontinuities w/o changing mesh

topology
o Strong (e.g. cracks; displacement)

o Weak (e.g. bonded materials)
#® Uses a Partition of Unity to preserve convergence

u(2) = > Ni(z)Fa(z)ura
A T

where the constant is in the span of the F4’s.
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$.Tied Heavisde M ethods

#® Approach: Use Heaviside functions N;

for enrichment.

# How to enforce continuity?

o Standard Approach: Lagrange
multiplier basis functions along
cut(s) [1,2].

o Our Approach: Use virtual,
algebraic Lagrange multipliers.
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[1] MGes et al., 2006., [2] Hautefeuille et al., 2012.
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}Algebraic Constraints

# |dea #1: Decompose everything into triangles.
#® Note: Lowest order basis tangentially constant on cut.

» ldea #2: One pointwise constraint ties a constant  (f) iom _
function everywhere.
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}Why ThisWorks

This yields the system:
_AX cT ||z ] B _f_
C 0 Al |0

These specific constraints also give a matrix 1I s.t.
Ap =TT AxTI

where Ar Is the body-fit FEM matrix.
Moreover, C1I = 0.

Proves equivalence between XFEM & local mesh
refinement.
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Change of Basis

» We can write the FEM-to-XFEM
change of basis, 11, as follows:

1 9 3 4 5 6 7
Aq (1 0 0 0 0 0 0 \
Ay | 0 0 0 123 0 0 0
J6; 1
Az | 25 0 = 0 0 0 0
By 0 % —% 0 0 0 0
y—1 — L
By | 0 0 e 0 e 0 0
Bs 0 ~1 0 0 0 0 0
8l 81

1 — 2
C1 0 0 0 0 -8 (-0 (-8
Co 0 0 0 0 0 0 %
Cs \ 0 0 0 0 )
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Bz(:v,y) = 5
S _
2y + 1
20 — 4
E(Qf,y) — < - T ]
449 + 22
\ 44x — 22

with u =1, 0, =1and og = 5;.

# Has tangential, but not normal, continuity across x =

)
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xr >
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eady-State Test Problem
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Joule Power (cE - E)
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Conclusions

» XFEM-AC offers substantially better accuracy than
mixed-cell models.

#® Equivalence to body-fit problem offers provable
convergence.

#® Current / future work
o 3D edge elements.
o Solving the resulting linear system.

Sandia
National
Laboratories

Electromaanetic XFEM with Weak Discontinuities — p.18/18



	Outline
	Z-Flyer Plate Application
	How Can We Handle This?
	Edge Elements
	Outline
	XFEM 101
	Tied Heaviside Methods
	Outline
	Algebraic Constraints
	Why This Works
	Change of Basis
	Outline
	Steady-State Test Problem
	$E $ Field
	$B $ Field
	Joule Power ($sigma E cdot E $)
	Conclusions

