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ABSTRACT

Interception of a moving and potentially evading target can be a challenging problem, in
particular for conditions in which the target may be moving at high speeds and difficult to detect.
We have proposed to merge two Sandia LDRD efforts, the SPARR Spiking/Processing Array
(neuromorphic event-driven sensing) and the Dragonfly-Inspired Algorithms for Intercept-
Traj ectory Planning (neural-inspired algorithms for interception) toward a unified system with
direct application to national security. Neuromorphic systems demonstrate the most potential for
speed and efficiency gains when communication is event-driven and computations are simple but
parallelizable. Accordingly, we anticipate fully realizing potential benefits from a neuromorphic
interception system if event-driven sensing is combined with processing and acting also
implemented on event-driven (spiking) systems. We have successfully translated a neural-
inspired interception algorithm to a neural network architecture for evaluation on neuromorphic
hardware. Preliminary implementations of the neural network designed for implementation on
the Loihi chip are still too immature for conclusive evaluation, but the results of this effort have
demonstrated a viable path for a previously developed dragonfly-inspired interception algorithm
to be implemented on neuromorphic hardware.
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INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS

Interception of an evading target requires simultaneous sensing of and acting on observations of
a target. Interception in hypersonics is particularly challenging because the extreme speeds of
both the target and interceptor require extremely fast sensing and processing. The objective of
this effort was to combine the SPARR Spiking/Processing Array (neuromorphic event-driven
sensing) with the Dragonfly-Inspired Algorithms for Intercept-Trajectory Planning (a neural-
inspired algorithm for interception based upon biological dragonflies) to demonstrate the
potential of processing on neuromorphic hardware specifically for interception systems (see
Addendum B, end-of-year slides). Our hypothesis is that the spiking sensing modality of
SPARR will combine synergistically with a spiking neural network (SNN) version of the
dragonfly algorithm implemented on neuromorphic hardware, revealing potential performance
advantages to a next-generation interception system.

Spiking neuromorphic platforms offer a trade-off between increased numbers of processors with
decreased computational complexity per processor. Our expectation was that the highest speed
and efficiency gains would arise when supporting algorithms were highly parallelizable.
Moreover, to take full advantage of the speed and efficiency gains offered by SPARR, a focal
plane that outputs spikes, our expectation was that best performance would arise from processing
on spiking hardware that could receive information in the native format of the sensor (spiking).
Before performance of SPARR and dragonfly operating together could be evaluated, the
dragonfly model (see Chance, 2019) needed to be converted to an architecture that could receive
spikes from SPARR. Accordingly, the first steps to this end were to 1) convert the dragonfly-
inspired interception algorithm to a neural network (NN) architecture and 2) implementing the
model on a spiking neuromorphic platform for evaluation.

We have successfully developed a continuous-valued NN version of the dragonfly-inspired
interception algorithm. The NN model is fully described in Chance, 2020 (also included as
Addendum A to this report). We have also successfully used Nengo (Bekolay et al., 2014) to
develop a SNN version for deployment on the Intel Loihi chip (Davies et al., 2018). As of the
writing of this report, the Nengo-developed version of the dragonfly NN runs on the Nengo
Loihi-emulator, but currently requires additional trouble-shooting before evaluation on Loihi
hardware can be performed (individual components of the network have been run on the
hardware but not a full implementation of the model). Future work will also consider alternate
implementations of the dragonfly algorithm as a SNN for evaluation on the Loihi platform.
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DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND
METHODOLOGY

This effort leveraged a previously developed interception algorithm based upon biological
dragonflies. Full details of the dragonly-inspired interception algorithm are provided in Chance,
2019. The objective of this project was to convert the dragonfly model (Chance, 2019) to a form
that could be implemented on neuromorphic hardware for further evaluation (e.g. for size, weight
and power requirements). While "best practices" for neuromorphic implementations of
algorithms is still very much an active and open area of research, it is generally assumed that
maximum gains in efficiency and speed are realized when computations are relatively simple and
parallelizable. Accordingly, a spiking neural network (SNN) implementation was identified as an
attractive option for fully realizing potential advantages offered by emerging neuromorphic
hardware.

As a first step towards a neuromorphic implementation, the dragonfly model was first translated
to a continuous-valued neural network, fully described in Chance 2020 (also see Addendum A).
The general architecture (layers, connectivity, synaptic weight values) of this model was very
influential when developing the spiking implementations of the dragonfly model. The Intel Loihi
chip (Davies et al., 2018) is a recently developed neuromorphic chip that implements
asynchronous spiking neural networks. This particular platform was of interest to this project
because it is one of the first neuromorphic platforms to incorporate synaptic plasticity and thus
could accommodate future potential neural-inspired modifications to the dragonfly model.

