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Visible and ultraviolet lasers: wide bandgap Group-Ill Nitrides

AIN

6 0.2
_. 5 A
2 5
— 03 ©
o 4 £
2 3 0.4 £
(@)) (@))
5 05 ¢
T ©

410 ®

1r =

0 | |

3.0 3.2 3.4 3.6

In-plane lattice constant, a (A)

Interesting physics

« High exciton binding energy =—=p Strong many-body Coulomb effects
(23meV for GaN vs. 5meV for GaAs) Chow, Knorr, Koch, Appl. Phys, Lett. 67, 754 (1995)

* Wurtzite crystal symmetry =P Strong quantum confined Stark effect

Important applications: visible and ultraviolet lasers and LEDs
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Experiment
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Possible efficiency droop mechanisms Considerations for model

* Auger losses

Systematic, unbiased accounting of mechanisms

Carrier leakage Possibility of multiple contributing mechanisms
Non capture (simultaneous or sequential)

Possibility of different mechanisms for different
experimental configurations

Defect
Junction heating

Minimization of free parameters

Hader, Moloney, Koch, APL 99, 181127 (2011)
Fujiwara, Jimi, Kaneda, Phys. Status Solidi C 6, S812 (2009); Laubsch, et al, Phys. Status Solidi C 6, S913 (2009)



Approach

Hamiltonian
: : : Light-matter interaction
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Model

\ Defect loss (SRH)
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Asymptotic carrier distributions
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Numerical analysis

@ Bandstructure

a) Solve k-p and Poisson equations for given range of carrier densities

b) Tabulate energy dispersions and transition matrix elements versus
carrier density

@ Solve for carrier population distributions

Solve kinetic equations with bandstructure properties and asymptotic
Fermic-Dirac distributions updated at each time step

@ Compute efficiency
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IQE

IQE versus current density for different lattice temperatures
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Spontaneous emission

IQE

rate (W/cm?2)

Spontaneous emission from QW and barrier states
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Contributions to IQE (W/cm?)
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IQE versus current density for different lattice temperatures
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IQE versus current density for different lattice temperatures
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Considerations for model

« Systematic, unbaised accounting of physical mechanisms

» Possibility of multiple contributing mechanisms (simultaneous or sequential)
» Possibility of different mechanisms for different experimental configurations
* Minimization of free parameters

Approach (microscopic model)

Carrier dynamics
Bandstruc?ture —— k- resolved QW and | ——0p
k-p and Poisson barrier population
equations of motion
+ Iterate Y
—

Possible efficiency droop mechanisms

Auger losses — C -- carrier-carrier scattering rate
Defect —> A -- carrier-carrier scattering rate

Carrier leakage

Ye.c -- Carrier-carrier scattering rate
Non capture .

Yep = carrier-carrier scattering rate

Junction heating

Band structure  — Kk:p and Poisson Eqs — Growth sheet

Bulk material parameters



