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Preface

The Computer Science Research Institute (CSRI) brings university faculty and students
to Sandia for focused collaborative research on Department of Energy (DOE) computer
and computational science problems. The institute provides an opportunity for university
researchers to learn about problems in computer and computational science at DOE labo-
ratories. Participants conduct leading-edge research, interact with scientists and engineers
at the laboratories, and help transfer results of their research to programs at the labs.
Some specific CSRI research interest areas are: scalable solvers, optimization, adaptivity
and mesh refinement, graph-based, discrete, and combinatorial algorithms, uncertainty esti-
mation, mesh generation, dynamic load-balancing, virus and other malicious-code defense,
visualization, scalable cluster computers and heterogeneous computers, data-intensive com-
puting, environments for scalable computing, parallel input/output, advanced architectures,
and theoretical computer science. The CSRI Summer Program includes the organization of
a weekly seminar series and the publication of this summer proceedings.

Michael Powell
Michael L. Parks

September 6, 2020
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Computational & Applied Mathematics

Computational & Applied Mathematics are concerned with the design, analysis, and imple-
mentation of algorithms to solve mathematical, scientific, or engineering problems. Articles
in this section describe time integration methods, development of a nonlocal vector calculus,
graph-based learning, neural networks applied to nonlocal models, model order reduction
via neural networks, and the functional tensor train.

M. Powell
M.L. Parks

September 6, 2020
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EXPONENTIAL INTEGRATORS FOR THE HOMME-NH
NONHYDROSTATIC ATMOSPHERE MODEL

CASSIDY F. KRAUSE* AND ANDREW J. STEYERt

Abstract. Time-stepping in the HOMME-NH nonhydrostatic atmosphere model requires integration of
a stiff initial value problem. The current implementation in HOMME-NH uses implicit-explicit Runge-Kutta
(IMEX RK) methods with a horizontally explicit vertically implicit (HEVI) partitioning. We introduce a
horizontally explicit vertically integrating factor exponential (HEVIE) method as an alternative to solving
these stiff equations. The benefit of exponential methods is that they allow a larger step-size than explicit
methods; however, their main drawback is the cost of forming the matrix exponential. Here, we show that
we can mitigate this cost by taking advantage of the tridiagonal-like form of our Jacobian and parallelizing
our computations, making this solver an attractive option for HOMME-NH.

1. Introduction. Stiff initial value problems are a challenge for nonhydrostatic atmo-
sphere models like HOMME-NH, described in [10]. Several methods have been proposed
to avoid the step-size restriction associated with stiff problems, including implicit-explicit
Runge-Kutta (IMEX RK) methods, which are currently implemented in HOMME-NH. Here,
we investigate integrating factor Runge-Kutta (IFRK) methods, a class of exponential in-
tegrators, as an alternative approach to dealing with the stiff initial value problems in
HOMME-NH.

Consider an additively partitioned differential equation of the form

cot = f (w) = s(w) + n(w), (1.1)

where w E r: , and cot denotes the derivative with respect to time. With this partitioning,
s(w) contains the stiff part of the equation, and n(w) contains the nonstiff part. In HOMME-
NH, we wish to solve an initial value problem of the form 1.1 with initial condition wo =
w(to).

IMEX methods are partitioned methods for approximating initial value problems of
additively partitioned differential equations that treat the stiff terms implicitly and the
nonstiff terms explicitly. The implementation and performance of various IMEX RK meth-
ods for integration of HOMME-NH with a horizontally explicit vertically implicit (HEVI)
partitioning are discussed in [9].

In this paper, we consider IFRK methods [7] as an alternative integrator for HOMME-
NH with a horizontally explicit vertically integrating factor exponential (HEVIE) parti-
tioning. Given an approximate solution trajectory Wni ,•--:_l co(tm), we define a new additive
partitioning of (1.1) by linearizing the stiff part, s(w), along Wm,. Often, Lm = f (w), but
we do not assume this is the case. Let Lm = z, (wm), and set Nm(W) = f (w) — Lmc v. With
IFRK methods, we split our equation as

Wt = f (w) = Linco + Nm(co).

With this partitioning, Lm is a linear operator containing the stiff part of the equation, and
Nm(W) contains the nonstiff terms. Using the change of variables v(t) = e—Lm(t—tm)w(07

we have

lit = e
-1,,,(t—tm)Nm(eLm(t—t,,,,)v). (1.2)

We then use a fully explicit r —stage RK method to solve (1.2), as explained in Section 4.

*University of Kansas, ckrause@ku.edu
tSandia National Laboratories, asteyer@sandia.gov
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While exponential integrators allow for a larger time step than explicit methods, a major
drawback is the computational cost of forming the matrix exponential. For this reason,
matrix exponential methods were seldom used in practice, but advances in efficiently forming
eA have recently made exponential-type methods a competitive choice for integrating stiff
initial value problems (e.g., [2], [3]). Furthermore, the Jacobian obtained from linearizing
the stiff terms in HOMME-NH is sparse, with a tridiagonal block and a block that is a scalar
multiple of the identity (3.1). This structure allows us to form these matrix exponentials
quickly and in parallel over the horizontal mesh, making this approach a viable alternative
to the IMEX RK methods.

The rest of the paper is structured as follows: In Section 2 we give a brief background of
numerical approximations of the matrix exponential; Section 3 discusses the implementation
of IFRK methods with HOMME-NH; Section 4 details the specific IFRK methods we use
in this paper; and numerical results are given in Section 5.

2. Numerical Approximation of the Matrix Exponential. The matrix exponen-
tial is defined by the power series

cc 
1eA _

3 

A3

• n j!

A simple approach to numerically approximate eA is through a Padé or Taylor series ap-
proximation. Other methods of approximating the matrix exponential are discussed in [8].

We choose to implement a (p, q)-Pade approximation eA [Qpq(A)] 1 Ppq(A), where
Ppq(A) and Qpq(A) are defined as follows:

Ppq (A) =  (p+ 
q — j)!p!  Aj

3 =o 
(p q)!j!(p — j)!

q — j)!q!
Qpq(A) =

+ q)! j!(q — j)!
( AP

3 =0

(2.1)

(2.2)

After we calculate the terms Ppq and Q pq , the product eA [Qpq(A)] 1 Ppq(A) is
a potentially expensive computation because of the matrix inversion and matrix products.
Fortunately, for our application, the matrix A we consider has a special structure that allows
us to approximate eA efficiently and accurately. This implementation is further discussed
in Section 3.

The error for the (p, q)-Padé approximation is given by

eA — [Qpq(A)] Ppq(A) = (.9(11Arq+l),

though in practice, this may be a particularly pessimistic estimation of the error, as shown
in Table 3.2. If the matrix A is ill-conditioned, the Fade approximation can be especially
inaccurate. To mitigate this problem, we implement a scaling and squaring approach. We
briefly outline this procedure here; for further detail and error analysis of the scaling and
squaring method, see [1] and [5].

To scale eA, we take advantage of the properties of matrix exponentials and write it as

eA (eA/k) k
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where we choose k to be the smallest power of 2 so that 11A/k112 < 0.5. With this factor-
ization, the matrix A is scaled down to A/k, and the matrix exponential ell/ k is calculated
using the Pade formulas given in (2.1) and (2.2). The resulting matrix exponential is then
squared repeatedly to recover the desired matrix exponential eA. This numerical approxi-
mation to the matrix exponential eA is then used with an explicit r-stage RK method, as
described in Section 4, to solve (1.2).

3. Implementation with HOMME-NH. As mentioned in Section 2, the specific
structure of the Jacobian in HOMME-NH allows us to form the matrix exponential eA

[(2 pq(A)]-1 Ppq (A) efficiently. HOMME-NH is a nonhydrostatic atmosphere model whose
state variables are listed in Table 3.1. The governing equations can be decomposed into

Table 3.1: Variables in HOMME-NH

Variable Name Description
g Gravitational constant

V = (u, v)T Horizontal velocity
w Vertical velocity

0 Geopotential
0 Potential temperature
7r Hydrostatic pressure

7/ Mass-based hybrid terrain-following vertical coordinate

Pnh Nonhydrostatic pressure

It 0Pnb 1 atr
ali i an

non-stiff and stiff terms as follows [9]:

tit 0
Wt -g(1 - it)

wt := Ot

ot

= n(w) s(w), with s(w) = gw

Linearizing s(w) gives the following Jacobian:

0

J=
0 ,n.2L

ao
gI 0

0
0

0

(3.1)

where — is tridiagonal. As explained in Section 4, IFRK methods require the formation
(90

of the matrix exponential e'J . Since J has the form given in 3.1, the matrix exponential
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exp 
0

gozI

ga

0 )
I

I

= O.

So, forming 0.1 for a = 0 reduces to forming an exponential of the tridiagonal-like

0 

r 

g a
matrix A := 

ga 
, and the matrix exponential will only act on variables w and O.

0

The structure of A allows us to solve eA [Q pq(A)] 

—1 
Ppq (A) using tridiagonal solves

and back substitution. To do so, we first factor Qpq(A) as

(p q — j)!q!
Qpq(A) =

(p q)!Aq — j)!
( A)-)

3=o 
q

= K ri [aa — A] ,

3 =1

where crj E C for j = 1, , q. Since we want to solve for R := [Qpq(A)] 1 Ppq(A), we write

[ aj — A] R = 1Ppq (A).
j =1

Define Ri := [0-21 — A] [a3I — A] • • • [a- q I — A] R. Then our equation becomes

— A] R1 = Ppq (A). (3.2)

Note that [aiI — A] =
—goz2

—gaI
. This form allows us to solve for R1 using far fewer

operations than if [ail — A] were a full matrix. To do this, we similarly partition Ri and
,1,Ppq(A) into block matrices:

=
[R-14^21]

Ppq(A) = P2i.
Then (3.2) becomes

—gat] [fi.
—gal aiI fi2 P2

If al = 0 this decomposes to a tridiagonal linear solve and a trivial solve. If al = 0,

then we left multiply by 
[ 

to obtain: 
gao-I — 1 I

(gal2 a-1 [./42 [gacri71/61 + 132ao

—ga (2E -1.
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2 —1 aThe matrix block [ail- — (ga) a is tridiagonal since is tridiagonal. Therefore we,94, aok

can solve for .fi2 with a tridiagonal solve:

[ail- — (ija)2 ao = [13ctu iPi + P2] ,

and then form Fii as

/41 = [Pi + ga 2] 142.

In this way, we have just solved (3.2) for R1 =[ R:1
2 
. On the other hand, we also have

[a21- — A] [a31- — A] • • • [a- qI — A] R = R1.

We can iteratively repeat the same procedure, defining

R3 := [aa+iI — A] [a3+21 — A] • • • [aql- — A] R

and solving [ay — A] R3 = R3_1 for R3, continuing in this way until we arrive at

[aql- — A] R = Rq_i.

Solving this last tridiagonal system gives us the R = [Qpq(A)] 1 Ppq(A) eA that we are
looking for.

This algorithm for computing R eA is particularly efficient if the values of p and q
are small, so that we can compute { o-X=1 by hand ahead of time. To validate the use
of a (p,q)-Pade approximation, and to determine how large p and q must be, we let the
model spin up to 15 days and consider the Jacobian at that timestep. In HOMME-NH, the
Jacobian will always have unique, purely imaginary eigenvalues. This allows us to calculate
the matrix exponential analytically and compare it to the (p, q)-Padé approximation.

To calculate eA analytically, suppose Ai, A2, , Ak are the unique eigenvalues of A, and
V is the matrix of corresponding eigenvectors. Then the Schur decomposition of A is

A1

A2

A = V

Ak

and the matrix exponential can be analytically computed to machine precision as

eA = V exp

eA1

= V

/

eA2

eAk

v-i
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Table 3.2 gives the error of several diagonal (p, q)- Padé approximations, for different values
of p = q.

Table 3.2: Error of Pade approximation as compared to analytic computation of eA.

Value of p = q Error
2 1.30e-10
3 5.25e-13
4 4.92e-13
5 5.42e-13

Since a (2, 2)-Padé approximation yields a considerably accurate matrix exponential
and also gives the benefit of easily solving for the coefficients fa-1, o-21 ahead of time, this is
the approximation we choose to implement in our IFRK methods.

4. Integrating Factor Runge-Kutta Methods. The focus of this paper is to imple-
ment IFRK methods in the HOMME-NH nonhydrostatic atmosphere model. IFRK methods
were introduced in [6] and shown to be a type of exponential RK method by [7].

For IFRK methods, we use an explicit r-stage RK method to solve (1.2). If the Butcher
A

tableau is given by  
c 

then the solution to (1.2) with initial condition v(to) = vo and
bT 

,

step-size At is given by

{ vm+1 = vm + AtErk=l bke "(tm,k—tm)N(eLm(tm,k—tm)gk)
g3 = vm + At Erk=l A3,ke Lm(tm,k—troN(eLm(tm,k—tm)go,

for j = 1, . , r, where trmk = tm CkAt. The naming convention we use for the explicit r-
stage RK methods is "ERK—nm," where n is the order of the method, and m is the number
of stages. Here, we consider four explicit RK methods, given by the Butcher tableaux below.

0

ERK-12 : 
1
1

0
1/2

ERK-23 : 1/2
1

0 0 0
1 0 0
0 1 0
0 1 0

0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0
0 0 1 0

0
1/5
1/5

ERK-35 : 1/3
2/3
1

0 0 0 0 0 0
1/5 0 0 0 0 0
0 1/5 0 0 0 0
0 0 1/3 0 0 0
0 0 0 2/3 0 0
1/4 0 0 0 3/4 0
1/4 0 0 0 3/4 0

0
1/2

ERK-43 : 1/2
1

0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0
1/6 1/3 1/3 1/6

5. Results. After implementing each of the methods described in Section 4 into HOMME-
NH, we tested their convergence in the DCMIP2012 Test Case 4.1 (baroclinic instability test
case) [11]. We ran the test case for 15 days with a 300 second time-step using a trusted
second order implicit-explicit Runge-Kutta method to generate a nontrivial flow. The model
is then restarted at day 15 and integrated over a 0.1 second time-interval for convergence
testing. For the "truth", we compared our exponential integrating factor methods to a third
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order, five stage Ullrich method (equation 56 in [4]) with a timestep of 10-4, calculating
the maximum 2-norm error over all latitudes and longitudes. To verify our methods, we
calculate the error of the stiff variables, w and 0, which the matrix exponential acts upon.
We also calculate the error of u and v, which the matrix exponential does not affect, as
reference variables. The absolute errors are listed in Table 5.1, and the relative errors are
listed in Table 5.2.