Nengo implementation
Multiple options exist for implementing neural networks on Loihi ranging from software
packages to hand-crafted spiking neural networks. Nengo (Bekolay et al., 2014) is a relatively
mature software package specifically developed for constructing, testing, and deploying neural
networks. The software has previously been used (Blouw et al., 2018) to demonstrate energetic
advantages for deep learning algorithms implemented on Loihi compared to other computing
devices (ranging from traditional CPUs to alternate neuromorphic hardwares) and therefore
presented a logical path for implementing a "first-pass" of the dragonfly algorithm on Loihi.

The Nengo implementation of the dragonfly neural network relies heavily on the use of
"ensembles", a population of neurons whose firing rates encode a particular value or function.
For the Nengo implementation of dragonfly, each neuron of the continuous-valued NN version
was approximated by a population of 256 neurons. For example, in the continuous-valued NN,
the responses of individual neurons from the prey-image and the fovea-position representations
(see Chance, 2020 and Addendum A) were determined by Gaussian functions of the distance
between the preferred position of a neuron and the input position (prey-image position or fovea
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position). Each of these neurons was replaced by an ensemble of neurons whose firing rates
approximated the same Gaussian function. Likewise, individual neurons in the motor output
population of the continuous-valued NN were replaced by ensembles of neurons in the Nengo
implementation. Connection weights between ensembles of neurons in the Nengo
implementation were determined by the synaptic weights between analogous neurons in the
continuous-valued NN.

The advantage to this approach was that many functions are built-in to Nengo. For example,
multiplication of inputs from two neurons of the continuous-valued NN is achieved using a dot
product between two ensembles. The disadvantage is that significantly more neurons are
required. The continuous-valued NN presented in Chance (2020) comprised of 441 (21x21)
neurons for the prey-image position, fovea position, and motor output populations, and 194,481
(214) neurons in the sensory representation population. The Nengo implementation requires 256
times the number of neurons in the continuous-valued NN, suggesting that experiments with the
physical hardware might be required before definitive comparisons of energy-requirements and
processing speed between the two implementations can be made. While the Nengo
implementation has been successfully tested on the Nengo Loihi chip emulator, additional
troubleshooting is required to run the Nengo implementation on the Loihi chip (while individual
components, for example the prey-image population, can be run on the chip, the full
implementation has not been run successfully to date).

Hand-crafted implementation
In parallel to the Nengo implementation, a simplified version of the dragonfly model
(specifically, one that only does classical pursuit — see Chance 2019) was converted to a spiking
NN (developed in Matlab) by hand. The intent was not to develop a spiking implementation for
direct comparison against the Nengo implementation, but instead to develop a smaller spiking
network that could be used as a "pilot" network for evaluating what network specifications most
significantly impact efficiency and speed of the network. This approach to developing a
dragonfly SNN also allowed us to identify certain functions (e.g. normalization) to identify in
future development efforts.

Briefly, each neuron in the continuous-valued neural network was replaced by a single spiking
neuron. In this implementation, individual neurons represent a single continuous-valued variable,
V. If V> Vth, a spike is fired and V is set to Vr„et. If V < Vth, V is multiplied by exp(—dt/t),
causing V to exponentially decay to zero. Input to the prey-image representation is calculated as
in Chance, 2020. Input to motor output neuron j is Ei Wijsi, where si = 1 if prey-image neuron

i spiked in the previous time step and 0 otherwise. The synaptic weight between prey-image
neuron i and motor output neuron j is

Sandia National Laboratories
U.S. DEPARTMENT OF

EN ERGY



1_(.D"RD RE LABORATORY DIRECTED
SEARCH & DEVELOPMENT

— WHERE INNOVATION BEGINS

2+(\
,j = ff dx1dx2exp (aii -x1)2 + (ai2 -x2)2)exp (cjl-x1)cp-x2)2)20772n

where (ail, cti2) is the preferred prey-image location of prey-image neuron i and (cji, cj2) is the

preferred goal location of motor output neuron j, and (x1, x2) is the location of the prey in eye
coordinates.

This implementation was intended to be a simplified version of the dragonfly algorithm and
therefore did not include a fovea-position population or a sensory-representation population. The
fovea remained fixed at the center of the eye. As a result, the model dragonfly driven by this
SNN only exhibits classical pursuit.

