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Experimental platforms
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Semiconductor guantum-dot optical properties
Underlying physics
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Carrier-interaction (many-body) effects

Hartree-Fock (mean-field) Correlations

Relaxation, dephasing and screening by
carrier-carrier and carrier-phonon collisions

Exciton/Coulomb enhancement

Motivation for rigorous treatment

Bandgap renormalization

Agreement with experiment
Chow, Smowton, Blood, Girdnt, Jahnke, Koch, Appl. Phys. Lett. 71, 157 (1997)

No free parameter
Eliminate dephasing rate as free parameter

Input: growth sheet and bulk-material parameters



Hamiltonian _
Electronic structure
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Standard treatment

(e.g., leading to the Boltzmann integral for electron-electron scattering)

/ Populations or polarizations Markov approx ~ —Y X (t — to)
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Indication of problem with using QW theory for QD

Standard scattering treatment

Perturbation theory and without memory
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Physics changes from QW to QD

Present Theory: Quantum kinetic equations

Aa() = Agto) + [} dt K (2 — 1) Aa() = Aq(to) + A5 D(e - t)

dK
E — F(Ql» qZ' LD, t)

« Memory effects Non-Markovian dephasing: Schneider, Chow, Koch, PRB 70 235308, (2004)
 Non perturbation  Polarons: Seebeck, ... Gartner, Jahnke, PRB 71 125327 (2005)

* No free parameters  QD/QW laser comparison: Chow, Lorke, Jahnke, IEEE J. Selected
Topics Quantum Electron. 17 1349 (2011)

For general review: Chow and Jahnke, Progress in Quantum Electronics 37, 109 (2013)



Quantum-dot absorption/gain spectra
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Material gain (103cm1)
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@ Homogeneous width
* Relates directly to gain
* Inhomogeneous broadening determination
 Calc: PRB 70 235308 (2004)

@ Saturation

« Maximum available gain
« Calc: PRB 74, 35334 (2006)

« Expt: APL 99, 61104 (2011) -- d—l’\’," <0

@ spife | EXpt: APL 71, 2791 (1997)
Calc: PRB 66, 41315(R) (2002)

Causes carrier-induced refractive index

Filamentation
Expt: Smowton, et al, APL 81 3251 (2002)

Frequency chirp

Dynamical instabilities
Lingnau, et al, Phys. Rev. E 86 (R) 065201 (2012)



Quantum Optics

Cavity QED: control of spontaneous emission

Microcavity

Photons

|

a D

Substrate

Semiconductor provides rich, many-body environment for studies



Atomic-molecular-optical (AMO) Rabi oscillations
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Semiconductor QD Rabi oscillations
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Phonon-assisted Rabi splittings
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/ Theory of strongly-coupled electron-photon- \
phonon system

« Jaynes-Cummings (AMO) problem with quantum statistics

« Phonon-bath effects beyond standard 2"4 Born
approximation and with memory effects

« Correlations treated to arbitrarily high (=150%") level

» Tracks changes phonon bath statistics
varmele, Kabuss, Richter, Knorr and Chow, J. Mod. Optics 58, 1951 (2011) /
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Connection to quantum optomechanics
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T. S. Luk, et al, J. Opt. Soc. B 28,
1365 (2011)




Antibunching of thermal radiation by room-temperature phonon bath
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Electron pump
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Silicon quantum electronics and optics

Quantum coherence phenomena
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Quantum-dot physics for lasers and quantum optics

Lasers
Improving semiconductor laser performance at fundamental level

Quantum optics

Phonon-assisted strong-coupling: a new path to cavity quantum optomechanics

Nonlinear dynamics

Motivation for developing new bifurcation analysis techniques

Dynamical instabilities in injection-locking of QD laser
6

Norm. intensity,
phase-locked cw
Freq.-locked pulsing
Period-1 oscillation
Period-2 oscillation
Period-3 oscillation

Detuning (GHz)

Period-4 oscillation
> 9 extr. irregular/chaotic

1
(@]

0 0.2 0.4 0.6
Injection strength (normalized)

Lingnau, Luedge, Chow, Scholl, Phys. Rev. E 86 (R), 065201, 2012

QD physics and applications overview: Chow and Jahnke, Progress in Quantum Electronics 37, 109 (2013)