Table 5.1: Absolute error of state variables

(a) Absolute

Method

error

At

of u

Error

(b) Absolute

Method

error

At

of v

Error

(c) Absolute

Method

error

At

of w

Error

(d) Absolute

Method

error

At

of 0

Error
ERK-12 0.1 3.59e-6 ERK-12 0.1 1.43e-6 ERK-12 0.1 6.85e+0 ERK-12 0.1 9.12e+2
ERK-12 0.05 4.11e-7 ERK-12 0.05 1.78e-7 ERK-12 0.05 4.55e+0 ERK-12 0.05 4.45e+2
ERK-12 0.02 1.31e-7 ERK-12 0.02 5.33e-8 ERK-12 0.02 2.03e+0 ERK-12 0.02 1.79e+1
ERK-12 0.01 1.17e-7 ERK-12 0.01 4.72e-8 ERK-12 0.01 1.05e+0 ERK-12 0.01 8.97e+1
ERK-23 0.1 8.41e-7 ERK-23 0.1 3.42e-7 ERK-23 0.1 1.80e+0 ERK-23 0.1 5.05e-1
ERK-23 0.05 2.12e-7 ERK-23 0.05 8.55e-8 ERK-23 0.05 4.48e-1 ERK-23 0.05 1.28e-1
ERK-23 0.02 3.40e-8 ERK-23 0.02 1.37e-8 ERK-23 0.02 7.16e-2 ERK-23 0.02 2.05e-2
ERK-23 0.01 8.50e-9 ERK-23 0.01 3.42e-9 ERK-23 0.01 1.79e-2 ERK-23 0.01 5.13e-3
ERK-35 0.1 3.15e-9 ERK-35 0.1 6.32e-9 ERK-35 0.1 2.12e-2 ERK-35 0.1 1.13e-1
ERK-35 0.05 5.20e-11 ERK-35 0.05 1.17e-10 ERK-35 0.05 2.56e-3 ERK-35 0.05 1.41e-2
ERK-35 0.02 1.00e-11 ERK-35 0.02 1.92e-11 ERK-35 0.02 1.60e-4 ERK-35 0.02 8.99e-4
ERK-35 0.01 2.05e-12 ERK-35 0.01 3.59e-12 ERK-35 0.01 2.00e-5 ERK-35 0.01 1.12e-4

ERK-43 0.1 1.63e-8 ERK-43 0.1 7.99e-9 ERK-43 0.1 5.02e-2 ERK-43 0.1 2.05e-2
ERK-43 0.05 1.03e-9 ERK-43 0.05 5.01e-10 ERK-43 0.05 3.16e-3 ERK-43 0.05 1.29e-3
ERK-43 0.02 2.60e-11 ERK-43 0.02 1.27e-11 ERK-43 0.02 8.12e-5 ERK-43 0.02 3.31e-5
ERK-43 0.01 1.60e-12 ERK-43 0.01 8.16e-13 ERK-43 0.01 5.09e-6 ERK-43 0.01 2.06e-6

(a) Relative error of u

Table 5.2: Relative error of state variables

(b) Relative error of v (c) Relative error of w (d) Relative error of 0

Method At Error Method At Error Method At Error Method At Error
ERK-12 0.1 2.52e-7 ERK-12 0.1 1.83e-7 ERK-12 0.1 6.00e+3 ERK-12 0.1 1.14e-4
ERK-12 0.05 2.89e-8 ERK-12 0.05 2.27e-8 ERK-12 0.05 3.98e+3 ERK-12 0.05 5.58e-5
ERK-12 0.02 9.22e-9 ERK-12 0.02 6.81e-9 ERK-12 0.02 1.78e+3 ERK-12 0.02 2.24e-5
ERK-12 0.01 8.18e-9 ERK-12 0.01 6.03e-9 ERK-12 0.01 9.22e+2 ERK-12 0.01 1.12e-5
ERK-23 0.1 5.90e-8 ERK-23 0.1 4.36e-8 ERK-23 0.1 1.58e+3 ERK-23 0.1 6.33e-7
ERK-23 0.05 1.49e-8 ERK-23 0.05 1.09e-8 ERK-23 0.05 3.92e+2 ERK-23 0.05 1.60e-7
ERK-23 0.02 2.39e-9 ERK-23 0.02 1.75e-9 ERK-23 0.02 6.27e+1 ERK-23 0.02 2.57e-8
ERK-23 0.01 5.97e-10 ERK-23 0.01 4.37e-10 ERK-23 0.01 1.57e+1 ERK-23 0.01 6.44e-9
ERK-35 0.1 2.21e-10 ERK-35 0.1 8.07e-10 ERK-35 0.1 1.85e+1 ERK-35 0.1 1.41e-7
ERK-35 0.05 3.65e-12 ERK-35 0.05 1.49e-11 ERK-35 0.05 2.24e+0 ERK-35 0.05 1.76e-8
ERK-35 0.02 7.03e-13 ERK-35 0.02 2.45e-12 ERK-35 0.02 1.40e-1 ERK-35 0.02 1.13e-9
ERK-35 0.01 1.44e-13 ERK-35 0.01 4.58e-13 ERK-35 0.01 1.75e-2 ERK-35 0.01 1.41e-10
ERK-43 0.1 1.15e-9 ERK-43 0.1 1.02e-9 ERK-43 0.1 4.40e+1 ERK-43 0.1 2.57e-8
ERK-43 0.05 7.20e-11 ERK-43 0.05 6.40e-11 ERK-43 0.05 2.77e+0 ERK-43 0.05 1.62e-9
ERK-43 0.02 1.83e-12 ERK-43 0.02 1.62e-12 ERK-43 0.02 7.11e-2 ERK-43 0.02 4.15e-11
ERK-43 0.01 1.13e-13 ERK-43 0.01 1.04e-13 ERK-43 0.01 4.45e-3 ERK-43 0.01 2.59e-12

Note that the value of w is small, so even though the absolute error of the IFRK methods
is satisfactory, the relative error is rather large. Recall from Table 3.2 that the error of the
(2, 2)-Pad6 approximation that we are implementing is 0(10-10). This does not take into
account the error from the IFRK method itself, and combining this error with the loss of
digits that may happen because of the small values of w, it is not surprising that the relative
error of w is larger than that of the other variables.

We graph these errors in Figure 5.1. The slope of these methods flattens out as the
timestep goes to zero. One possible explanation for this is that the accuracy may be limited
by the accuracy of the matrix exponential. Another potential explanation is that we are
limited by the accuracy of the "truth."
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6. Conclusions. Another important matter to take into consideration is that the Ja-
cobian at each point of our discretization scheme can be computed at the beginning of each
time step, and we can do this computation in parallel. Furthermore, the IFRK methods
rely only on the local-in-time Jacobian, so we can do the IFRK computation in parallel as
well.

The IFRK methods allow us to deal with stiff initial value problems with a larger step-
size than a fully explicit method, and the opportunity for parallelization with HOMME-
NH boosts efficiency. Though the formation of the matrix exponential can be a costly
computation, we are able to take advantage of the tridiagonal-like form of the Jacobian in
HOMME-NH, to implement the IFRK methods in a way that mitigates the cost of forming
the matrix exponential.

We have shown that IFRK methods are accurate and can be implemented in parallel.
However, more work is needed to compare the efficiency of these methods, which will deter-
mine if IFRK methods can be competitive with the IMEX RK methods that are currently
implemented in HOMME-NH. In particular, the efficiency of the IFRK methods will depend
on how large of a step-size they can take, and this remains to be done.
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Abstract. In this work we provide the groundwork for a unified theory of nonlocal operators. Specifi-
cally, in the context of nonlocal diffusion, we prove the equivalence, for certain kernel functions, of weighted
and unweighted operators. After studying general properties of the "equivalence' kernel, we show that the
equivalence holds for fractional-type operators. We also make preliminary steps towards a unified well-
posedness theory that holds for broad class of nonlocal operators by leveraging the well-established theory
for unweighted operators, and the generalized operator definition that arises from our equivalence result.

1. Introduction. The use of nonlocal models in place of their classical differential
counterparts has been steadily increasing thanks to their potential to capture effects that
partial differential equations cannot describe. These effects include multiscale behavior and
anomalous behavior such as super- and sub-diffusion and make nonlocal models suitable for
a broad class of engineering and scientific applications ranging from fracture mechanics to
image processing [1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18, 19, 20].

These models are characterized by integral operators, see Fig. 1.1, acting on neighbor-
hoods B5 (the Euclidean ball of radius 8, referred to as the horizon) of size much smaller
than the domain or on regions much larger than the domain, including the whole space,
see Fig. 1.1 (bottom). The integral form allows one to catch long-range forces and reduces
the regularity requirements on the solution. As a result, in a nonlocal model, the state of a
system at a point depends on a neighborhood of points. Many challenges arise from model-
ing and simulation of nonlocal problems, including the non-trivial prescription of boundary
conditions, the unresolved treatment of nonlocal interfaces, the uncertainty and sparsity of
model parameters and data and the prohibitively high computational cost as the extent of
the nonlocal interactions increases; i.e. as the neighborhood becomes larger. Additionally,
in the literature we have several independent definitions, formulations, and (possibly incom-
plete) theories of nonlocal models, see Figure 1.1 for an illustration. Similarities are evident,
but they have not been rigorously proved; this is the ultimate goal of this preliminary work.

More specifically, in this paper we determine conditions on the kernel functions -y and
n such that unweighted and weighted operators are equivalent. Also, we show that, for a
specific choice of n, the weighted nonlocal operator is equivalent to the well-known fractional
Laplacian operator. We also make preliminary steps towards a unified well-posedness theory
that holds for all classes of operators by leveraging the well-established theory for unweighted
operators [10], the generalized definition arising from our equivalence result, and a weighted
nonlocal Green's identity [8].

Several reasons make the development of a unified theory impactful. A unified nonlocal
vector calculus 1) Connects the nonlocal and fractional communities that would benefit
from each other's research; 2) Includes as special cases the well-known classical differential
calculus at the limit of vanishing interactions and the fractional calculus at the limit of
infinite interactions; 3) Provides the groundwork for new model discovery thanks to the
broad class of operators that it describes; 4) Describes intrinsically nonlocal phenomena that
have not been analyzed or used due to the lack of theory; 5) Guides algorithm, discretization,
and solver design.

This paper is organized as follows. In Section 2 we report relevant definitions and
results that will be used throughout the paper. In Section 3, we present the derivation

*University of Nebraska - Lincoln, hayley.olson@huskers.unl.edu
t Sandia National Laboratories, mdeliaasandia.gov
t Sandia National Laboratories, mgulian@sandia.gov
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6-truncated unweighted nonlocal

Lau(x) = f (u(x) — u(y))-y(x, y) dy

B5 (X)

6-truncated w-weighted nonlocal 

L,,u(x) = f (u(x) — u(y)) f n(y, z; w) dz dy
B5 (X) Rn

fractional 

Lsu(x) = f (u(x) — u(y))  
C (s, +)

 dy
— yln28

Rn

Fig. 1.1: Classes of nonlocal operators.

of a nonlocal kernel which shows equivalence of the standard nonlocal Laplacian operator
with the weighted Laplacian operator. This is followed by the analysis of properties of
such kernel in Section 4, which includes the equivalence of the weighted nonlocal Laplacian
and the fractional Laplacian. Finally, in Section 5, we provide some insights regarding the
well-posedness of a class of nonlocal problems.

2. Background and Notation. We introduce weighted and unweighted nonlocal op-
erators following [11]. In particular, let a : x firkn Rn, for n = 1, 2, 3, be an anti-
symmetric vector two-point function. For v : fir' x Rn RTh, the unweighted nonlocal
divergence Dv : Rn R is defined as

Dv(x) := f (v (X, y) v(y, x)) • a(x, y)dy, x (2.1)

Then for u : Rn R the unweighted nonlocal gradient, D* u : Rn x Rn Rn, negative
adjoint of (2.1), is defined as

D*u(x, y) = —(u(y) — u(x))a(x, y), x, y E 11: (2.2)

In this work, as in [11], we consider functions a with bounded support; specifically, we
assume that a(x, y) = 0 when Ix — > (5, for some (5 > O. For an open bounded set 52 c
we define the interaction domain 521 as the set of points outside of 52 which have a nonzero
a interaction with points inside Q. More specifically',

S21 ={yEI[Bn\St:a(x,y) 0, x E 121 = fy E Rn : lx 3r1 6, x E 521.

Note that this set plays the role of nonlocal boundary; in fact, when solving nonlocal diffusion
equations in C2, volume constraints on the solution have to be prescribed on C2/ to guarantee
well-posedness.

For the kernel 7 = a • a and x E SZ we define the unweighted 6-truncated nonlocal
Laplacian as the composition of unweighted nonlocal divergence and gradient, i.e.

Låu(x) = Dgu(x) = J (u(x) — u(y))-y(x, y)dy. (2.3)
13, (.)

1Note that C2 and C2/ need not be adjacent, which differs from the boundary of a domain. Also note
that if we set S2 = Rn, then S-2/ is empty.
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In [11] the reader can find results regarding well-posedness of equations involving (2.3) and
further results such as integration by parts and Green's identities.

Operators (2.1) and (2.2) are the building blocks of weighted nonlocal operators. The
major shift between the two is that the weighted operators are one-point functions. Through-
out, we let w : Rn x EV R be a non-negative, symmetric scalar function. For v : Rn —> Rn,
the weighted nonlocal divergence Dwv :Rn —> R is defined as

Dwv(x) := D(w(x, y)v(x)) = f (w(x, y)v(x) + w(y, x)v(y)) • a(x, y)dy, x E Rm. (2.4)

For u : Rn —> R, the weighted nonlocal gradient 1,:,u :Rn —> Rn is defined as

TY,:u(x) := j D*u(x, y)co(x, y)dy, x E Rm. (2.5)
Illn

Paper [11] show that the latter is the negative adjoint of the former. As done in the un-
weighted case, we define the 6-truncated, w-weighted nonlocal Laplacian as the composition
of (2.4) and (2.5), i.e., for x E S-2

L„u(x) = D,,g,u(x) =D„DLu(x) = DP(x,y)TYLu(x))

= f [w(x, y)D:,u(x) + w(y,x)R,u(y)] • a(x, y)dy.
Quo,

(2.6)

Properties of this operator and its connection with (2.3) are analyzed in the following section.

The fractional Laplacian operator. A nonlocal operator that is ubiquitous in the lit-
erature is the fractional Laplacian (—A)8. For s E (0, 1) and f : Rn —> r it is defined
as

with

f (x) - f (37) dy
(—A)8U)(x) = cn,s L Ix — yln+2s

48F(n/2 — s)

en's 7rn/21“—S)1 •

Paper [9] shows that for 6 —> oo, the unweighted 6-truncated nonlocal Laplacian con-
verges to (-0)5; one of our goals is to show that the latter can also be expressed as a
composition of w-weighted, 6-truncated nonlocal Laplacian for a specific choice of a and w.