RESULTS AND DISCUSSION

Dragonfly Neural Network
As previously indicated, the NN version of the dragonfly-inspired interception algorithm is
described in Addendum A (also Chance, 2020). For the purposes of this effort, it is important to
note that the NN version generates trajectories that are almost identical to those generated by the
original model. In Figure 1, a trajectory generated by the original dragonfly-inspired interception
model (open black symbols) is compared with a trajectory generated by the NN version of the
dragonfly (filled blue symbols). Close inspection of the figure reveals slight differences between
the trajectories generated by the two versions of the model, most likely arising from differences
in the resolution with which the motor output is encoded. The similarity between the two models
has been reproduced for other target trajectories (including ones in which the target changes
direction, not shown) and allowed us to conclude that the NN version produces equivalent
trajectories to the original version of the model.

The original dragonfly model was described in Chance (2019). The NN version (filled blue
symbols) is described Addendum A (also see Chance, 2020). For the NN version, the prey-
image position, fovea position, and motor output populations consisted of 441 (21x21) neurons
each. The sensory representation population consisted of 194,481 (214) neurons. Prey-image
position, fovea position, and motor output neuron preferences were an evenly spaced grid
ranging from [-1 tan(0), [l tan(6)], where 1 is the distance from the center of the dragonfly's
head to the center of the eye, and 0 is ir/2.1 for the prey-image position and fovea position
populations and 7/4 for the motor output population. Motor output activity threshold was 16.
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Figure 1: comparison of an interception trajectory generated by the original dragonfly-inspired
interception algorithm (open black symbols) with a trajectory generated by the continuous-
valued neural network version of the dragonfly model (filled blue symbols). Target trajectory is
indicated by the red symbols.

Nengo Implementation
Additional troubleshooting and debugging will be required to fully understand the advantages
and disadvantages to the Nengo implementation of the dragonfly model. While the ensemble
approach has demonstrated that the full model can, in principle, be implemented on the Loihi
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hardware, we have encountered certain issues that must be addressed before any statements
about the benefits of using this implementation on Loihi hardware.

Hand-crafted Implementation
The "hand-craftee implementation will likely need further development before it can be
extended to incorporate the full dragonfly model. The current network exhibits sensitivity to the
number of prey-image position neurons that are activated by the stimulus. Our current
assessment suggests that a mechanism for normalizing the input to a population of neurons will
do much to enhance the stability of the activity patterns in each population. This mechanism will
likely be tailored to the specific hardware platform (in this case the Loihi chip).

ANTICIPATED OUTCOMES AND IMPACTS
Our results demonstrate that there is a viable path forward to an implementation of the
dragonfly-inspired interception algorithm on a neuromorphic platform, but additional work is
required before definitive statements can be made regarding any potential speed, SWaP, or
efficiency advantages. It is clear from our results that "best practices" for neuromorphic
implementations are not established. An ideal outcome of this effort will be for development of
the dragonfly algorithm for neuromorphic implementation to continue. The expertise gained
from this LDRD, in particular familiarity with the Loihi chip, will be very beneficial to this effort
going forward.

As described in Addendum B, this LDRD has supported one journal publication (with two
additional publications submitted), one conference publication, three invited presentations
internal to SNL and one conference presentation. The PI received an invitation to speak at a
special conference session this past March, but the conference has been postponed due to the
COVID-19 pandemic. If we are able to find support, we plan to submit at least one additional
publication describing the neuromorphic implementation of dragonfly (once complete) and at
least one white paper describing the advantages and disadvantages of implementing the
dragonfly algorithm on the Loihi chip.

This LDRD has been synergistic with other projects to evaluate the potential value of a
neuromorphic interception system to SNL customers and mission areas. For example, the PI (in
collaboration with members of 6530 and additional members from 1421) has just completed a
project evaluating the feasibility of implementing the dragonfly algorithm on a physical vehicle
and identifying the major hurdles to interfacing the neural-inspired algorithm with a "real-world"
system. This LDRD has also supported development of expertise with neural-inspired
algorithmic development and neuromorphic implementations. These increased capabilities will
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impact the broader vision to leverage emerging neuromorphic platforms and neuroscience
knowledge to benefit SNL's national security missions.

