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Nuclear Energy Basics
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From www.nrc.gov



Mark-I Containment

Browns Ferry from Wikipedia

NRC Training Manual



BWR Fuel Assemblies

NRC Training Manual



Decay Heat is the Problem
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Reactor Power Before and After 
“Shutdown”

 Reactor shutdown 
doesn’t completely 
stop heat generation

 Decay power 
requires long-term 
heat rejection 
(cooling)

 Long-term loss of 
cooling results in fuel 
melting and release 
of radioactivity

 Reactor shutdown 
doesn’t completely 
stop heat generation

 Decay power 
requires long-term 
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(cooling)

 Long-term loss of 
cooling results in fuel 
melting and release 
of radioactivity
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Core Melt Progression in Mark-I
 Uncovering of core

 Fuel overheating

 Zr-fire and H2 gen.

 Core meltdown

 Slumping to lower head of 
reactor pressure vessel

 Melt relocation to 
containment floor

 Core-concrete interaction

 Erosion of concrete

 CO2/CO gas generation

 Containment over-
pressurization

 Release of radioactivity 
to environment

Suppression 
Pool

Drywell head flange

Dry Well
(nitrogen inerted)

Core Melt 
Progression



MACCS Atmospheric Transport and 
Consequence Estimation
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Design Basis for Seismic Events 
Deterministic Considerations

 OBE – operational basis earthquake
 The largest earthquake that could “reasonably” be expected to be 

encountered during the lifetime of the plant

 Design of plant should be such that no shutdown or interruption of 
plant function should be experienced

 No subsequent examination is required

 If OBE exceeded, plant much be shutdown for inspection to 
demonstrate it is safe to restart

 SSE – Safe Shutdown Earthquake
 The largest earthquake for which key plant safety function must be 

maintained

 Pressure vessel and RCS integrity

 Ability to shutdown the reactor

 Ability to prevent or mitigate releases consistent with 10CFR100 
requirements
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OBE and SSE, Continued

 SSE is the largest earthquake magnitude considered possible 
for the site, considering known geological features, faults, and 
historical data
 May never have been observed to occur historically

 Critical equipment that must survive classified as Category 1

 Other equipment may be damaged

 Category 1 equipment qualifications determined by

 Physical tests, perhaps to destruction (shaker table or explosive 
simulation)

 Detailed analyses

 OBE Operating Basis Earthquake – must be at least ½ SSE
 OBE requirements could dominate design (e.g.. Pipe restraints)
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The Accident
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Earthquake Led to Loss of Offsite 
Power

 Seismic events disrupted roads and power 
lines

 Local offsite blackout isolated Fukushima 
Dai-ichi station from power grid

 Reactors shut down and emergency core 
cooling systems operated as designed

 Site powered and operated by onsite diesel 
generators

Used by permission from TEPCO
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Dai-ichi Site was Inundated

 Site flooding initiated “Station Blackout”

 Diesel generators flooded and fuel tanks swept away

 Unit 1 and 2  lost DC batteries 
 blind to what was happening and No ECCS

 DC power available

 Unit 2 and 3 maintained “Emergency Core Cooling System” 

 All reactors isolated from ultimate heat sink (Ocean)

Used by permission from TEPCO
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Damage from Explosions
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Damage to 1F4
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Spent Fuel Pool-4 Status

 TEPCO says was never uncovered

 Water level being maintained

 Water isotopic measurements

 Very low activity (less than a fraction of one rod)

 Source is not from pool as iodine fraction is too high

 Source is from adjacent reactors, possibly contaminated sea water 
injection

 Pool images indicate very little damage

 But not absolutely conclusive in my mind

 Resolution is important because if H2 came from fuel in pool, 
then cladding is highly embrittled and will greatly complicate 
fuel removal
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Common Off-gas Ducts 1F3-1F4
Source of H2 from Unit 3 Accident?
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In-Country Support
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Activities in U.S. Embassy

 Initial emphasis was on estimating risk potential to returning U.S. citizens that were 
previously evacuated

 Sandia team developed baseline MELCOR models for predicted reactor damage states

 Fraction core damage

 Source term released

 Forecasting tool for potential future events

 Daily consults from military people based at Yakota Air Base

 Daily consultation and assistance to NRC, DOE, DoS

 Severe accident interpretation

 Explanation of numbers and results

 Exploring mitigation options and success

 Technical discussions and data/information requests with INPO/TEPCO

 Technical support to the Consortium partners

 Consultation with Japanese engineers on severe accident modeling

 Ongoing forensics investigation of events
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NRC War Room At Embassy

 NRC set up mirror site of the 
Emergency Response Center 
in Bethesda

 Reactor safety team

 Protective measures team

 Evaluated ongoing and 
emerging issues

 Flooding, N2 inerting

 Provided daily reports to 
Ambassador
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NRC Team Led by Chuck Casto
Supporting Ambassador John 
V. Roos
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During the Accident