3. Equivalence of the weighted and unweighted Laplacian operator. Given
the scalar point function u, we want to establish the equivalence of L„u(x) and L6u(x) for
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some choice of kernel -y. Due to the symmetry of w(x, y), we have

D,G,u(x) = f (D:,u(x) D:,u(y)) • a(x, y)w(x, y)dy
Quo/

/Quo/

fQ (u(y) — u(z))a(y, z)w(y, z)dz1 • a(x, y)w(x, y)dy
uo/

/tuft/ Lir

fouoI fou01

(u(x) — u(z))a(x, z)w(x, z)dz

(u(x) — u(z))a(x, z)w(x, z) • a(x, y)w(x, y)dydz (3.1)

(u(y) — u(z))a(y, z)w(y, z) • a (x, y)w(x, y)dydz. (3.2)

Let the integral in (3.1) be A and the one in (3.2) be B . We have

A = (u(x) — u(z))a(x, z)w(x, z) • a(x, y)w(x, y)dydz
1-2uol fzusir

= f (u(x) — u(z))a(x, z)w(x, z) f a(x, y)w(x, y)dydz.
Quo/ Quo/

Letting ryl (x, z) = a(x, z)w(x, z) fuusii a(x, y)w(x, y)dy, we have

A = f (u(x) — u(z))-yi(x, z)dz.
Quo/

Next,

B = f f
Quo/ Quo/

(u(y) — u(z))a(y, z)w(y, z) • a(x, y)w(x, y)dydz

= (u(y) — u(x))a(y, z)w(y, z) • a(x, y)w(x, y)dydz
Quo/ 12uoI

(u(x) — u(z))a(y, z)w(y, z) • a(x, y)w(x, y)dydz.

Switching y and z in the first integral, and employing the anti-symmetry of a and symmetry
of w, we find

B = (u(z) — u(x))a(z, y)w(z, y) • a(x, z)w(x, z)dzdy
fs-2usir !tun/

(u(x) — u(z))a(y, z)w(y, z) • a(x, y)w(x, y)dydz
fctuo,

/Quo/ f0u01

+ (u(x) — u(z))a(y, z)w(y, z) • a(x, y)w(x, y)dydz

fi2us21 f0u0I

= f (u(x) — u(z)) f a(y, z)w(y, z) • [a(x, z)w(x, z) a(x, y)w(x, y)]dydz.
Quo/ Quo,

(u(x) — u(z))a(y, z)w(y, z) • a(x, z)w(x, z)dzdy

(u(x) — u(z))a(y, z)w(y, z) • [a(x, z)w(x, z) a(x, y)w(x, y)]dydz
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Letting 012 (X, Z) = fs_2us_21 a(y, z)w(y, z) • [a(x, z)w(x, z) + a(x, y)w(x, y)]dy gives us

B = f (u(x) — u(z))72(x, z)dz.
oust/

By combining the above, we have

Dwg,u(x) = A + B

= f (u(x) — u(z))'n (x, z)dz + f (u(x) - 21(Z))72(x, z)dz
f2uo,

= f (u(x) — u(z)) (71 (X, z) + 72(x, z))dz.
Quo,

Thus, for

(X) 37) = -ri(x, 3r) +'Ya(x,y)

= f [a(x, y)w(x, y) • a(x, z)w(x, z)
s-2us-2,

15

(3.3)

+ a(z, y)w(z, y) • a(x, y)w(x, y) + a (z, y)w(z, y) • a(x, z)w(x, z)]dz,

the operators L6u(x) and L„u(x) are equivalent.

4. Properties of the equivalence kernel. In this section we analyze properties of
the kernel in (3.3); specifically, we investigate its symmetry and show equivalence of L„u(x)
with the well-known fractional Laplacian operator for a specific choice of w and a.

We point out that one of our major goals is to find conditions on the equivalence kernel
that guarantee well-posedness of the associated nonlocal diffusion operator. This result, that
would enable characterization of a broad class of well-posed nonlocal diffusion problems, is
the subject of current research.

4.1. Symmetry of the equivalence kernel. The symmetry of -y can be shown di-
rectly using the antisymmetry of a and the symmetry of w. Throughout this section, we let
71(x, y) be the antisymmtric function defined as n(x, y) = a(x, y)w(x, y); then, we rewrite
(3.3) as

-y ( x , y) = f [n (x, y) • n q(x, z) + (z, y) ri(x, y) n (z, y) n (x, z)]dz

The antisymmetry of n implies that

-y ( x , y) =  [igy , x) • n(z,x) + n(y, z) • n(y,x) + n(y,z) • ii(z,x)]dzf
2L1111

Since the dot product is commutative, we switch the orders of each n pair:

7(x, y) = f [n(z, x) n(y, x) + n(y, x) n(y, z) + n(z, n(y, z)]dz
01_10/

then, switching the first two terms, we have

-y (x, y) =  [igy , x) • n(y, z) + 77(z, x) • n(y, x) + Ti(z , x) • n (y , z)]dzf
2L11-21

= 7(37, x).
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4.2. Equivalence of L, and the fractional Laplacian. In this section we show the
equivalence of the w-weighted diffusion operator and the fractional Laplacian operator for
the following choice of weight and kernel functions:

for which

Thus,

w(x,y) = iy x10(13' xl) for cb(ly — xl) = IY — 3C1d+1+s

1

— x
a(x, y)w(x, 3r) = IY — x10(13, xD x

1Y ly 

y 

xlc1+5+1

ry(x, y) = f [a(x, y)w(x, y) • a(x, z)w(x, z) a(z, y)w(z, y) • a(x, y)w(x, y)
[Kai-

a(z, y)w(z, y) • a(x, z)w(x, z)]dz

y — x
cuf4 ly _ x1d-F5+1I 

z — x
+ iy —1- ly _yx1dx+s-Fl

yz—vizs+1

lz — xld+s+1

y — z z — x
iy zld-Fs+1 xld+.5-1-1 dz.

We rewrite the expression above as the sum of three terms, K(x, y) = I + II + III:

y — x z — x y — x z — x 
/ =    dz =  (4.1)Ld ly — xld+s+l _ xld+8+1 dz,lz — XICI+S+1 ly — )(Id-Ps-El Iv lz

— z — x — x — z
// =  

y 
 dz —   dz (4.2)Rd ly _ zld+s-1-1 

y 
ly _ xld+s+1 

y y 
ly _ xld+s+1 f d ly — zld+s-Fl 

y — z z — x
(III =  dz. 4.3)Ld l y — zld+s+1 lz — xld+s+1

Due to the rotational symmetry of the domain of integration, the integrals in I and II are
both zero. Thus, the kernel is just the term III, that we rename K:

y — Z Z — X
K(x,y) =

Ld lY — ZVI+ 8+1- 1 z — xld+s+1 dz. (4.4)

We evaluate this integral indirectly. Let znew = z — x. Then z = znew + x, dz = dznew and
y — z = y — zne, —x=y—x—znew. Thus,

y — X — Znew Znew
K(x,y) = dznew (4.5)

'Rd 1Y — x — Znewld±s+1 1Znew Ici+s+1

y — x — z

Rd 137 — x — zld+.9+1f 
z 

IzIc1+8+1 
dz. (4.6)

From this, it follows that K(x, y) depends only on x — y, i.e., we can write K(x, y) =
K(x — y). Next, we show that K(x — y) is rotationally invariant. Consider a rotation TZ;
we have

K (1Z(x — Y)) —
TZ — — z

z fizd 17?„(y. 
(y 

zld+s+1 IZId+S+l dz. (4.7)



H.A. Olson, M. D'Elia, M. Gulian 17

Let z = Rznew. Then dz = dznew, and

K (R.(x — y)) 
R.(y — RZnew RZnew  dznew= 

d IR(y — — Rznewld+s+1 ITZznewl

Ld R.(y — x) — Rz 
pz(y. Rzld+s+1

((y — — z)

d ((y — d-Fs+1

d+s+1

Rz
lizzld+s+1 dz

Rz
17zzld-Fs+1 dz

fRd ((3r — Z) ld+5+1 IR,z1d±s±1

fro I ((y — x) — z) ld+s+l lzld+s+1

z

d (3r — — zld+ s +1 lzld+s+1 dz

= K(x — y).

(4.8)

(4.9)

(4.10)

[R. ((y z) • R.z] dz (4.11)

[((y z) • z] dz

(y — x) — z

(4.12)

(4.13)

(4.14)

Therefore, K depends only on Ix — yl and we write K(x, y) = K(lx— yl). Now we let A > 0
and consider

A — — z
z K(Alx — yl) — f ad Ny 

(y 
ld±s+1 ~Zld+s+1 dz.

Let z = Aznew. Then dz = Addznew, and

K(AIx — yl) =

So, we can say that

f  A(y — — Aznew Aznew  xdd
d A(y — x) — Aznew Id-l-s+1 I X,,Znewld+8+1'‘ "Znew

A(y — — Az Az Add

1Rd IA(y Azld+s-Fl lAzld+8+1 z

Ad (y —Ad-F.5+1 Ad+5+1!Rd ior _x) x2 — zzid+s+1 lzld+zs+l
dz

1 (y 3C) — z

Ad's fRd 1(y x) zld+8+1
lzld+8+1dz

1
Ad+28lox - yl).

1
K(x — y) = lx yld+2sK(e),

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

where e is any unit vector and K(e) is a constant, independent of the choice of e (since K
is rotationally invariant). Thus we have

— z
K(e) =

fRd le 

e 

z ld+5+1 I z I d+s+l 
dz. (4.22)

In one dimension, we proved that K(e) is a positive constant; this is confirmed by numerical
tests.
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5. Implications on the well-posedness. Paper [12] proves that, under certain con-
ditions on the kernel function y, the operator Lb is associated with a coercive variational
form, or, in other words, with an energy norm. This, in turn, provides well-posedness of the
following diffusion problem:

{—L8(u) = f in SZ

u = g in Q.t.

Utilizing the above equivalence of pg and Dwg, along with the nonlocal Green's identity for
weighted operators [8], we can show that the energy norm associated with the unweighted
nonlocal operators is equivalent to that of weighted operators, thus providing well-posedness
of diffusion problems such as

{—Lw(u) = f in CZ

u = g in S-2/.

More specifically, for a symmetric kernel 7, the unweighted energy norm is defined as

Mules = f f (u(x) — u(y))27(x, y)dydx.
Quo/ WIZ/

On the other hand, the weighted energy norm is defined as

I I lul 11,2, = f (D„u(x))2dx.
Quo/

By applying the weighted nonlocal Green's identity [8] and defining y as in (3.3), it is easy
to show that =

The extension of this equivalence to a broad class of nonlocal operators is the subject
of our current research.

Acknowledgements. This research was supported by the INTERN award for NSF-
DMS 1716790 (PIs: Petronela Radu and Mikil Foss). It was also supported by Sandia
National Laboratories. Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-NA0003525.

REFERENCES

[1] A. A. BUADES, B. COLL, AND J. MOREL, Image denoising methods. a new nonlocal principle, SIAM
Review, 52 (2010), pp. 113-147.

[2] B. ALALI AND R. LIPTON, Multiscale dynamics of heterogeneous media in the peridynamic formulation,
Journal of Elasticity, 106 (2012), pp. 71-103.

[3] E. ASKARI, Peridynamics for multiscale materials modeling, Journal of Physics: Conference Series,
IOP Publishing, 125 (2008), pp. 649-654.

[4] D. BENSON, S. WHEATCRAFT, AND M. MEERSCHAERT, Application of a fractional advection-dispersion
equation, Water Resources Research, 36 (2000), pp. 1403-1412.

[5] N. BURCH, M. D'ELIA, AND R. LEHOUCQ, The exit-time problem for a markov jump process, The
European Physical Journal Special Topics, 223 (2014), pp. 3257-3271.



H.A. Olson, M. D'Elia, M. Gulian 19

[6] A. DELGOSHAIE, D. MEYER, P. JENNY, AND H. TCHELEPI, Non-local formulation for rnultiscale flow
in porous media, Journal of Hydrology, 531 (2015), pp. 649-654.

[7] M. D'ELIA, Q. Du, M. GUNZBURGER, AND R. LEHOUCQ, Nonlocal convection-diffusion problems on
bounded domains and finite-range jump processes, Computational Methods in Applied Mathemat-
ics, 29 (2017), pp. 71-103.

[8] M. D'ELIA, M. GULIAN, H. OLSON, AND G. E. KARNIADAKIS, A unified calculus for fractional, nonlocal,
and weighted nonlocal models, tech. rep., Sandia National Laboratories, 2019. In progress.

[9] M. D'ELIA AND M. GUNZBURGER, The fractional laplacian operator on bounded domains as a special
case of the nonlocal diffusion operator, Computers and Mathematics with applications, 66 (2013),
pp. 1245-1260.

[10] Q. Du, M. GUNZBURGER, R. LEHOUCQ, AND K. ZHOU, Analysis and approximation of nonlocal diffusion
problems with volume constraints, SIAM Review, 54 (2012), pp. 667-696.

[11]  , A nonlocal vector calculus, nonlocal volurne constrained problems, and nonlocal balance laws,
Mathematical Models in Applied Science, 23 (2013), pp. 493-540.

[12] Q. Du AND X. TIAN, Stability of nonlocal dirichlet integrals and implications for peridynamic corre-
spondence material modeling, SIAM Journal of Applied Math, 78 (2018), pp. 1536-1552.

[13] P. FIFE, Some nonclassical trends in parabolic and parabolic-like evolutions, Springer-Verlag, New
York, 2003, ch. Vehicular Ad Hoc Networks, pp. 153-191.

[14] G. GILBOA AND S. OSHER, Nonlocal linear image regularization and supervised segrnentation, Multi-
scale Model. Simul., 6 (2007), pp. 595-630.

[15] D. LITTLEWOOD, Simulation of dynamic fracture using peridynamics, finite element modeling, and
contact, in Proceedings of the ASME 2010 International Mechanical Engineering Congress and
Exposition, Vancouver, British Columbia, Canada, 2010.

[16] M. MEERSCHAERT AND A. SIKORSKII, Stochastic models for fractional calculus, Studies in mathematics,
Gruyter, 2012.

[17] A. SCHEKOCHIHIN, S. COWLEY, AND T. YOUSEF, Mhd turbulence: Nonlocal, anisotropic, nonuniversal?,
in In IUTAM Symposium on computational physics and new perspectives in turbulence, Springer,
Dordrecht, 2008, pp. 347-354.

[18] R. SCHUMER, D. BENSON, M. MEERSCHAERT, AND B. BAEUMER, Multiscaling fractional advection-
dispersion equations and their solutions, Water Resources Research, 39 (2003), pp. 1022-1032.

[19] R. SCHUMER, D. BENSON, M. MEERSCHAERT, AND S. WHEATCRAFT, Eulerian derivation of the frac-
tional advection-dispersion equation, Journal of Contaminant Hydrology, 48 (2001), pp. 69-88.

[20] S. SILLING, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the
Mechanics and Physics of Solids, 48 (2000), pp. 175-209.