CONCLUSION

Interception of a moving and potentially evading target remains an unsolved problem. The goal
of this effort was to evaluate potential efficiency and speed advantages to be gained from
combining neuromorphic event-driven sensing (e.g. SPARR) with a neural-inspired interception
algorithm implemented on neuromorphic hardware. We have demonstrated that a previously
developed neural-inspired interception algorithm (from "Dragonfly-Inspired Algorithms for
Intercept-Trajectory Planning", see Chance 2019) can be translated into a neural network without
significantly impacting performance We have also demonstrated that a spiking implementation
of this neural network can be run on a neuromorphic emulator (specifically the Nengo emulator
of the Intel Loihi chip). Future work will maturing neuromorphic implementation(s) of the
algorithm for benchmarking on the Loihi chip.
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ABSTRACT

While dragonflies are well-known for their high success rates when
hunting prey, how the underlying neural circuitry generates the
prey-interception trajectories used by dragonflies to hunt remains
an open question. I present a model of dragonfly prey intercep-
tion that uses a neural network to calculate motor commands for
prey-interception. The model uses the motor outputs of the neu-
ral network to internally generate a forward model of prey-image
translation resulting from the dragonfly's own turning that can then
serve as a feedback guidance signal, resulting in trajectories with fi-
nal approaches very similar to proportional navigation. The neural
network is biologically-plausible and can therefore can be com-
pared against in vivo neural responses in the biological dragonfly,
yet parsimonious enough that the algorithm can be implemented
without requiring specialized hardware.

CCS CONCEPTS

• Computing methodologies —> Motion path planning.
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guidance, interception, insect vision, neuromorphic
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1 INTRODUCTION

The field of neuromorphic computing is founded on the assumption
that better understanding of neural systems and how they function
can be leveraged to create more advanced computing systems. This
study focused on a highly specialized nervous system, the neural
circuitry underlying prey interception in the dragonfly. In nature
dragonflies are highly successful hunters (with a 90-95% success
rate [3, 11]). What key computations underlie the robustness of
dragonfly hunting and how easily can the dragonfly system be
translated to a man-made platform? This study seeks to contribute
to the advancement of neuromorphic computing by constmcting a
computational model of the dragonfly nervous system that is framed
at a level amenable for translation to a neuromorphic platform.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
govermnent. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Govermnent pmposes
only.
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Dragonflies were of particular interest for this study not only
because of their high success rate, but also because they are known
to use proportional navigation guidance as they approach their prey.
Proportional navigation is a guidance law that results in the geomet-
rically shortest path to interception. Also, dragonffies demonstrate a
remarkably short latency when responding to prey maneuvers - on
the order of 50 ms [7, 9], quite remarkable given that the response
time constant of a single neuron is on the order of tens of ms. While
a number of animal species (including dragonflies) are known to use
proportional navigation (see [1, 4, 7] for reviews), there are certain
advantages to studying an insect system, including the assumption
that the underlying circuitry is likely to be light (and therefore
the validated model could be translated to a manmade system with
relative ease).
As dragonflies approach their prey, they adjust their head posi-

tion to maintain the image of its prey (referred to here as the 'prey
image) on a specific part of the eye [9] (referred to as the fovea)
through behavior known as foveation. While simply maintaining
a constant angle between the dragonflys direction of movement
and its line-of-sight to the prey will result in behavior known as
`classical pursuit (during which the dragonfly will head directly at
its prey at all times) or a variant known as 'deviated pursuit (in
which a constant but non-zero angle will be maintained between
the dragonfly's direction of flight and its line-of-sight to the prey)
and therefore is not sufficient to produce proportional navigation. I
have developed a model of dragonfly prey interception that executes
proportional navigation solely based upon prey-image translation
across the eye. While prey-image slippage away from the fovea has
been suggested as the signal used by dragonflies for interception
[6, 11], this is the first model (to the author's knowledge) of how
that signal is used. This model is in the form of a neural network
and incorporates certain simplifications intended to facilitate trans-
lation to a man-made system. Nevertheless, I will discuss model
predictions that can be directly tested in the nervous system of the
biological dragonfly.

