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Correlations 

Bandgap renormalization 

Exciton/Coulomb enhancement 

Hartree-Fock (mean-field) 

Relaxation, dephasing and screening by 

carrier-carrier and carrier-phonon collisions 

Carrier-interaction (many-body) effects 

Motivation for rigorous treatment 

Agreement with experiment 

 

No free parameter 

Eliminate dephasing rate as free parameter 

Input: growth sheet and bulk-material parameters 

Chow, Smowton, Blood, Girdnt, Jahnke, Koch, Appl. Phys. Lett. 71, 157 (1997) 



Hamiltonian 

Single-particle 

Light-matter 

Carrier – carrier 

Carrier - phonon 

𝐻 =  𝜀𝑒,𝑛𝑎𝑛
†

𝑛

𝑎𝑛 +  𝜀ℎ,𝑚𝑏𝑚
†

𝑚

𝑏𝑚 

−  𝜇𝑛𝑚𝑎𝑛
†𝑏𝑚

† + 𝜇𝑛𝑚
∗ 𝑏𝑚𝑎𝑛

𝑚

𝐸 𝑧, 𝑡  

+  ℏ𝐺𝑞𝑎𝑛+𝑞
† 𝑎𝑛 𝑏𝑞 + 𝑏−𝑞

†

𝑛,𝑞

 

+
1

2
 𝑊𝑛𝑚

𝑟𝑠 𝑎𝑟
†𝑎𝑠

†𝑎𝑚𝑎𝑛 +
1

2
 𝑊𝑛𝑚

𝑟𝑠 𝑏𝑟
†𝑏𝑠

†𝑏𝑚𝑏𝑛 −

𝑛,𝑚,𝑟,𝑠

 𝑊𝑛𝑚
𝑟𝑠 𝑎𝑟

†𝑏𝑠
†𝑏𝑚𝑎𝑛

𝑛,𝑚,𝑟,𝑠𝑛,𝑚,𝑟,𝑠

 

 𝑑3𝑟 𝑑3𝑟′𝜙𝑟
∗ 𝑟 𝜙𝑠

∗ 𝑟′
𝑒2

4𝜋𝜀𝑏 𝑟 − 𝑟′
𝜙𝑚 𝑟′ 𝜙𝑛 𝑟  

Bare Coulomb potential 

Optical 

transition 

𝑘⊥ 

E 
Wetting 

layer 

QD 

QD 
Wetting 

layer 

𝜀𝑛+𝑞 

ℏ𝜔q 

𝜀𝑛 

𝜀𝑚 𝜀𝑛 

𝜀𝑟 𝜀𝑠 

𝜀𝑚 𝜀𝑛 

𝜀𝑟 𝜀𝑠 

Electronic structure 

Direct Exchange 



dK

dt
 = F 𝑞1, 𝑞2, … , 𝑡  

2nd Born approx 

−γ × 𝑡 − 𝑡0  

d𝑨𝜶

dt
 
𝒔𝒄𝒂𝒕

= − 𝜸𝑨𝜶 

Standard treatment 

Perturbation theory and without memory 

(e.g., leading to the Boltzmann integral for electron-electron scattering) 
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𝑡
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Markov approx Populations or polarizations 
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Standard scattering treatment 

Phonon bottleneck problem  

Indication of problem with using QW theory for QD 

Not found to be severe 

in devices 

QD 

levels ℏ𝜔𝐿𝑂 

δ 𝜀𝑓 − 𝜀𝑖 ± ℏ𝜔𝐿𝑂  Energy conservation: 

Perturbation theory and without memory 
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Present Theory:  Quantum kinetic equations 

Non-Markovian dephasing: Schneider, Chow, Koch, PRB 70 235308, (2004) 

Polarons: Seebeck, … Gartner, Jahnke, PRB 71 125327 (2005) 

• Memory effects 

• Non perturbation 

• No free parameters QD/QW laser comparison: Chow, Lorke, Jahnke, IEEE J. Selected 

Topics Quantum Electron. 17 1349 (2011) 

For general review: Chow and Jahnke, Progress in Quantum Electronics 37, 109 (2013) 

Physics changes from QW to QD 
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Ndot = 2 x 1011cm11    T = 300K 
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𝝈𝒊𝒏𝒉 

Carrier density: N = 1011, 1012, 2 x 1012, 3 x 1012 cm11 



Quantum-dot absorption/gain spectra 

Photon energy (eV) 
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• Relates directly to gain 

• Inhomogeneous broadening determination 

• Calc: PRB 70 235308 (2004) 

 

1 Homogeneous width 

Saturation 2 

• Maximum available gain 

• Calc: PRB 74, 35334 (2006) 

• Expt: APL 99, 61104 (2011)  -- 
𝑑𝐺𝑝𝑘

𝑑𝑁
< 0  

Shift 3 Expt: APL 71, 2791 (1997) 

Calc: PRB 66, 41315(R) (2002) 

Expt: Smowton, et al, APL 81 3251 (2002) 

• Causes carrier-induced refractive index 

• Filamentation 

 

• Frequency chirp 

• Dynamical instabilities 

Lingnau, et al, Phys. Rev. E 86 (R) 065201 (2012) 
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Quantum Optics 

Cavity QED: control of spontaneous emission 

QD 

Photons 

Microcavity 

Substrate 

Semiconductor provides rich, many-body environment for studies 
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Semiconductor QD Rabi oscillations 
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Carmele, Kabuss, Chow PRB 87 041305 (R) (2013)  



Phonon-assisted Rabi splittings 
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• Jaynes-Cummings (AMO) problem with quantum statistics 

• Phonon-bath effects beyond standard 2nd Born 

approximation and with memory effects 

• Correlations treated to arbitrarily high (≳150th) level 

• Tracks changes phonon bath statistics 

Carmele, Kabuss, Richter, Knorr and Chow, J. Mod. Optics 58, 1951 (2011)  

Theory of strongly-coupled electron-photon-

phonon system 
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T. S. Luk, et al, J. Opt. Soc. B 28, 

1365 (2011) 

Connection to quantum optomechanics 
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Carmele, Richter, Chow and Knorr, PRL 104, 156801 (2010) Tamu/princeton2009 
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Like electroluminescent cooling* but in 

strong-coupling regime 

Non-thermal phonon generation 
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QD 

Stokes 

* Santhanam, Gray and Ram, PRL 108, 097403, 2012  
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Silicon quantum electronics and optics 

Quantum coherence phenomena 

Slow light  (memory) 

Electromagnetically induced 

transparency (EIT) 

Lasing without inversion (LWI) 

Atoms 

Optical 

transition 

|𝒂   

|𝒃   

|𝒄   

Optical 

transition 

Quantum 

coherence 



Nonlinear dynamics 

Motivation for developing new bifurcation analysis techniques 

Lingnau, Luedge, Chow, Scholl, Phys. Rev. E 86 (R), 065201, 2012 

QD physics and applications overview: Chow and Jahnke, Progress in Quantum Electronics 37, 109 (2013) 

Dynamical instabilities in injection-locking of QD laser 

Quantum-dot physics for lasers and quantum optics 

Lasers 

Improving semiconductor laser performance at fundamental level 

Phonon-assisted strong-coupling: a new path to cavity quantum optomechanics 

Quantum optics 
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