CSRI Summer Proceedings 2019

MODEL PRETRAINING FOR GRAPH-BASED LEARNING

JAMES FOXt AND SIVASANKARAN RAJAMANICKAMt

20

Abstract. Model pretraining has been used to great effect in domains such as computer vision and
natural language processing. However, it is a relatively new phenomenon in the area of graph-based learning,
and is not well studied. In this work, we focus on two kinds of models, a standard multi-layer neural network,
as well as a more recent graph neural network. We focus on structural identity predictions as the downstream
task for pretrained models, where the model is informed by graph structure alone. We consider and evaluate
two different modes of using pretraining, full and partial fine-tuning. We find that in most cases pretraining
does not hurt overall performance, and in some cases can improve convergence and final accuracy.

1. Introduction. Transfer learning has received a lot of attention in deep learning,
and has been used to achieve state of the art performance in domains such as computer
vision and natural language processing.

Broadly speaking, transfer learning involves using a model learned in one context, as a
starting point for learning in a different context. This can enable faster model convergence,
greater robustness to noise, final predictive accuracy, and other benefits [9] compared to
training a model from scratch. Typically the transfer learning is achieved by first pretraining
the model on some auxiliary task(s) and/or data, prior to training on the target data and
task. Pretraining is particularly attractive when there are few labeled or ground-truth data
for the target task, but a larger body of data (labeled or unlabeled) still related in some
way to the target task and data.

Pretraining has long been applied and studied in the computer vision community [4] [17].
Recent examples of pretraining in the NLP community include the BERT [2] model, which
leverages unlabeled data and unsupervised tasks to pretrain a NLP model, before fine-tuning
to a supervised target task. This achieves state-of-the-art performance, and outperforms
directly optimizing for a specific task.

The success of pretraining in other deep learning domains motivates a study of whether
pretraining can also be applied to models for learning over graph-structured data. This
topic has only very recently started to receive some attention [11] [10]. Learning on graph-
structured data poses additional challenges compared to domains with more regular data,
which is that the structure of the data itself can vary. This is challenging for both model
design and prospects of transfer learning.

In this work, we study pretraining over graphs from the perspective of structural pre-
dictions on nodes. In other words, we assume the graph has no additional information other
than its structure and training labels. In general, graphs could have additional domain in-
formation over nodes and/or edges that are informative. We separately consider two models
for learning over graph-structured data: a simple multi-layer neural network, and a recent
instance of the graph neural network (GNN) model, the Graph Isomorphisn Network [16].
We refer to Fig. 1.1 for a conceptual diagram of the GNN model.

We evaluate pretraining of these models on two different datasets, one based on real-
world data and one synthetic.

We provide an overview of related work in Section 2. We discuss our methodology and
results in Section 3. In Section 4 we summarize conclusions and look at future work.

Georgia Institute of Technology, jfox430gatech.edu
tSandia National Laboratories, srajama©sandia.gov
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Fig. 1.1: Conceptual illustration of GNN from [7]. Features of neighbors are aggregated and mapped using
nonlinear transformations, in each layer.

2. Related Work.

2.1. Node Embeddings. Node embeddings are vector representations of nodes in
graphs, which can then be used in machine learning models to make predictions. Methods
such as DeepWalk [13] and nodavec [6], use random walks to generate embeddings that
reflect local proximity of nodes.

However, these embeddings do not adequately address structural similarity of nodes,
where two similar nodes may not even be connected. Rolx [8], Struc2vec [14] and Graphwave
[3] focus on embeddings in this context. These embeddings are then used for downstream
tasks that require learning structural identity. This context is also the focus of our work.

2.2. Graph Neural Network. Kipf et. al. [12] presented the Graph Convolutional
Network, which introduced the notion of convolutions to graph representation learning and
outperformed existing methods. Since then, many other variations have been proposed.
Xu et. al. [16] provide a theoretical framework for generalizing these variations, and also
propose a theoretically optimal variation in this class. For consistency and simplicity, we
refer to this class of models as Graph Neural Network (GNN) in the remainder of this paper.
We consider the models of [12] and [16] to be instances of the GNN.

2.3. Pretraining of Models for Graph-structured Data. W. Hu et. al. [10]
propose combining node-level self-supervised pretraining with graph-level supervised pre-
training, to pretrain GNNs of the type in [16]. The node-level tasks are unsupervised,
inspired by masking and context prediction from NLP. The graph-level pretraining uses
"coarse-graine& labels from chemical/biological graphs for pretraining, before fine-tuning
and predicts "fine-grainecr labels on a different target dataset from the same domain. The
authors show consistent performance improvement in graph prediction accuracy with their
pretraining strategy.

Z. Hu et. al. [11] considers pretraining of GNNs based on graph structure alone, i.e.
domain features are not available or not used. The authors propose multi-task learning
using a variety of self-supervised tasks, from community detection to centrality prediction.
Random power-law graphs are used for pretraining, and ground-truth for these tasks is ob-
tained from running standard graph algorithms The authors report significant improvement
in test accuracy from pretraining, but note that even with pretraining, using structure alone
is not competitive in cases where domain features are available. Our setting most closely
resembles that of Z. Hu et. al., as we also considered graphs without domain features.

3. Content.
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Table 3.1: Airports dataset

Name Nodes Edges Diameter Classes
Brazil 131 1038 5 4
Europe 399 5995 8 4
USA 1190 13599 5 4

3.1. Multi-Layer Perceptron Model. We investigate pretraining of a multi-layer
perceptron (MLP), or vanilla neural network model, using only structural features. We
pretrain and test on a set of airport graphs, originally introduced in [14]. More detail on
dataset is given in later sections.

Pretraining Methodology. In our experiments, we pretrain the model on one graph,
before using the weights of the pretrained model as the starting point for training on the
target dataset. There are different possibilities for how to adapt the pretrained model for
the downstream task—we describe two variations of the fine-tuning approach in this work.
In full fine-tuning, all layers of the model can still be updated after pretraining. In the
partial fine-tuning version, only the weights of output layers (and possibly supplementary
layers such as Batchnorm) are updated, while the weights of all other layers are frozen. In
the case of the MLP model, we only applied full fine-tuning.

In either case, some minimal number of training samples are needed from the target
dataset, because in general the classes of the target task may not match up, or even be
of same cardinality, with those of the the pretraining task. In the partial fine-tuning case,
this can be interpreted as just training the classifier portion of the model, e.g. the layer(s)
closest to output.

Dataset. The airports datasets are from [14], and were originally derived from air-traffic
networks. The task is to predict how busy each airport is (classes are quartiles), based on
network connectivity alone. See Table 3.1 for data summary.

Experiments. For pretraining the MLP model for predictions over the airports dataset,
we use one graph from the dataset as pretraining target, and a different graph as the test
target. We assume that all labels of the pretraining graph are available, while only a subset
of the test graph's is available for training.

Experiments are split across two main hyperparameters: the number of training data
available (as ratio of total labels) for the target task, and the number of epochs the model
was trained for. We use 0.1 and 0.6 as training ratios, to loosely represent scarce and
abundant training data cases. The number of epochs is split into two settings: 20 vs. 200
epochs. 200 epochs represents training to convergence, while 20 epochs is pre-convergence.
We run each combination of the two hyperparameters, for a total of 4 experiments. Each
experiment is averaged over 100 trials.

Results. We present the experimental results over 4 tables, each corresponding to a
specific configuration of the training ratio and training epochs hyperparameters.

Brazil Europe USA
None 0.585 0.509 0.54
Brazil x 0.486 0.57
Europe 0.582 x 0.552
USA 0.624 0.507 x

Table 3.2: 0.1 training ratio; trained 20 epochs

Brazil Europe USA
None 0.62 0.53 0.57
Brazil x 0.54 0.588
Europe 0.63 x 0.583
USA 0.67 0.55 x

Table 3.3: 0.1 training ratio; trained 200 epochs
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Brazil Europe USA
None 0.648 0.536 0.557
Brazil x 0.506 0.576
Europe 0.642 x 0.57
USA 0.726 0.539 x

Table 3.4: 0.6 training ratio; trained 20 epochs

Brazil Europe USA
None 0.7 0.59 0.6
Brazil x 0.589 0.601
Europe 0.725 x 0.599
USA 0.754 0.587 x

Table 3.5: 0.6 training ratio; trained 200 epochs

The row label indicate the graph used for pretraining, while the column label indicates
the target graph used for fine-tuning and testing. The first row represents the baseline: no
graph is used for pretraining, and so the model is trained from scratch on the target graph.
Table entries are test accuracies from each pretraining and target graph pair. Results
exceeding 2% relative different from their respective baseline are indicated by either red or
green colors, corresponding to whether the difference was negative or positive. We ignore
pretraining and testing on the same graph in the table, as this is a trivial case.

Table 3.3 shows the results of pretraining when the model is trained to convergence
(using 10% training data) on the target dataset. The results show that the USA dataset
is clearly the most impactful, both for pretraining and as the target. It is interesting
that pretraining on Brazil and Europe improves final model accuracy on USA, as both are
considerably smaller than USA—Brazil is roughly a magnitude smaller in terms of nodes.

We also see from Table 3.2 that in general, experiments involving the USA dataset also
converge faster (at 20 epochs), compared to without pretraining. There is one instance
where pretraining on Brazil actually is hurting model training at 20 epochs, but this deficit
largely goes away when trained to 200 epochs.

Table 3.5 shows the at-convergence results when 60% of the target data is available for
training. Compared to with 10% training data case, there are less cases where pretraining
has any significant impact. Only the Brazil graph benefits from pretraining (on Europe and
USA graphs). Table 3.4 mirrors trends from Table 3.2; in the 60% training data case, there
could still be benefit in terms of how fast the model converges, with pretraining

Implementation Details. The MLP model was implemented in PyTorch. The MLP has
3 fully-connected layers with ReLU activation, each with a hidden dimension of 32. Dropout
is applied at each intermediate layer. We use softmax output with negative log likelihood
loss.

For initial features, we used a simple set of 5 structural features, inspired from Cai et. al.
[1]. These are the node degree, as well as the min, max, average, and standard deviation of
its 1-hop neighborhood degrees. We normalize each feature to have zero mean and standard
deviation of 1. There are many other possibilities for extracting initial features, such as
those described in Sec. 2.

We reserve 20% of target data for validation, and split the rest among training and test
sets (depending on training ratio). The test accuracy corresponds to the model with the
best validation score within the max number of training epochs. In pretraining, we use all
labels and simply train for 200 epochs (without using a validation or test set).

3.2. Graph Neural Network. We also wanted to study the effect of pretraining on
a more recent type of model, the GNN. Specifically, we wanted to better understand how
difference in graph structure impacts pretraining of models designed for graph structured
data (such as the GNN). It often is the case that the target graph will be structurally
different from ones seen during pretraining.

To study this in a controlled manner, we propose using synthetically generated graphs
with distinct structural identities. As in earlier settings, there are no domain features; the
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only features are what can be extracted from the graph structure itself. The node structural
identities serve as the train/test labels over the graph.

To vary the structure, we create new graphs by randomly adding edges to the previously
regular base graph, as a ratio of the number of original edges. We maintain the same set of
labels as from the base graph. We expect that node labels are not injective with structural
identity in real-world datasets, but that there is nontrivial correlation. This process of gen-
erating new versions of the graph is intended to explore that correlation, in terms of how
sensitive the GNN model is to structural "noise'. We use the Graph Isomorphism Network
(GIN) [16] variant for all experiments.

Dataset.

Fig. 3.1: "Ring of houses]] graph structure. Concept and image from [3]. Each color corresponds to distinct node
class.

We chose to generate a synthetic graph with structural identity labels as defined in
Donnat et. al. [3]. Figure 3.1 shows a smaller version of the graph. In practice, we generate
a larger graph, while maintaining the same ratio of class labels as in the figure, by simply
extending the ring and attaching more house structures at regular intervals. This method
allows for graphs with interpretable and intuitive structural labels. The base graph we
generate has 2664 nodes, 3996 edges, and 6 classes of labels.

Model Details. For the GNN, we implement the GIN model from [16] using the PyTorch
Geometric [5] libary. Our model uses 3 GIN layers, followed by two fully connected layers
(the last of these two is output). Hidden dimension is 32, across all weights.

Each GIN layer contains two fully connected layers (applied after aggregation). Every
GIN layer is accompanied by a Batchnorm layer, which proves quite beneficial to classifica-
tion performance in our case.

The initial node feature fed as input to the model is just the degree of the node (single
scalar). The input is normalized in same fashion as in described in Sec. 3

To establish the baseline that pretraining is compared to, we look at the accuracy of
the GIN model without any pretraining.

3.2.1. GNN Baseline.
Varying noise. We vary the ratio of noisy edges added to the base graph in increments

of 0.05, and examine the accuracy of the model (when trained on each graph version). A
number of edges are added uniformly at random to the graph (two nodes are randomly
picked), as a ratio of the original number of edges in the graph. Results are shown in Fig.
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3.2. Each violin plot summarizes the distribution from 50 trials, and this is the same for
remaining experiments.

The first notable trend is that the GNN learns to classify labels in the original graph,
which has no noisy edge additions, almost perfectly. This result is well within the theo-
retical expressiveness of the GNN model, due to its connection to the Weisfeiler-Lehman
isomorphism test [16].

Despite the theoretical connection, this expressiveness is not always learned in practice,
and is model-dependent. We found that 3 GNN layers were needed to achieve perfect
accuracy, whereas only 1 iteration of the WL test should be sufficient to recover all structural
identities in the base graph.

Although we reported results for using 20 training samples per class, we found that
using even 1 training sample per class is sufficient to achieve near-perfect accuracy on the
base graph. The accuracy drops sharply with each additional 5% of noise added to the base
graph, but the curve begins to bottom out around 30% noise. For reference, adding 25%
noise to the graph reduces overall accuracy of the model by almost 50%.
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Fig. 3.2: Accuracy vs. % noisy edges added. Number of training samples per-class fixed at 20. Each violin plot
summarizes 50 trials.

Varying training samples. While we fixed the number training samples at 20 per class
in Fig. 3.2, the accuracy of the GNN model can also depend strongly on the number of
training samples. We consider the case of the graph with 10% noise, and vary the number
of samples-per-class at 1, 5, 20, 50, and 200. Results are shown in Fig. 3.3. Adding more
samples results in greater performance improvement in the lower regime, with diminishing
returns at higher samples-per-class. For instance, 200 samples per class corresponds to
nearly 50% of the total labels. We expect that on noisy graphs, more labels are needed on
average to account for variation of structure within the same class, which does not apply to
the base graph.

3.2.2. GNN Pretraining. In this section, we investigate the following question: How
effective is pretraining of GNNs, as we vary the structural difference between the pretraining
and target graph? The original base graph G is the pretraining target in all instances. We
also adopt a "noise perspective with respect to the identities of C—the labels of the target
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Fig. 3.3: Accuracy vs. varying number of training samples per class. Graph is fixed at 10% noise.

graph G' are unchanged from those of G , even if node structural identities have technically
changed based on edge additions. Optimal accuracy could be obtained in our setting by
simply copying the test predictions from the model pretrained on the base graph, as the
predictions for the target graph.