2 MODELING APPROACH

While dragonflies have two eyes, the neural circuits thought to
process moving targets and underlie dragonfly tracking of prey [5,
6, 8] largely do not have binocular receptive fields (although see [10],
suggesting that dragonflies do not use depth perception to capture
prey. Accordingly, the 'eyes' of the dragonfly model presented here
are simplified as a flat two-dimensional screen (referred to here as
the model dragonfly's eye). During each simulation time step, the
movement of the prey relative to the dragonfly and the resulting
translation of the image of the prey on the dragonfly eye (the prey
image) are calculated. The dragonfly then adjusts its pitch and yaw
angles (for simplicity, this study did not include roll), to maintain
the prey image directly on the fovea. If the dragonfly approaches
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to within a minimum distance of the prey (specifically the distance
that that the dragonfly can move within one simulation time step),
a successful capture is declared and the engagement ends.
One significant difference between the model dragonfly and the

biological dragonfly is that the fovea of the model dragonfly eye
is moveable — its location on the eye is a function of the previous
tums required to maintain the position of the prey image on the
fovea. As described below, the model adjusts the position of the
fovea to execute proportional navigation. By comparison, the fovea
of the biological dragonfly eye is immoveable, although it is likely
that proprioceptive information from the neck (encoding the angle
of the head relative to the body) performs an analogous function.

Simulating the motor system (e.g. wings, muscles) was outside of
the scope of this project, as was detailed simulation of the dragonfly
eyes. For the results presented here, it is assumed that the dragonfly
and its prey fly at the same speed (10 m/s) and have the same
maneuverability.

2.1 Calculation of model dragonfly turning

The turning required to maintain the prey image on the fovea is
calculated by a neural network of continuous-valued (non-spiking)
neurons. Neurons in the 'prey-image representation' population
(denoted by open circles in Figure 1) encode the position of the
image of the prey on the eye (in 'eye coordinates'). The response fi
of each neuron i from this population is determined by a Gaussian
tuning curve:

fi(xs, AZ) = exp 
(ass — xs )2 + (as2 — x2)2))

20,2

where (xs , x2) is the location of the prey image on the eye, (au, aiz)
is the preferred position of the prey-image for neuron i, and crr
determines the width of the tuning curve.

Neurons in the 'fovea-position representation' (indicated by
filled blue circles in Figure 1) encode the position of the fovea in eye-
coordinates. The response (gj) of neuron j within this population
is also determined by a Gaussian tuning curve:

( (bp - yi)2 + (bjz — y2)2))
9,i(yi, y2) = exP

where (kis, bj2) is the preferred fovea location for the neuron,
(ys, y2) is the fovea location, and ag describes the width of the
tuning curve. These two inputs are combined in the sensory rep-
resentation (red circles in Figure 1) such that the response Ski of
a sensory representation neuron multiplicatively combines input
from one prey-image neuron (i) and one fovea-position neuron (j):

si; = fi(xi,x0Myi, y2).

The sensory representation is designed such that all possible com-
binations of prey-image position and fovea position neurons are
included.

Neurons in the motor output population (green circles) repre-
sent the goal direction, in eye coordinates, to which the dragonfly
should turn. The response of neuron i in the motor output popula-
tion, Ri, is determined by sununing over all inputs in the sensory

fovea-position representation

sensory representation
prey-image
representation

Frances S. Chance

motor
output

Figure 1: Schematic of the model dragonfly neural network.
Open circles are prey-image neurons, and filled blue circles
are fovea-position neurons. The responses of neurons in the
sensory representation (filled red circles) arise from multi-
plicative interactions between neurons in the prey-image
and fovea-position representations. The motor output pop-
ulation (green circles) encodes the direction that the drag-
onfly should turn (see text). For clarity, some neurons and
connections between neurons are not drawn.

representation, weighted by an appropriate factor (Wij):

= E WijSj.
All network weights are calculated based upon the prey-image posi-
tion, fovea position, and goal-direction preferences of the presynap-
tic and postsynaptic neurons (the neural network is not trained).

It is assumed that the motor output neurons are characterized
by some "inherenff response tuning that determines the preferred
goal location c of each motor output neuron. The inherent response
mi of neuron i of the motor output representation is:

mi(z1, z2) = exp ( 
(en — z1)2 (c12 — Z2 )2) 

2 ari,

where (cis , ci2) is the preferred goal direction, and (zi, z2) is the
direction of turn. It should be noted that, while there is some as-
sumed inherent tuning of the motor output neuron om, in practice
or and ag play a dominant role in determining the specificity of
the motor output neurons.