• Activated NNSA Consequence Management Home Team

• 24/7 support for field operations

• Dose Assessment

• Analyzed rad doses based on modeled releases and actual rad measurements

• Helped define evacuation zones

• Analyzed food, soil, air

• Laboratory Analyses

• Received samples from Government of Japan

• Managed laboratories across the US

• Validated results

• Uploaded over 10,000 sample results

 Conducted research on decontamination technology
 Cs capture from seawater

 Provided information on multiple capabilities
 Robotics, drones, decontamination, emergency response
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Ground Level Dose Rate 
(normalized to 29 Apr)

Total Cs Deposition
(normalized to 29 Apr)

Aerial Measuring Results
Joint US / Japan Survey Data

Aerial Measuring Results
Joint US / Japan Survey Data

Aerial Measuring Results
Joint US/Japan Survey Data
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Decontamination Technology

 Crystalline Silicotitanates remove Cs through ion exchange
 Started as LDRD in 1993

 Commercialized through CRADA in 1995, licensed to UOP

 Won R&D 100 Award in 1996

 Deployed at Fukushima Dai-ichi in June 2011

 Decontaminated 100+ million gallons of contaminated 
seawater



Accident Reconstruction
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SNL Fukushima Dai-ichi MELCOR Reactor Models

• BWR Mk-I model from the NRC’s State-of-the-
Art Consequence Analysis (SOARCA) project 
used as a template

– 20+ years of BWR model R&D

– Current state-of-the-art/best practices 

• Incorporated reactor-specific information into 
the template to create Fukushima Dai-ichi 
reactor models

• Developed surrogate information for 
unavailable Fukushima Dai-ichi information

• Analyses performed using MELCOR 2.1
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MELCOR Analysis of 1F2
Reactor Pressure

 Analysis assumes 2 inch 
effective hole in torus after 
earthquake

 RCIC operates for very long 
time
 It is believed that CST was 

refilled several times

 After saturation in torus, 
steam escapes via torus 
hole

 As vessel water level 
drops, operators 
depressurize vessel to 
enable sea water injection
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MELCOR Analysis of 1F2
Reactor Water Level

 RCIC fails finally and 
injection to vessel 
ceases

 Vessel water level 
drops

 Operators 
depressurize reactor 
and start sea water 
injection

 Water level recovers 
but whole core has 
been uncovered
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MELCOR 
Predicted Core 
Damage
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US Actions & Summary
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Summary
 Persistent and significant decay heat must be removed for months 

following reactor “shutdown”

 Loss of heat rejection causes coolant boildown and core overheating
 Fuel rod cladding (Zr) burns at high temperature

 Core meltdown and release of radiation 

 Earthquake and Tsunami at Fukushima
 Reactors “shut down” following earthquake – loss of offsite power

 Tsunami flooded site – station blackout and loss of heat rejection

 Reactors isolated from ultimate heat sink

 Heat storage on-site exhausted
 Suppression pools boiling

 Injection pumps failed

 Reactor cores uncovered and cores melted down

 Radioactivity released to environment

 Population evacuated and land contaminated

 Prolonged SBO conditions and multi-unit accidents prevented accident 
recovery actions from succeeding
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Summary
 Response to accident was ad hoc

 Severe accidents were not avoided

 Some were mitigated more than others – effectiveness of responses not clear

 Traditional recommendations to add water aggravate release from damaged 
containments

 Releases are believed to be small (~1% per reactor)

 Reactors were doomed by lack of fresh water and loss of heat sink
 Response time to replace lost power, water or cooling was too long to help

 Data from plant inadequate to manage post accident controls
 Few pressures and temperatures and unreliable, unreliable water levels measurements, 

degraded instruments

 Much to be learned – more vigilance and advanced planning is needed

 Policy & decision makers do not always understand the science

 Tools provide useful real-time information and long-term understanding

 Results can be counterintuitive

 Ability to reduce probability is diminishing

 Capabilities need to be maintained
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US Actions (www.nrc.gov)
 Mitigation and Station Blackout strategies – enhancing capability to maintain 

safety during prolonged loss of electrical power, e.g., installed, portable on-
site, flown or trucked in equipment

 Containment venting – all plants of similar design required to install reliable, 
hardened vents to remove heat and pressure before damage

 Filtration & confinement strategies – to confine or filter rad material

 Spent fuel instrumentation – all plants to install water level instrumentation

 Seismic & flooding reevaluations & walk-downs  – using present-day 
information

 Emergency preparedness, communication, on-site emergency capabilities -
improvements – effectively respond to an event affecting multiple reactors, 
large-scale events

 Plant specific actions and progress can be accessed on the NRC website
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Questions?