An alternative perspective would be to relabel nodes in G' according to their new
structural identities, e.g. using the WL test [15], and use the new labels as prediction
targets.

Pretraining Setup. After pretraining the GNN on the base graph, we consider two
variations for fine-tuning the model on a target dataset, referred to as "FulP and "Partial"
in Fig. 3.4. The distinction between these two approaches were detailed in Sec. 3.1. In
the partial fine-tuning version, the weights of both the output and Batchnorm layers are
updated (the weights of all other layers are frozen). Similarly to the experiment in Fig. 3.2,
we fixed the number of samples per class at 20, and vary the noise ratio in increments of
0.05. We refer to results in Fig. 3.4.

Results. There does not appear to be a clear relationship between the level of noisy
edges added, and the effect of pretraining in our experiment. Accuracy with pretraining was
helpful in some cases where noise level was higher, and not so helpful at lower noise—and
vice versa. Across all target graphs, the relative performance improvement with pretraining,
with respect to the average, ranges from almost none up to 10% (taking the best of the two
fine-tuning modes). Fig. 3.4 provides more complete information than just the average;
each violin plot summarizes the distribution from 50 trials.

In the full fine-tuning case, the final accuracy with pretraining is always better than
or at least comparable to that without pretraining, in both the mean and median. This
suggests that the model weights in the pretrained model are at least as good as those from
random initialization.

In the partial fine-tuning case, the results are more varied across different noise levels.
In several instances, the distribution with partial fine-tuning is clearly the best compared
to baseline and full fine-tuning, e.g. at noise ratios 0.2, 0.3, and 0.45. However, in some
other instances the results can be worse than even the baseline, with noise level 0.15 being
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the notable one. While we're not entirely sure why this is, one possibility is the dependency
of pretraining on the variation of the noisy graph itself. We only randomly generated one
noisy graph per noise level; summarizing over multiple versions of each noise graph might
have been informative.

In terms of variation, in several cases the partial fine-tuning mode significantly reduces
the spread of the distribution compared to both the baseline and full fine-tuning.
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Fig. 3.4: "Full" and "PartiaP refer to modes of using the pretrained model. Baseline is without any pretraining.

Implementation Details. We use the following default train-validation-test split when
fine-tuning on the target graph (different from in Sec. 3): 20 samples per class for training,
200 total samples for validation, and 1000 total samples for testing (all randomly drawn).
We chose to represent label scarcity in training, which we believe is more reflective of node
predictions in the transductive setting.

We also use a train-validation split during pretraining. These same data splits are
preserved across all experiments. We use the pretrained model corresponding to the best
seen validation accuracy over 200 epochs, to evaluate final (test) accuracy.

4. Conclusions. We investigated pretraining of two different models for graph-structured
data: a vanilla neural network, as well as the recent Graph Neural Network. We pretrained
an MLP on airports dataset, where structural role is believed to be important. Pretraining
is beneficial in some cases, but results are graph-dependent.

We also evaluated pretraining on a GNN model, but with more emphasis on controlling
differences in graph structure. Our experiments on a synthetically generated graph show
that the GNN can learn to perfectly distinguish structure, with minimal feature and label
information. On the other hand, it can be very sensitive to addition of edge noise, falling
to 50% median accuracy with 25% added edges. Finally, we evaluate pretraining of a GNN
model for two different modes of fine-tuning, and show that it can help across a wide range
of noise levels. However, results also depend on the fine-tuning method.

We believe there remain opportunities for characterizing robustness of pretraining in
the context of families of graphs, including those of interest in graph generation.
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Abstract. In the context of partial differential equations and fractional partial differential equations,
Physics-informed neural networks (PINNs) and fractional PINNs (fPINNs) utilize neural networks to ob-
tain approximations of solutions or solve parameter identification problems. In this work we extend these
methods to nonlocal equations and we investigate the properties of this new algorithm. The latter includes
convergence with respect to number of training points and neural network parameters. Also, we provide the
groundwork for the identification of nonlocal kernel parameters.

1. Introduction. Neural networks are computing systems inspired by biological brains
and have been used in a wide variety of applications. In the context of solving partial
differential equations (PDEs), physics-informed neural networks (PINNs) [16], which work
by incorporating known PDEs into the loss function, have shown remarkable promise. Work
on PINNS has been extended to include fractional PDEs, resulting in fractional physics-
informed neural networks (fPINNS) [15]. In this paper we explore the extension of PINNs
to nonlocal equations, known as nonlocal physics-informed neural networks (nPINNS). In
Section 2 we provide a brief introduction to nonlocal models, and in Section 3 we provide a
brief introduction to neural networks. In Section 4 we describe the nPINNs algorithm for
both forward and inverse problems. In Section 5 we provide numerical results that illustrate
the consistency and applicability of the algorithm. In particular, for the forward problem
we analyze the sensitivity of nPINNs to number of training points, network parameters,
optimization parameters and noise. For the inverse problem we consider both single- and
multi-parameter identification for polynomial kernels. We offer conclusions in Section 6.

2. Nonlocal Models. Nonlocal models have become popular for the description of a
broad class of scientific and engineering applications including fracture mechanics, image
processing, stochastic processes and many others [1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 14, 17, 18, 19,
20].

Their main feature is that instead of using partial differential operators, they utilize
integral operators. The integral form, over a ball of radius 6 or over the whole space,
allows for long-range interactions and reduces the regularity requirements on the solution.
Specifically, every point x in a domain, interacts with a neighborhood of points, B5(x),
where 6 can be either finite or infinite. Given a bounded domain, points on the boundary
also share this property; as a consequence, such points interact with points outside of the
domain in a collar, or a nonlocal boundary, of thickness 6. The latter, being the nonlocal
counterpart of a local boundary, is the set where nonlocal boundary conditions must be
prescribed to guarantee well-posedness of nonlocal equations [8].

In this paper we consider operators of the form

Lu = 2 f (u(y) — u(x))-y(x,y)dy, (2.1)

which we refer to as the nonlocal Laplacian. Here, ry is a symmetric kernel with bounded
support, i.e.

')/(x, y) = k(x, y)X135(x)(y).

*University of Nebraska-Lincoln, nbuczkowski@huskers.unl.edu
Sandia National Laboratories, mdelia@sandia.gov

t Sandia National Laboratories, mlparks@sandia.gov

(2.2)
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Without loss of generality, we work in a one-dimensional setting. With this assumption and
based on (2.2), we rewrite (2.1) as

x+6

— Lu = 2 f (u(y) — u(x))k(x,y)dy. (2.3)
x-6

Note that, when properly scaled, the nonlocal Laplacian converges to the classical Laplacian
as 6 —> 0 [10]. We are interested in the solution of the following nonlocal diffusion problem

—Lu = f on 12 (2.4)

u = g on P, (2.5)

where the nonlocal boundary I' is defined as 1' := {y E IV \St : y E B5(x) for some x E Q1.
The constraint on r is a nonlocal counterpart to a Dirichlet boundary condition for classical
partial differential equations.

Equations like (2.4) are not simple to solve; in particular, model parameters or the func-
tional form of the kernel may be unknown or subject to uncertainty. The primary objective
of this work is the identification of kernel parameters in the simple case of polynomial ker-
nels. These are the first steps towards one of the most important open problems in nonlocal
modeling, namely kernel calibration.

3. Neural Networks. Neural networks are a powerful tool used in machine learning.
When data is input into a neural network, it travels through nodes called neurons with their
own activation functions employing weights and biases, returning new outputs to be fed to
the next layer. This process is iterated until an output is produced. Further we can use
training data to tune these weights and biases for these activation functions to return more
desirable outputs. We do this through backpropagation, a process in which the optimizer
works backward through the neurons, varying them slightly and observing the effect on some
loss function. The optimizer works to get this loss function to its minimum. The amount
that we allow these weights and biases to vary by in training is called the learning rate. We
can also widen (increase the amount of neurons in a layer) or deepen (increase the amount
of layers) to allow for finer tuning of the neural network.

We apply this machine learning approach to model nonlocal equations, in the spirit
of PINNs and fPINNs. Neural networks are powerful tools that have also become more
widely used and studied over recent years. These neural networks have opened a door for
significant human advancement in upcoming years. In PINNs and fPINNs, it was shown
that by including information about the PDE or fractional PDE into the loss function to
be optimized, one can estimate a solution to the given PDE by manipulating the weights
and biases in the neural network. This idea was expanded upon to the inverse problem
to add certain parameters to be identified in the PDE itself. Since these parameters are
sometimes unknown in many real-world applications, we can not incorporate them into the
loss function directly, only incorporate them indirectly by giving the neural network more
information about u and Lu. To incorporate this information, one can measure the forcing
term of the PDE at specific sets of points.

We apply the recently introduced nPINNs (nonlocal PINNs), to the identification of
the solution to the nonlocal model and some model parameters, such as kernel parameters,
in generalized nonlocal operators such as (2.4). We train the optimizer to find solutions u
to the nonlocal equation with the structure given earlier. We later train the optimizer to
additionally find parameters in the kernel. These parameters are optimized alongside the
weights and biases in the neurons in the neural network.

We discretize integrals with Gaussian quadrature. We are able to include many training
points in the nonlocal boundary, to utilize in the loss function to enforce boundary conditions
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on the solution. We are able to use the code similar to that used in fPINNs in the inverse
problem. We use these methods to explore cases where the nonlocal Laplacian will converge
to the classical Laplacian.

4. Methodology. We present the algorithm utilized in this paper. While the for-
mulation is the same for the solution of forward and inverse problems, we have a few key
differences, which are highlighted throughout the section.

First, we collect measurements of the solution and forcing term at points in different
training sets. While training points for f are restricted to SI, the solution can be collected
on both S2 and r. More specifically, for the solution of forward problems, we only collect
solution data in F, whereas for inverse problem we collect solution data in C2 U r in order
to improve the conditioning of the problem. We assume that these measurements are either
exact or are the result of high-fidelity simulations.

Second, we approximate the solution u with a fully connected neural network, i.e. u
uNN, and we rewrite the kernel as a function of (x,y;d), where d = {d1, d2, ...} is a set of
unknown parameters that we would like to identify. Examples of d could be the interaction
radius 6 or, in case of polynomial kernels, the coefficients of the polynomial itself. Of course,
when nPINNs is solely used for the solution of forward problems, the parameter set is empty
and the only unknowns are the network parameters (that fully determine the approximate
solution UNN)•

Then, biases, weights and model parameters are obtained as the result of the following
optimization problem:

min loss = lossg + lossL
UNN

N„ Nf

= E(UNN(xi)-u(xi))2+E(LuNN(xj)- f (x j))2 .
j=1 j=1

(4.1)

where Nu and Nf are the number of measurements (or training points) of the solution and
the forcing term. In this work we consider a simplified setting:

— for forward problems {xj}aNi1 c 12 and {x,},1,v2i c F;

— for inverse problems {xi C 12 and {xX.r2i = {xi U {xk }k11 C S2 U F, where

fxklIc1 c
Note that in (4.1), the first term is the mismatch between measured data and neural

network and the second term is the residual of the nonlocal equation. As opposed to PINNs,
where the operators are differential and the chain rule applies, we cannot easily apply the
backpropagation algorithm on nonlocal operators, as there is no chain rule in the nonlocal
calculus. Thus, before solving the optimization problem, the operator G must be discretized.
Specifically, we use Gaussian quadrature to compute an approximation of the integral

which gives

xj-ks

Lu(xi) = 2 f (u(y) — u(xj))k(xj, y; d)dy j =1, ...Nf,
xi —5

Gu(xj) = 26

(4.2)

(UNN UNN( ))k(Xj,yq,d)tvq, (4.3)
q=1

where yq = 6xg. Here, M is the number of Gauss points, and xg and tug are the
associated points and weights.
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5. Numerical tests. In this section we report the results of numerical tests for both
the forward and inverse problem. To assess the accuracy of uNN and GUNN we consider
the following errors:

llu — ilArN112 
=

Hub 
(5.1)en 

where u and uNN are vectors of the values of u and uNN at some validation points (different
from the training points) in Q. Here u is a manufactured solution used for testing purposes
and will be specified later.

Note that in all our tests, except for the ones in Section 5.1.4, the training set is assumed
to be exact. By this we mean that we use a manufactured solution to generate u and f at
training points. Instead, in Section 4.1.4, the forcing term is subject to noise.

5.1. Results for Forward Problem. We consider the one-dimensional domain S2 =
(0,1) with (5 = 0.01, so that F = (-6, 0) U (1, 1 + (5). Unless otherwise noted, in all tests
we use a width of 4, a depth of 4, a learning rate of 5e-5, 20 Gaussian quadrature points,
Nf = 50, and Nu = 100 (recall that for forward problems training points for the solution
belong to 1'; we place 50 points in each side of the nonlocal boundary). All training points
are linearly spaced. We analyze the behavior of the loss functions and of the discretization
error eu as a function of the sampling size and the NN parameters. Later in this section,
we also look at the effects of Gaussian white noise.

We use the following manufactured solution and kernel function

{
u = x2 - x4

k(x,y) = 23
f _ 

5
(52 12x2 + 2.

(5.2)

As anticipated above, note that the kernel function is fully determined, i.e. does not depend
on unknown parameters.

5.1.1. Quadrature Error. As we are using Gaussian quadrature and a smooth man-
ufactured solution to estimate the integral of our predicted uNN, we know that the error is
0(u(2m)) where m is the number of quadrature points [12]. In our experiments we choose m
sufficiently large that to guarantees the quadrature error is negligible with respect to other
sources of error.

5.1.2. Error with respect to the number of training points. We analyze the
behavior of the approximation error with respect to the number of training points. We first
consider varying the number of points in the domain Nf, then the points in the collar Nu,
then both simultaneously. Reported results are the outcome of the optimization algorithm
after 100000 iterations.

Table 5.1 displays results for a constant number of points in the nonlocal boundary,
Nu = 100, while varying the points in the domain. Instead, in Table 5.2 we report results
obtained for fixed Nf. We observe stagnation of the error after Nf = 40. Table 5.3 shows
the results of varying number of points in the collar and in the domain.