The weight from sensory representation neuron j to motor out-
put neuron i is given by:

M./ w ¡LT f dysdy2dzsdz2fj(aj1 —(zi +ys), aj2 —(z2 +y2))

gj(kii — yi, bj2 — (eil — zi, ciz — z2)

where fj and gj are the prey-image representation and fovea-position
representation tuning curves. Goal direction are expressed in eye
coordinates, and because the eye is fixed relative to the body, this
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is equivalent to expressing goal direction in body-coordinates, rela-
tive to the reference frame of the dragonfly's body. The biological
motivation to the pattern of connectivity is inspired by published
models of coordinate transformations in parietal cortex [12, 13].
To determine dragonfly turning, the motor output representa-

tion is decoded through a neural-activity weighted average of the
preferred directions of the motor population. The motor output
activity is first thresholded (activity below a certain threshold is set
to zero), then the direction and magnitude of turn is decoded as:

Ei ci1R1 Z• ci2fli 
dt =   and d2 = ,

E, Ri EiRi

where (d1, d2) is the change in direction (in eye-coordinates) that
the dragonfly executes. Expressed using terms more typically used
to describe turns by airborne vehicles, the change in yaw is AO =

tan-1 41, and the change in pitch is Ao = tan-1 ̀ 9, where e is the
distance from the dragonfly's eye to the center of the dragonfly's
head, defined as the intersection of the yaw and the pitch axes.

If the fovea is held at a fixed position, the model dragonfly will
display behavior known as 'classical pursuit' (if the fovea is at the
center of the eye, see top panel of Figure 2). For this figure, the prey
constantly travels in one direction only. During classical pursuit, the
pursuer heads directly at the prey at all times. While this strategy
for hunting can be successful, there is a tendency for the pursuer
to end up in a tail chase (as is the case for this figure) in which the
dragonfly falls directly behind the prey and fails to capture the prey
(because both dragonfly and prey are moving at the same speed,
if the dragonfly is directly behind the prey it is impossible for a
capture to occur if the prey does not turn). For this engagement,
the simulation was ended after 15 seconds of simulation time. A
variant of classical pursuit known as 'deviated pursuit', in which
the pursuer maintains a constant angle between the line-of-sight to
the prey and its direction of motion, is given in the bottom panel of
Figure 2). Depending on the location of the fovea, deviated pursuit
can be successful for engagements in which classical pursuit is not
(for comparison, the classical pursuit trajectory from the top panel
is replotted in cyan). If complete information about the trajectory of
the prey is known, deviated pursuit produces a trajectory equivalent
to proportional navigation (see green trajectory in bottom panel)
but this requires accurate calculation of the fovea position based
upon complete knowledge of the prey's trajectory (because the
prey does not turn in Figure 2, the correct fovea location to produce
proportional navigation only needs to be computed at the start of
the engagement). If prey velocity and position are not known, or if
there is an error in calculation, deviated pursuit will also end in a
tail-chase (not shown).

It is well-known that classical pursuit (or deviated pursuit) arises
from holding the prey image at a fixed location on the eye, pro-
vided that the eye and head are held at a fixed angle relative to
the body (for reviews see [2] [4]). These results are presented as a
demonstration of the viability of the above-described neural net-
work for generating trajectories driven by foveation. The generated
trajectories are very similar to previously presented results from a
similar model of dragonfly interception in which the dragonfly's
turns were analytically (see Chance, presentation at ICONS2019).
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Figure 2: Variations of pursuit behavior arise from a fixed
fovea position. The prey follows the same straight-line tra-
jectory for both panels. Red and black circles indicate posi-
tions of prey and dragonfly, respectively, for each time step
(larger red and black circles indicate starting positions). Top:
The model dragonfly demonstrates classical pursuit behav-
ior when the fovea is fixed at the center of the eye. The sim-
ulation ended after 15 seconds with no capture. Bottom: De-
viated pursuit arises from an off-center but fixed fovea po-
sition. In this particular engagement, the model dragonfly
was successful. The classical pursuit trajectory from above
is replotted in cyan for comparison. The green trajectory is a
special case of deviated pursuit in which the fovea position
that supports a straight-line trajectory was pre-calculated.

2.2 Generating proportional navigation
through forward model generated from
motor output

Recent work [7] has suggested that dragonflies utilize internal mod-
els both to compensate for prey-image drift on the eye resulting

Sandia National Laboratories
U.S. DEPARTMENT OF

EN ERGY



ICONS 2020, July 28-30, 2020, Oak Ridge, TN, USA

from dragonfly-body rotations. Here we propose that dragonffies
may use intemally-generated forward models of prey-image trans-
lation on the eye as a feedback signal for generating proportional
navigation. In this version of the model, the decoded motor output

d2) is used not only to calculate the required trajectory, but is
also used to determine changes to the location of the fovea on the
eye. It should be noted that while this signal is easily decoded from
the motor commands in a biological signal, the fovea of a biological
eye is hardwired and cannot be moved. Instead, it is likely that the
biological dragonfly adjusts other variables, for example head posi-
tion relative to the body. For this version of the model dragonfly,
the new fovea location is now (e;., = (el — Qd1, e2 Qd2), where

e2) is the former position of the fovea, (di, d2) is the change in
direction decoded from the motor output population, and Q is a
gain factor. For the results shown here, Q = 1.