As expected, at first the error decreases and then saturates. It appears from Table 5.3
that using more than 20 points in the domain and 20 points in each side of the nonlocal
boundary does not improve the accuracy of the solution; thus, with the purpose of saving
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Table 5.1: Varying Training Points in the Domain

N f loss lossw lossL e.
5 3.63460e-04 1.22526e-04 2.40934e-04 1.55141e+00
10 1.25423e-06 4.19117e-11 1.25419e-06 3.02005e-04
20 1.68872e-06 2.09605e-12 1.68872e-06 2.00583e-05
40 2.56366e-07 8.68733e-13 2.56365e-07 1.25550e-05
100 6.18119e-07 2.36851e-11 6.18095e-07 2.03109e-05

Table 5.2: Varying Training Points in the Collar

N. loss loss. lossL eu
5 1.60446e-03 2.23308e-05 1.58213e-03 5.60302e-02
10 7.84222e-07 2.91602e-12 7.84220e-07 1.35955e-05
20 3.28161e-06 1.13667e-08 3.27025e-06 4.01813e-04
40 2.41552e-06 3.33785e-11 2.41548e-06 2.49265e-05
100 2.09526e-06 7.44621e-12 2.09525e-06 1.84922e-05

computational time, there is no reason to use a larger training set. However, the in presence
of non-smooth or highly oscillatory functions, a larger training set becomes imperative to
guarantee accuracy. For example, for f (x) = cos(407x) would require a much higher number
of training points in the domain to avoid obtaining trivial solutions.

5.1.3. Error with respect to NN parameters and learning rate. We first analyze
the behavior of the loss function and of the solution error with respect to the width and
depth of the neural network. Results are reported in Tables 5.4 and 5.5.

Here, we observe that a width and depth of 4 yields a faster convergence. Thus we set
such network parameters to 4 in all the tests in this section.

Table 5.4: Varying Width

Width loss loss. loss c eu
1 2.80887e+00 1.31996e+00 1.48892e+00 4.32233e+00
2 8.69865e-01 7.85086e-01 8.47786e-02 3.29125e+00
3 4.48052e-06 1.79253e-11 4.48050e-06 3.37583e-05
4 2.86862e-06 6.53523e-11 2.86856e-06 8.43196e-05
5 7.24309e-07 4.05502e-12 7.24305e-07 1.23031e-05
6 2.04371e-07 8.93422e-14 2.04371e-07 6.55593e-06
7 2.12416e-07 8.37183e-14 2.12416e-07 4.40106e-06
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Table 5.3: Varying Training Points in the Domain and the Collar

Nu and i‘lf loss /ossu /ossL e.
5 1.82151e-05 1.82120e-05 3.07717e-09 9.10997e-01
10 2.96385e-07 3.27248e-09 2.93113e-07 2.59391e-03
20 2.14771e-07 5.42831e-13 2.14770e-07 6.84685e-06
40 1.18391e-06 4.31223e-11 1.18387e-06 2.92314e-05
100 1.37480e-06 5.78497e-12 1.37479e-06 1.67161e-05

Table 5.5: Varying Depth

Depth loss /ossu /ossc e.
1 2.51944e-05 5.41200e-10 2.51939e-05 1.87002e-04
2 1.45618e-06 1.90645e-12 1.45618e-06 1.39006e-05
3 6.16372e-07 1.07199e-11 6.16361e-07 1.49121e-05
4 1.47492e-06 4.91172e-11 1.47487e-06 3.00990e-05
5 2.08790e-07 1.10059e-11 2.08779e-07 2.95736e-05
6 2.31140e-07 2.77799e-13 2.31140e-07 3.64803e-06
7 2.32935e-07 1.92277e-12 2.32933e-07 7.05052e-06
20 6.81500e-06 6.20867e-09 6.80880e-06 2.96695e-04

We next consider the impact of the learning rate a. We first consider several constant
learning rates in Table 5.6. We observe that for a < 5e-5 and a > 5e-3 the loss and errors
are significantly higher. We take a closer look at a = 5e-3, 5e-4, 5e-5 in Tables 5.7, 5.8,
and 5.9 respectively. Note that error and losses initially decrease and then their behavior
becomes oscillatory; for higher values of a this is probably due to the fact that the learning
rate is too high, preventing the algorithm to catch the descent direction. We use these
results to guide the choice of the learning rate in our experiments and we set a = 5e-5 as it
delivers more accurate and robust results.

Table 5.6: Varying Learning Rate

Learning Rate loss loss. lossr eu
5e-2 1.75209e+01 4.42583e-05 1.75208e+01 1.02673e+00
5e-3 2.18434e-04 3.75588e-07 2.18058e-04 1.10995e-02
5e-4 8.92233e-07 2.53704e-09 8.89696e-07 1.34916e-04
5e-5 1.86471e-07 9.84098e-14 1.86471e-07 4.33972e-06
5e-6 5.46515e-01 4.56204e-01 9.03106e-02 2.66960e+00
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Table 5.7: A closer look at learning rate 5e-3

Iteration loss lossu lossc eu
0 1.73566e+01 2.20809e-03 1.73544e+01 8.68283e-01

10000 1.90421e-05 4.55015e-09 1.90376e-05 2.74259e-04
20000 1.34078e-05 1.03528e-08 1.33975e-05 3.91305e-04
30000 8.88446e-06 1.33335e-08 8.87112e-06 3.97714e-04
40000 5.23286e-03 4.26876e-05 5.19018e-03 1.72262e-02
50000 3.97902e-06 5.77030e-09 3.97325e-06 3.02267e-04
60000 2.67915e-06 2.97896e-09 2.67617e-06 2.12288e-04
70000 3.13569e-06 2.19554e-09 3.13349e-06 1.86585e-04
80000 3.90731e-04 1.10192e-05 3.79712e-04 1.11628e-02
90000 4.43934e-06 9.21067e-09 4.43013e-06 3.63260e-04
100000 2.18434e-04 3.75588e-07 2.18058e-04 1.10995e-02

Table 5.8: A closer look at learning rate 5e-4

Iteration loss lossu lossL eu
0 1.62138e+01 3.53460e-02 1.61785e+01 4.36439e-01

10000 8.01400e-05 4.04529e-08 8.00995e-05 6.40455e-04
20000 1.73644e-05 9.06907e-10 1.73635e-05 1.24621e-04
30000 1.30918e-04 1.73777e-06 1.29180e-04 5.17546e-03
40000 5.95824e-06 3.28583e-11 5.95821e-06 3.14214e-05
50000 4.17367e-06 3.47686e-11 4.17364e-06 2.87314e-05
60000 3.20441e-06 1.01291e-11 3.20440e-06 1.91423e-05
70000 2.64433e-06 1.39203e-12 2.64433e-06 1.39334e-05
80000 2.27057e-06 5.54222e-11 2.27051e-06 3.78312e-05
90000 1.45376e-05 2.35136e-07 1.43024e-05 1.90796e-03
100000 7.18145e-06 1.45630e-07 7.03582e-06 1.79139e-03

Table 5.9: A closer look at learning rate 5e-5

Iteration loss lossw loss,c eu
0 1.60775e+01 7.49009e-02 1.60026e+01 7.68200e-01

10000 1.53416e-01 6.69879e-02 8.64282e-02 9.96261e-01
20000 2.75060e-05 1.03194e-08 2.74957e-05 6.18447e-04
30000 2.72827e-06 1.09926e-11 2.72826e-06 2.93784e-05
40000 1.40125e-06 1.05222e-11 1.40124e-06 2.53186e-05
50000 7.30668e-07 2.18262e-11 7.30646e-07 2.16615e-05
60000 4.15845e-07 1.74735e-12 4.15843e-07 1.09644e-05
70000 2.78988e-07 5.03405e-13 2.78987e-07 7.05431e-06
80000 2.21948e-07 1.27735e-11 2.21935e-07 1.21054e-05
90000 1.96864e-07 1.19232e-13 1.96864e-07 4.55439e-06
100000 1.86471e-07 9.84098e-14 1.86471e-07 4.33972e-06
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5.1.4. Error with respect to Gaussian noise. In this section we consider the im-
pact of noise of the data. Specifically, we add Gaussian white noise to the forcing term. We
analyze both the case of training points for u placed only in F (Table 5.10) and in 52U F (Ta-
ble 5.11). In this case, reported results correspond to 100000 iterations of the optimization
algorithm.

In both cases, as the noise increases, the error of u increases. However, we note that the
algorithm performs better (lower errors and losses) when there are no points in the domain.
We hypothesize that this is could be due to over-fitting.

Table 5.10: Noise

Noise[%] loss lossu lossc eu
0 1.15056e-06 4.45340e-10 1.15011e-06 7.65986e-05
5 3.00194e-04 1.95741e-10 3.00194e-04 2.05432e-03
10 4.51297e-03 7.02639e-10 4.51297e-03 4.63073e-03

Table 5.11: Noise with points in the domain for u

Noise[%] loss lossu lossL eu
0 6.77939e-07 1.79414e-12 6.77937e-07 8.79139e-06
5 2.96605e-04 4.96719e-08 2.96556e-04 2.16277e-03
10 3.92610e-01 3.67651e-01 2.49585e-02 2.50848e+00

5.2. Results for Inverse Problem. We next consider results for the inverse problem.
In this case, we predict both uNN and the parameter vector d.

5.2.1. Single-parameter case. We first consider the case of a polynomial u and a
constant kernel. Unless otherwise noted, we use a width of 5, a depth of 5, a learning rate
of a = 5e-5, 20 Gauss quadrature points, Nf = 50, and Nu = 100 (50 points in each side of
the collar). All training points are linearly spaced. For 52 = (0, 1), F = (—å, 0) U (1, 1 + å)
and (5 = 0.01, we analyze the behavior of the loss function and of the discretization error
as a function of the sampling size and the NN parameters. We consider the following
manufactured solution, forcing term, and parametrized kernel:

{
u(x) = x2 — x4

k(x,y) = ̀,4-
f _ 

5
(52 12x2 + 2.

(5.3)

Note that f corresponds to the choice d1 = ; this allows us to have a reference solution
that we can use in the experiments for data generation and accuracy analysis. Initialization
of the optimization algorithm is very important, even in single parameter prediction. We
consider several different initializations of the parameter dl in the following table.
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Table 5.12: Different Initializations for di

Initial di. loss /ossu lossc eu Predicted d1
-1 1.0971e-02 1.0968e-02 3.4301e-06 1.0112e+00 -5.29366
0.1 3.1309e-07 6.9428e-11 3.1302e-07 7.6542e-05 1.5001
1 4.0721e-07 2.9948e-10 4.0691e-07 1.63836e-04 1.50032
2 4.1391e-07 4.7247e-10 4.1344e-07 2.0687e-04 1.50040
10 4.5119e-03 4.5112e-03 6.8688e-07 6.4853e-01 8.47400

From Table 5.12, we note that, even when the algorithm convergences to the true value
of d1, eu is 100 times larger than that of the forward problem for the same manufactured
solution. This is an indication of the ill-conditioned nature of inverse problems.

There are two cases of bad initialization: 1) the initial value is too far from the true
value; 2) the initial value has a different sign. Consequences of the former case can be seen
in Table 5.12, for d1 = 10 for 100000 iterations. Here the parameter reaches the optimal
value 7.9 and the corresponding solution is far from the true one, see Figure 5.1.

ao 0 2 0 6 0.8 10

Fig. 5.1: Blue: Manufactured solution. Red: u as computed by nPINN for di initialized to 10.

However, further tests indicate that, for a much higher number of iterations, the pre-
dicted parameter approaches 1.5 and the solution converges to the true one. A way to
improve the convergence is to multiply lossu by a scalar » 1, so that the algorithm
predicts a better u. We see an example of this in Table 5.13 where we set = 103 and run
for 200000 iterations. The first row of the table reports results at 100000 iterations, where
we see that the loss and error are lower than that of the unscaled loss function. The second
row of the table reports results at 200000 iterations, where the desired value of d1 has been
reached.

Table 5.13: Weighted loss„ for parameter prediction

Initial d1 loss /ossu lossr eu Predicted d1
10 3.1011e+00 2.7248e-03 3.7632e-01 5.0646e-01 5.5496
10 1.4344e-04 2.5644e-10 1.4318e-04 1.7074e-04 1.5002

The second issue is the initialization of d1 to a value of opposite sign of the true value, such
as -1; See Figure 5.2 where we report the predicted solution. To deal with this situation,
one option is to re-initialize the parameter to a new value any time the predicted parameter
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becomes negative. Another option is to restrict values to be in a certain range, as was done
in [15] for fractional PDEs.

0.25 -

0.20 -

0.15 -

0.10 -

0.05 •

0.00 -

0.0 0.2 0.4 0.6 0.8 LO

Fig. 5.2: Blue: Manufactured solution. Red: u as computed by nPINN for di initialized to -1.

As a second test, we consider the case where both u and k are a polynomials:

u(x) = x2 - x4{

k(x , y) =

f = 2 

_d81 (x _ y)2 (5.4)
1°52 

12x2

Note that f corresponds to the choice d1 = 3; this allows us to have a reference solution
that we can use in the experiments for data generation and accuracy analysis. We consider
several different initializations of the parameter d1 and report results at iteration 100000 in
Table 5.14. From these results we can infer the same considerations we discussed in case of
constant kernel.

Table 5.14: Different Initializations for di

Initial dl loss lossu loss c e. Predicted di.
-1 1.4135e-02 1.4129e-02 6.2125e-06 1.1478e+00 -5.47035
0.1 7.1532e-08 2.0803e-10 7.1324e-08 1.3872e-04 2.49956
2 1.2176e-07 1.0032e-10 1.2166e-07 6.5511e-05 2.50015
15 4.5053e-03 4.4798e-03 2.5580e-05 6.4639e-01 13.91510

5.2.2. Multi-parameter case. In this section we consider the case with two unknown
parameters in the kernel. For the same domain used in the previous section, we consider
the following manufactured solution, parameterized kernel and forcing term.

1
u(x) = x2 - x4

k (x , y) 
= d (x _ 02 4_ cid

f _ 3 ( 7S2 254x2 + t) + g ( 582 8x2 + 1),

where f corresponds to d1 = 2 and d2 =
We consider several different initializations. In Table 5.15 we report the (d1, d2) at the

100000th iteration.
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Table 5.15: Different Initializations for Kernel Parameters

Initial d loss lossu lossL eu Predicted d
(-1,-1) 2.882e-02 2.881e-02 5.699e-06 1.196e+00 (-5.189,-5.189)
(-1,0) 3.039e-02 3.038e-02 9.277e-06 1.227e+00 (-5.332,-4.332)
(-1,1) 2.878e-06 7.485e-07 2.130e-06 6.53194e-03 (0.604, 2.604)
(0,-1) 3.076e-02 3.070e-02 5.885e-05 1.234e+00 (-3.977, -4.983)
(0,0) 3.183e-02 3.182e-02 1.456e-05 1.256e+00 (-4.348, -4.348)
(0,1) 1.125e-06 7.735e-07 3.513e-07 6.611e-03 (1.229, 2.229)
(1,-1) 3.064e-02 3.063e-02 8.242e-06 1.233e+00 (-3.390, -5.390)
(1,0) 8.250e-06 7.988e-07 7.451e-06 6.730e-03 (2.482, 1.480)
(1,1) 3.185e-06 7.798e-07 2.405e-06 6.604e-03 (1.856, 1.855)
(5,-1) 2.006e-06 8.918e-07 1.115e-06 7.041e-03 (5.603, -0.395)
(5,0) 1.879e-05 1.437e-06 1.735e-05 8.574e-03 (4.989, -0.010)
(5,1) 6.508e-06 1.405e-06 5.103e-06 8.347e-03 (4.364, 0.365)
(10,-1) 2.141e-05 1.692e-05 4.490e-06 2.868e-02 (8.788, -2.211)
(10,0) 2.887e-04 2.818e-04 6.815e-06 1.179e-01 (8.389, -1.610)
(10,1) 1.914e-03 1.911e-03 2.839e-06 3.075e-01 (8.474,-0.525)

These results clearly reveal the ill-posed nature of the problem. In fact, while only one
initial pair converges to the true d, several optimal pairs yield a discretization error of the
same order of the one obtained in correspondence of the true d. This is an example of the
presence of several minima and also of the so-called mimic operators (i.e. operators whose
action on a function is almost equivalent).

Remark. To explain the behavior of the algorithm in the multi-parameter case, we
consider the following example:

{u(x) = x4

k(x,y) = ,4 (x - y)2 + c(4•

We compute the action of L on u:

2 12
Lu=2cli(

7
82 + -

5 
x2
)

(4 4
- d1 + - d2) 62 +
7 5
D + Ex2

for some constants D, E such that

+2d2G28 2 + -5 12 x2)

(24 
di. + 8d2) x2

5

{82 (Y1+ td2) = D
ticli+ 8d2 = E.

(5.5)

(5.6)

(5.7)

Even when the system above is well-posed, the uniqueness of the solution could be compro-
mised by the presence of 62, which makes such term very small. Practically, this means that
the optimizer will focus on satisfying primarily the equation for E, for which there exists
an infinite number of solutions.
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6. Conclusions. In this work, we applied the concepts of PINNS to to nonlocal equa-
tions. Given measurements of u in the interaction domain and of f within the domain,
we demonstrated that nonlocal physics-informed neural networks (nPINNS) can accurately
solve forward problems.

We also analyzed the behavior of the error with respect to the number of training points,
the network parameters, the learning rate and the level of noise. The error decreasing as the
number of training points increases at first, but eventually saturates. Similarly, increasing
the width or depth of the network beyond a value of 4 did not result in more accurate results
from the network. We also found that a learning rate between 5e-4 and 5e-5 produced the
best results. We saw low, but not negligible, impact of Gaussian white noise added to
the forcing term. While nPINNs was able to accurately predict kernels that depend on a
single parameter, results were not as satisfactory for the multi-parameter case, and further
investigation is required.
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PROPER ORTHOGONAL DECOMPOSITION FOR TIME DEPENDENT
PROBLEMS - NEURAL NETWORK APPROACH

PETER SENTZ*, ERIC C. CYRf , KRISTIAN BECKWITHI, AND LUKE OLSON§

Abstract. Model order reduction is an important topic in the field of partial differential equations,
particularly those which must be solved for a wide variety of physical or geometrical parameters. Many
techniques rely on linearity and parametric separability of the relevant equations in order to produce a
computationally efficient method; however, efficiency may greatly suffer when the problem does not satisfy
these properties. Here, we extend a neural network based approach for parametrized elliptic equations to
the time-dependent case. The technique is applied to a one-dimensional advection-diffusion equation, where
it is compared to a classical projection based approach.

1. Introduction. In many applications in the physical sciences and engineering, phe-
nomena are modeled by parametrized partial differential equations (PDEs). For example,
solutions are sought for the Navier-Stokes equations for a range of Reynolds numbers, or
to the heat equation for different values of the conductivity. The shape of the domain or
boundary conditions may also be parametrized.

In the time-independent case, equations of the form

F (u(µ); it) = 0, (1.1)

are considered. Here, µ denotes a vector of real-valued parameters, µ E D c RP. The
components of it are parameters that can be physical (e.g. Reynolds number, conductivity)
or determine the geometry of the domain or boundary/forcing terms. u(µ) denotes the
solution to the PDE, and is dependent on the parameters. F encodes the PDE under
consideration; it too depends on the parameters explicitly.

Time-dependent problems can be similarly parametrized in the general form

ut(µ) + F (u(tt); tt) = O. (1.2)

Typically, one seeks a numerical solution to such a PDE using e.g., finite element or finite
difference methods. Increasing computational power and sophisticated algorithms have led
to the ability to solve for very accurate numerical approximations. However, these "high
fidelity" solutions can still take many hours or days to compute. This can be an unacceptable
cost if solutions are required for many instances of the parameter vector it. Two contexts
in particular motivate the need for solutions with less computational complexity, the many-
query and real-time contexts [19]. For an example of the many query context, one may
want to solve a PDE-constrained optimization problem to find the optimal forcing function
or shape of the domain. This is an optimization problem for the parameter vector pt, and a
number of iterative solution methods can be employed. These methods require the solution
of the PDE for a sequence of different parameter configurations. Over many iterations, the
computational demands of the high-fidelity solutions may be prohibitive. Real-time contexts
arise, for example, in control problems governed by PDEs [11].

A class of methods, known as reduced basis methods, has been developed over the past
few decades to reduce the model order complexity in cases where the many-query or real-time
contexts are relevant. In section 2, we will review this projection-based approach, and the
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assumptions which are required in order to develop a computationally efficient alternative
to the original model. We briefly discuss what happens when these assumptions do not hold
and some corresponding approaches to develop reduced-order models. In section 3, we use
a parametrized linear advection-diffusion equation in one space variable to demonstrate a
flexible reduced basis method using neural networks. Section 4 presents some conclusions
and ideas for future work.

2. Projection-Based Model Order Reduction. There are a number of ways to
reduce the computational complexity of the problem and compute lower-fidelity approxi-
mations to the true solution while controlling the amount of error. One approach that has
attracted considerable attention is projection-based model order reduction [19]. Methods
of this form have been applied to a wide variety of applications including electromagnetics,
fluid dynamics, thermodynamics, and linear elasticity [6, 8, 14, 18]. We illustrate it here for
a finite element discretization of (1.1), where F is linear in u(µ). This leads to the following
variational problem: find uh(µ) E Vh such that

a (uh(p),vh; tt) = L (vh; µ) Yvh G Wh• (2.1)

Here, Vh and Wh are two finite dimensional function spaces with equal dimension, a :
Vh x Wh —} is a continuous and coercive bilinear form, and L : Wh r is a continuous
linear mapping. a and L are obtained from (1.1) through multiplication by a test function
vh E Wh followed by integration by parts. If Vh = Wh, this is known as a Galerkin projection
scheme. Otherwise, it is known as a Petrov-Galerkin method. For simplicity, we assume
Vh = Wh•

Let Nh := dim(Vh), and let fOiliN_hi be a basis for Vh. The numerical approximation to

u(µ) in Vh can be expressed as the linear combination uh(µ) = EiN= i ui,(µ)0a. The scalars
u,,(p), are the degrees of freedom for the approximation uh(µ) with respect to the basis
fcbil v±1. In the case of a standard Lagrange finite element method, the degrees of freedom
correspond to nodal values of the solution, but more general degrees of freedom such as
derivatives or moments are possible. The weak form (2.1) leads to a linear system of the
form

Ah(p)uh(p) = bh(p), (2.2)

where (Ah(µ))23 = a(03,0i; (b(µ)), = L(02; µ), and uh(µ) is the vector of degrees

of freedom of the finite element approximation uh(µ). If Nh is very large, this leads to a
prohibitive computational cost to solve for the full-order (high fidelity) solution for each pa-
rameter instance in the many-query or real-time context. The key to reduce the complexity
is to introduce a subspace VM c Vh with M = dim(VM) < dim(Vh) = Nh, and project the
residual of (2.2) onto this subspace.

For concreteness, let {On be a basis for VM and let be the vector of degrees of
freedom of with respect to the basis of Vh. We also assume the vectors are orthonormal
in the Euclidean inner product on NNh. Define the matrix Vm by

VM =(bl I S2 l • • • I CU) • (2.3)

We look for a reduced order solution of the form um(µ) = E3A/1=1 cj(µ), and solve for the
vector of coefficients c(µ) through the equation:

Am(p)c(p) = bM(P), (2.4)

where Am(µ) = VLAh(p)Vm and bm(µ) = VTmbh(µ). Equation (2.4) is an M x M
linear system, which is much smaller than the original Nh X Nh linear system. Following
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this, the vector of degrees of freedom of um-(µ) is computed through um- (u) = Vm-c(µ).
This is equivalent to a Galerkin projection directly onto the reduced subspace.

2.1. Separation into Online and Offline Stages. In many applications (2.2) must
be computed repeatedly for many different parameter instances. If the dimension of the
problem Nh is large, this can be prohibitively expensive as the number of parameter instances
grows. However, if there exists a method to compute a very cheap approximation to this full-
order system, a reduced-order solution can be computed very rapidly for each new parameter
instance. In particular, an effective algorithm should be independent of the problem size
[9]. Of course, such an inexpensive solution procedure must be developed.

From the point of view of reduced order modeling, as long as the marginal cost or
asymptotic average cost of the solution for each new parameter instance is small, a more
expensive set-up phase that constructs the necessary components for the reduced-order
computation is acceptable [20]. That is, if the number of parameters for which a solution
is required is very large, the time taken to compute a small number of full-order solutions
will not substantially effect the marginal cost. Reduced-order modeling thus divides the
algorithm into two stages, an initial set-up phase (offline phase), and a repeated solution
phase (online phase).

In the case of a linear elliptic PDE, we can naively separate the problem into two stages
as follows. In the offline stage, we build the subspace VM and assemble the corresponding
matrix VM. This can be done by sampling the set of possible parameters D c RP and
using a proper orthogonal decomposition (POD) [1] or a greedy reduced basis (greedy-RB)
[7]. Then in the online stage, for every new set of parameters pt, we assemble Am (it) and
NI (it) and solve the resulting reduced linear system.

However, this will not result in a computationally cheap online stage, as it still depends
on the dimension of the original problem. Assembling AM (A) = VTmAh(t.t)Vm requires
assembling Ah(p), and so is not independent of Nh. Thus we cannot expect dramatic
decrease in computational cost in the online stage.

2.2. Improving the Online Stage - Separable Case. In the literature, an assump-
tion is often made that the problem is parametrically separable (or affinely parametrizable)
[6, 8, 10, 21]. In the linear case, this makes the assumption that

Q. QL
a(u, v; = E Oa (µ)ak (u, v), L(v; tt) = E 071,(,i)Lk (0, (2.5)

k=1 k=1

where ak and Lk are parameter-independent bilinear and linear forms, respectively, and the
eka, ek are smooth functions of the parameter p,.

With this assumption we then have

Q. QL

Ah(P) = E eak(to4i, bh(to = E (4, (m)q,
k =1 k=1

(2.6)

where Ali', are Nh x Nh parameter-independent matrices and the biki are parameter-independent
vectors in RNh. Thus, assembly of the M x M system can be done primarily offline: we
simply assemble Ati := VMAhVM, bkm := VI/b/4. Then in the online stage, for any new
parameter value tt, we can construct the linear system in (2.4) by

(la Q L

AM(lu) = E (it) (itt) = E el,(A)bM
k=1 k=1

(2.7)
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2.3. Improving the Online Stage - Non-Separable Case. While many linear
PDEs do enjoy the desirable property of parametric separability, not all do, and it is very
doubtful to hold for nonlinear PDEs. If the assumption (2.5) does not hold, one may apply
techniques such as the discrete empirical interpolation method (DEIM) [5] to approximate
the bilinear and linear forms by separable approximations. This results in further approxi-
mation error, is problem-dependent and intrusive in nature, and requires more sampling in
the parameter space to construct the basis [9].

With this in mind, [9] proposes a maching learning approach through regression via
neural networks for steady-state parametrized PDEs. Their approach is as follows. First,
they sample the parameter domain D and compute a set of "snapshote of full-order solu-
tions, and perform a proper orthogonal decomposition to obtain a basis of functions f ilim=1
with orthonormal vectors of degrees of freedom. They define an inner product on the finite
element subspace Vh by

(Uh, Vh)h := (uh, vh) 2. (2.8)

That is, the Euclidean inner product of each function's vector of degrees of freedom. This
results in a matrix VM of the form (2.3) with orthonormal columns.

Rather than seek the Galerkin projection um (µ) onto this subspace for any given param-
eter µ and corresponding full-order solution uh(µ), they seek its projection in the h-inner
product. That is,

Phuh(p) = (uh(p), ei)14 = V MVITitth(p).
i=1

(2.9)

To compute the projection directly for a given µ requires the full-order solution uh(µ),
so that this projection is unacceptable for an online stage. However, during the offline stage,
they train a neural network to learn the mapping:

c(µ) := VLuh(µ). (2.10)

The trained neural network is then a mapping G :RP —>

G(µ)

such that

(2.11)

In the online stage, for a new parameter vector µ, one simply evaluates the map CNN(p) =
G(µ), and then represents the approximate solution through its vector of degrees of freedom
by

uNN(µ) = VmeNN(µ) (2.12)

The evaluation of G is independent of the problem size Nh, and so leads to an efficient
online stage. The offline stage has considerable overhead, but this can be amortized over
the online stage if the solution is needed for many values of p.

They restrict this method to steady-state parametrized PDEs, in particular, nonlinear
Poisson and steady Navier-Stokes equations. The goal of our work is to extend this method
to time-dependent problems, using a simple parametrized linear advection-diffusion equation
as a test problem.

We note that the method developed in this paper has similarities with other work in the
field of reduced order models in dynamics learning. In [15], a Long Short-Term Memory
(LSTM) network is used to learn low-order dynamics for computational fluid dynamics
(CFD) data sets. In [4], missing CFD data is reconstructed by learning low-order dynamics
that result from compression through auto-encoders. In [3], the Sparse Identification of
Nonlinear Dynamics (SINDy) method, which uses symbolic regression, is used to learn the
low-order dynamics of POD modes.
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3. Model Problem: One-Dimensional Advection-Diffusion. We first outline the
neural network approach to temporal problems through a simple 1D advection-diffusion
equation with a single parameter. This problem is linear, and so can be handled by a
standard Galerkin projection in each time step. However, we start with this simple problem
to demonstrate the extension of the neural network approach to time-dependent problems.

3.1. Problem Definition. Fix it E [1,30]. We seek a function w(x, t; ,u) that satisfies

wt wx — wxx = 0 x E (0,1),

w(x, 0) = g(x) x E [0, 1],

w(0, t) = sin(itt) t > 0,

wx(1,t) = 0 t > 0,

with initial condition g(x) = sin(irx) + 2 x2. In order to introduce homogeneous boundary
conditions, define the variable u(x, t; := w(x, t; it) — sin(itt), which satisfies

ut + ux — uxx = cos(pt) x E (0, 1),

u(x, 0) = g(x) x E (0,1),

u(0,t) = 0 t > 0,

ux(1,t) = 0 t > 0.