For these conditions (Q = 1), the fovea is essentially shifted in
an equal but opposite direction to the prey-image translation on
the eye. The behavior of the model with this additional component
is shown in Figure 3. As in Figure 2, the prey is indicated in red and
the dragonfly in black. The initial conditions in the top panel are
identical to the top panel in Figure 2. The classical pursuit trajectory
(from the top panel of Figure 2 except that the trajectory is truncated
when the model dragonfly captures the prey) is provided in blue
for comparison. Likewise, the geometrically shortest trajectory to
capture the target (assuming full knowledge of target direction,
speed, etc.), equivalent to following pure proportional navigation,
is provided in green for comparison.

The initial conditions (including fovea position) are identical to
those at the top of Figure 2, and the model dragonfly initially chases
using classical pursuit (compare the dragonfly's early locations to
the blue trajectory). However, as the dragonfly uses the feedback
signal generated by the motor outputs to adjust the location of the
fovea, the dragonfly's trajectory becomes more like proportional
navigation (compare later dragonfly trajectory with green trajec-
tory). This behavior is very similar to the previous version of the
dragonfly model (see presentation by Chance at ICONS2019) in
which required turns were analytically calculated.

It should be noted that proportional navigation generates the
geometrically shortest trajectory to interception. If the prey does
not turn, as in the top panel of Figure 3, the resulting trajectory is a
straight line. If the fovea is at an appropriate location such that the
dragonfly is is following proportional navigation while maintaining
the prey image on the fovea, the prey image will remain aligned
with the fovea for the remainder of the engagement until the prey is
captured or turns. Thus, prey-image slippage away from the fovea
is an appropriate "error.' signal that could be used to search for a
more optimal trajectory. It is likely that the feedback gain, Q, could
be adjusted for more optimal trajectory calculation, in particular
for engagements where the prey is tuming or actively evading.

3 CONCLUSION

I have presented a model of dragonfly prey interception that cal-
culates motor commands for prey-interception trajectories using
a simple neural network. Specifically, the model uses visual and
a proxy for proprioceptive input to determine turning commands
that will align the prey image with the eyes fovea. The model also

y(m) o

4

x (n)

Frances S. Chance

Figure 3: The model dragonfly follows trajectories closer to
proportional navigation when an internal forward model
of motor commands is used as a feedback signal to adjust
fovea location. Red and black circles indicate positions of
prey and dragonfly, respectively, for each time step. Large
red and black circles indicate starting positions of prey and
dragonfly. Blue trajectory is classical pursuit and green tra-
jectory is proportional navigation. The initial conditions are
identical to the top panel of Figure 2. The prey follows the
same straight-line trajectory as in Figure 2 but here the prey
is captured at approximately 5.6 seconds.

uses a feedback error signal to adjust approach trajectories to be
more like proportional navigation. The feedback signal is a forward
model of prey-image translation resulting from dragonfly turning
generated from the model's motor outputs.

Certain simplifications were made to the dragonfly model to
make the model more amenable to translation to a nonbiological
system. For example, the dragonfly eyes are approximated as sin-
gle two-dimensional screen, and a moving fovea is used in place
of a pivotable head. Research is currently in progress to further
develop the dragonfly model, in particular to develop methods for
directly comparing the dragonfly model to data from the biological
dragonfly.
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ADDENDUM B "END-OF-YEAR POWERPOINT PRESENTATION"

Neuromorphic Processing and Sensing
Project #218973, PI: Frances Chance

Purpose, Approach, and Goal 
Purpose: leverage two existing LDRD efforts to

demonstrate a proof-of-concept event-driven

neuromorphic interception system

Approach: implement a neural-inspired interception
algorithm ("Dragonfly-inspired interception, FY19 A4H
LDRD) on neuromorphic hardware

Goal: evaluate potential efficiency gains from a system

incorporating neuromorphic event-driven sensing

array (SPARR) with a neuromorphic implementation of
processing for interception (dragonfly on Intel Loihi)

44

Key R&D Results and Significance 
Summary: Dragonfly-inspired interception algorithm was

successfully converted to a neural network and a Loihi

implementation was developed using the Nengo software

package

Result: Dragonfly interception algorithm can be
implemented on a spiking neuromorphic platform, but

additional research is recommended to determine optimal

implementation

Lessons Learned:
• "best practices" for developing neuromorphic
implementations are not established (this was

underestimated)

• If I had to do this again, I would spend more time devising

alternate strategies for neuromorphic implementations
earlier in the LDRD

Key Publication

Chance F.S. (2020) Interception from a Dragonfly Neural

Network Model. ICONS 2020: International Conference on

Neuromorphic Systems 2020. (describes neural network
architecture)
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Neuromorphic Processing and Sensing
Project #218973, PI: Frances Chance

R&D Summary 

Going into this LDRD

In general, neuromorphic implementations excel when communication is event-driven and computations are simple

and parallelizable. The dragonfly interception algorithm existed in an analytical form.

What we achieved

Dragonfly interception algorithm was first framed as a continuous-valued neural network (see ICONS 2020 conference

paper). This described the general architecture that we then used for the spiking neural network version.

We have demonstrated that a spiking version of the dragonfly neural network (in principle) can be implemented on

neuromorphic hardware (L. Parker, using NENGO software (ensembles) to implement the dragonfly algorithm on the
Intel Loihi platform). However, neuromorphic implementation is not mature enough to warrant integration with event-

driven neuromorphic sensing.

Lessons Learned:

• "best practices" for developing neuromorphic implementations are not established (this was underestimated)

• If I had to do this again, I would spend more time gaining expertise on developing for neuromorphic hardware earlier

in the LDRD — circumstances made it difficult to connect to subject matter experts later in the LDRD

• The knowledge learned will facilitate future algorithmic implementation on neuromorphic hardware

Next steps (not part of this LDRD):

• Develop a better implementation of multiplication for spiking neuromorphic platform
• This will facilitate further development of the neuromorphic implementation of dragonfly-inspired interception

2
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Neuromorphic Processing and Sensing
Project #218973, PI: Frances Chance

Project Metrics 

Publications

Chance, F.S. (2020) A biologically-inspired approach to interception. EDFA Magazine 2: 16-21.

Chance F.S. (2020) Interception from a Dragonfly Neural Network Model. ICONS 2020: International Conference on

Neuromorphic Systems 2020.

Chance, F.S. (submitted) An adaptive model of Dragonfly Interception. Frontiers in Computational Neuroscience.

Chance, F.S. (invited manuscript, delayed by COVID) The computer bug you want. IEEE Spectrum.

Presentations — External

"Interception from a Dragonfly Neural Network Model" at the International Conference on Neuromorphic Systems

2020 (virtual due to COVID-19 pandemic) July 28, 2020.

Presentations — Internal

"Dragonfly-Inspired Approaches to Interception", invited presentation at the 2019 Sandia National Laboratories Fall
Leadership Forum (Albuquerque, NM, November 12, 2019)

"Dragonfly-Inspired Approaches to Interception", invited presentation at the 2020 Sandia National Laboratories

Emeritus Event (Albuquerque, NM, March 3, 2020)

"Not all computer bugs are bad: What can we learn from insects for neural-inspired computing?", invited seminar

at the Sandia National Laboratories New Research Ideas Forum (Albuquerque, NM, March 10, 2020)

Staff Development

This LDRD supported Luke Parker (summer intern who has transitioned to a full-year intern) for a portion of the
summer while he worked on the neuromorphic implementation of the dragonfly neural network

3

Sandia National Laboratories
U.S. DEPARTMENT OF

E N E RGY



Neuromorphic Processing and Sensing
Project #218973, PI: Frances Chance

Project Legacy 

Key technical accomplishment

• We have successfully cast the dragonfly-inspired interception algorithm as a neural network that can be
implemented on a neuromorphic platform. (see Chance F.S. Interception from a Dragonfly Neural Network Model.
ICONS 2020).

How does this engage Sandia missions?

• This work is aligned with the A4H mission campaign and NSP (SDP/Hypersonics Focus Area)

Plans for follow-on

• Will investigate options for support to increase the maturity of the neuromorphic implementation so that
robustness, SWaP requirements and other potential performance advantages can be assessed

• Collaboration with 6530 to address potential issues interfacing dragonfly algorithm with "real world"
vehicles

• Work in progress to evaluate dragonfly algorithm against proportional navigation

What I wish I could have done but didn't: deep thinking/research towards a more optimal implementation of
the dragonfly algorithm on a neuromorphic platform
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