(3.1)

(3.2)

Instead of seeking a reduced-order approximation to w(x, t; directly, our goal is to seek
an approximation uR(x, t; u(x, t; it), and take WR(x,t; := uR(x, t; + sin(µt).

3.2. Spatial Discretization. To discretize this equation in space, subdivide the in-
terval [0,1] into 100 equally spaced cells, and let Vh be the corresponding finite element
space of continuous piecewise linear functions that vanish at x = 0. Integrate (3.2) against
a test function vh (x) E Vh and perform integration by parts to obtain the weak form

(utvh + uxvh + ux(vh)x) dx = cos(itt) f vh dx,

Define the finite element approximation to u(x, t; it) by

Nh

Vvh E Vh• (3.3)

uh(x,t; = Euj(t; itt)0i(x), (3.4)
j=1

where {0i}3N±i is a basis for Vh, Nh := dim(Vh), and ui(t; ,u) E R. Defining the matrices

and vectors

Mii = fo OjOi dx, Ci = f dx, Dii = f Oti,X dx, (3.5)

ut(t; it) = ut(t; µ), bi = f dx, (3.6)

(3.3) is expressed as the system of ordinary differential equations (ODEs) given by

Mu' (t; it) + Cu(t; it) + Du(t; it) = cos(itt)b. (3.7)

Finally, define the matrix X := —M-1 (C + D) and the vector h := — M-1 b, to obtain

u' (t; = Xu(t; + µcos(itt)h. (3.8)
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3.3. Time Discretization. We use the second-order trapezoidal rule to discretize the
ODE (3.8). Introduce a sequence 0 = to < t1 < t2 < • • • < tN = T and fixed step-size
tn - tn_1 = At. The discrete approximation to u(tn; u(n)(p) is obtained through the
time-stepping scheme

u(°) (ft) = g,

At A 
(1- - X) u(n)(µ) = (1- + —

2 
X) u(n-1) +

t 
{cos(ittn) + cos(ittn_1)) h.

(3.9)

2 2

Here g is the vector of degrees of freedom from the finite element interpolant of the initial
condition g(x), which is independent of pt. Define f (n) (p) := µAt cos(p,tn). Then the time-
stepping relationship can be written compactly as

11(1) (ft) = F1 (f (1) (U), f (0) (it))

u(n) (fU) = F2 (u(n—i), f (n) (P) f (n-1) (P)) n > 2.
(3.10)

Since the initial condition u(°) is independent of the parameter itz, and the time-steps are
uniform, the coefficients at the first time-step only depend on the initial forcing and the
forcing at the first time-step. Beyond the first-time step however, the coefficients also
depend on the coefficients at the previous time-step.

3.4. Proper Orthogonal Decomposition in the L2 Inner Product. We develop
a reduced order model to uh(x,t; it) by constructing a subspace VM C Vh with M :=
dim(VM) < Nh = dim(Vh), and writing

M

u(,,r/Ii)(p) =Ec(in)(p),
j=1

(3.11)

where {0 is a basis for VM. We construct VM through a proper orthogonal decomposition
of a collection of full-order solutions or snapshots. As above, let u(n)(µ) be the vector of
degrees of freedom of the full-order solution given by (3.9). Let :POD := 41111127 • • • 1[1Q1

be a discrete subset of the set of possible parameters D = [1, 30], choose {nl, n2, , ar} C
{0, , N}, and form the "snapshot" matrix

s:= [u(ni) (P1) u(n2) (P1) • • . U(Th') (P1) u(ni) (112) . . . 1U(nr) (11Q)] • (3.12)

We then perform the following algorithm:
• Assemble IVI ij := (03, (/),) L2 (0,1) ,

• Form K = A4-112 sYST

• Solve Kv, = i = 1, 2, ... M,
• Set = M-1/2vi, i = 1, 2, ... M.

Here, M1/2 refers to the matrix square root; since X is symmetric positive definite, it admits
an eigendecomposition M = QDQT so m1/2 = QD1/2QT Letting VM := , Cu],
we obtain a matrix where the columns are the degrees of freedom of a collection of L2-
orthonormal finite element functions, i.e. VT.A4MIT = I. This is in contrast the proper
orthogonal decomposition performed in [9], which resulted in functions that are orthonormal
is the discrete (•, .) h inner product. If we choose basis functions that are orthonormal in
the (., •)L2 inner product, we can easily compute the L2 norm of the difference between two



P. Sentz, et al. 47

functions v, w E VM, through their expansion in the basis {W. That is, if v = E7=1 vgj

and w = Ejm=1 wk, then

WIlL2 = (V -
j =1

)2 = 11v — w 22 , (3.13)

where v and w are the vectors of the expansion coefficients vi and wj, and 11 • 112 is the
standard Euclidean norm on P:m.

In the training phase, when a neural network is trained to compute the expansion
coefficients, using the mean squared error of the POD coefficients as the loss function is
thus equivalent to using the squared L2-norm of the underlying function space as the loss.
Using the proper orthogonal decomposition from [9], a mean squared loss function instead
corresponds to the discrete 11'11h norm.

To select M, the dimension of the basis, one can terminate whenever the relative energy

(3.14)

is sufficiently close to 1, where R = rank(S).

3.5. Approximating the Solution in the POD Basis. The coefficients in (3.11)

can be computed through the L2 projection of the full-order approximation 74,n)(p,), i.e.,
(n) (n)
C3 (A) = (Uh (A), 03)L2. This can also be expressed as

c(n)(p) = VTO/u(m)(µ). (3.15)

Of course, this is not practical for the online stage of the reduced order model, as the full-
order solution must be computed up to time tn, and then projected onto the basis. A classical
approach is to project the initial conditions onto the basis, and then evolve the coefficients
forward in time by projecting the POD onto the subspace VM. This will be referred to as
POD-ROM. Similarly to the full-order scheme, we define matrices

l l_____ ,..., _ 1
Mii = f U.i dx = 8i.i, Cii = f eA dx, Di • = f eiej dx, (3.16)

ID 0 0

along with the vector

bi = f dx. (3.17)

Projecting the full-order time-stepping scheme (3.9), a vector of approximate reduced co-

effients 4)04 is computed through the time-stepping scheme:

(1- + At ( + :6)) c(;)(µ) = (1- - —A2t (a + D)) 4-1)
2

(3.18)
itAt
2  (cos(ittn) + cos(p,tn_l)) b.

It must be emphasized that for n > 1,

c(;) (it) vlImu(n)(p) = c(n) (p). (3.19)
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That is, only the reduced coefficients at time 0 are guaranteed to be the projection coeffi-
cients of the full order solution. We can represent these two approximations of u(n)(µ) in the
basis of VM schematically. The POD-ROM approach can be written as in figure (3.1(a)).

If we require the true projection coefficients c(n)(µ) = VT 1VIu(n)' it\) for every n, then
we can evolve the full-order solution forward in time and project onto VM every time step.
This is represented in figure (3.1(b)).

As mentioned before, this is not a practical method for constructing a reduced order
model, as it is just as expensive as the full-order model.

Instead, it is possible to evolve the solutions for many different parameter values µ and
store the true coefficients. We propose training a neural network to learn the map between
c(n-i) (A) and c(n) (u), and bypass the computation of the full-order solution at the next
time step. This is shown in figure (3.1(c))

Thus, we train two neural networks N1 and N2, that compute approximate projection
coefficients in a manner analogous to the full order solution in (3.10).

c(Ni),- = N1 (f(1)(tt), f (2) (U))

c7T11/ (it) = N2 
(c(n1) (p), f (n) (p), f(n-1) (p)) n > 2.

(3.20)

3.6. Numerical Results. As mentioned previously, we divide the interval [0, 1] into
100 cells, and use a finite element space of linear polynomials corresponding to this partition
for the space discretization. To construct the POD basis, we fix At = 1+0, and compute
the full-order solutions for parameter values µ E {1, 2, ... , 29, 30} up to time T = 27, or
300 timesteps. The parameter-independent initial condition is retained as the first POD-
snapshot, then for each sampled parameter µ we save the corresponding solution at each
time step as an additional POD-snapshot. This results in the matrix S from (3.12) of size
100 x 6001. Only 3 basis functions are needed to capture 99.99% of the energy in (3.14).

We next generate 30 samples µ E [1, 30] to serve as our training data, and an additional
15 randomly generated samples as the validation set to avoid overfitting.

We approximate the map ci(\/),1 = Nl (f(1), f(o)), which is a mapping 1112 —> Rm. We

train M neural networks to learn each individual generalized coordinate in Rm. The train-
ing process minimizes the mean squared loss in (3.13) over the training set using Pytorch's
Limited Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm [16, 17]. The op-
timization is terminated after 50 iterations or if the average loss on the validation set does
not decrease for 5 consecutive iterations. Since convergence is sensitive with respect to ini-
tial network weights, the optimization is repeated for 7 different initializations, and the one
with smallest loss on the validation set is retained. We also use the average loss on the vali-
dation set to select the network architecture and activation function. We use a feedforward
neural network with two hidden layers, and choose a layer width from between 2 and 5. We
also use both the standard Rectified Linear Unit (ReLU) activation function [12], and the
Continuously Differentiable Exponential Linear Unit (CELU) [2]. A hyperparameter scan
is performed to determine the layer width and activation function. For the first network,
the optimal architecture is to use 3 nodes in each hidden layer for the first and third POD
coefficients, and 5 nodes for the second coefficient. Using the CELU activation function
results in a smaller average loss on the validation set. It was found that regularization via
weight decay was not necessary for the network to generalize well to the validation and
testing data.

The first network only computes the POD coefficients for the first time step. To com-
pute POD coefficients beyond this first time step, we must train a second network. There
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structed in the offline stage.

Fig. 3.1

are a number of choices we must make about the training set. First, for each of the 45 pa-
rameters used in the training and validation set, how many snapshots should be computed
when constructing the training data? Second, how many of these snapshots should actually
be retained in the training data itself? If a network can be trained to predict POD coeffi-
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cients for long simulations using the projection coefficients for a small subset of snapshots,
this would result in considerable reduction of computational cost, even if this step in the
algorithm is part of the offline stage.

Our goal is to accurately compute POD coefficients out to time T = 27, which was the
final time used in constructing the snapshot matrix S. We keep At fixed at 1+0 . We solve
the full-order problem for varying number of timesteps Ntrain E {10, 20, 30, 40, 50, 75} and
retain 9 randomly selected snapshots. The training data are the corresponding projection
coefficients, and the desired outputs are the projection coefficients at the next timestep.
While we have access to much more data than 9 snapshots, obtaining an accurate neural
network using only a small subset of snapshots is a desirable outcome, especially for problems
that are more computationally intensive. Thus, we choose a small number in order to capture
the effect of the size of the training data on network accuracy. Again, we select the network
architecture and through the validation set. We compare results using both ReLU and
CELU activation functions. See figures (3.2) and (3.3).

To test the accuracy of the results we randomly generate 60 more parameters in the
interval [1, 30], and take the mean L2 error over the test parameters for each timestep out
to T = 27r. In figures (3.2) and (3.3), the red curves show the error between the true L2
projection of the full-order solution and the POD-ROM approximation, and the blue curve
shows the error between the projection and the neural network approximation.

With the ReLU activation function, figure (3.2), we clearly see the benefit of adding a
larger number of potential timesteps in the training data. Using only 40 or 50 timesteps
in the training data leads to an approximation that quickly becomes worse than the POD-
ROM approximation. Using 75 timesteps however, gives a method that is able to outperform
POD-ROM.

The CELU activation, figure (3.3), is not as clear cut. With 40 timesteps, we already
obtain an approach that is better than POD-ROM. However, using 50 timesteps, which
should improve the results, results in a method that is less accurate on average than the
standard POD approach. However, once we use 75 timesteps, we obtain an approach that
is more accurate than both POD-ROM and the ReLU network over the entire time interval
[0, 27r].

With only a relatively small subset of the available training data, we see a clear gain in
accuracy over the POD-ROM method.



10-0

10-`'

P. Sentz, et al.

Mean ReLU Error over Testing Set 40 Timesteps

•

—0— Neural Network Error

—0— Classical POD Error

3 4 5 6
Time

(a) 40 Timesteps

Mean ReLU Error over Testing Set - 50 Timesteps

•

•
—0— Neural Network Error

—0— Classical POD Error

2 3 4

Time

(b) 50 Timesteps

5

Mean ReLU Error over Testing Set - 75 Timesteps

•

—0— Neural Network Error

—0— Classical POD Error

0 2 3 4

Time

(c) 75 Timesteps

5

51

Fig. 3.2: Mean L2 over Testing Set using ReLU approximation. The red curve is the error between the L2
projection and the POD-ROM approximation. The blue curve is the error between the projection and the Neural

Network approximation. Different numbers of timesteps are used when generating testing data.
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4. Conclusions and Future Work. We have demonstrated the success of the neu-
ral network approach to time-dependent parametrized PDEs on a simple test problem in
one space dimension. Since the neural network is trained to predict the L2 projection
coefficients, with enough training data, it outperforms the POD-ROM approach in the cor-
responding norm. This method thus has promise as an improvement over standard model
order reduction techniques.

At this point, all results are experimental in nature. A theoretical analysis using ap-
proximation results from neural networks would help explain the impact of the size of the
training data, as well as the influence of the activation function and architecture of the
network. This would also allow for the investigation of how error is propagated through
time due to incorrect inputs from previous neural network evaluations.

Extending the technique to more complicated problems is also an obvious next step.
Higher-dimensional problems will demonstrate the technique's potential to tackle more phys-
ically relevant problems. Applying this method to nonlinear problems is also important, be-
cause it is this situation where a very efficient online stage is crucially important. Classical
projection techniques cannot result in online stages that are independent of problem size,
which is an essential ingredient for computationally efficient reduced order modeling.

Finally, the architecture of the neural network itself should be explored. Residual neural
networks are an alternative architecture choice, and recurrent neural networks should be
used to try and capture the time-dependent nature of the problem. Nonlinear alternatives
to POD compression include autoencoder compression [13], which may be necessary to
properly resolve hyperbolic and advection-dominated equations.
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IMPLEMENTING PHYSICAL DEPENDENCE IN THE FUNCTIONAL
TENSOR TRAIN

TIM REID*, COSMIN SAFTAt, ALEX CORODETSKYt, JOHN JAKEMAN1, AND KHACHIK

SARGSYANI

Abstract. The functional tensor train is a functional analogue to the tensor train decomposition
that can be used as a surrogate model. We adapt this formulation to model data that depends on both
stochastic and physical inputs, while treating stochastic and physical inputs separately. We also develop an
optimization algorithms to fit the model to data and test the algorithms on canonical systems of differential
equations. The goal of this project is to eventually use a functional tensor train as a surrogate model for
the E3SM land model.

1. Introduction. We want to create a surrogate model to functions of the form

f (x,p) (1.1)

where X is the set of stochastic inputs to the function and P is the set of physical inputs to
the function. The surrogate model that we use is the Functional Tensor Train (FTT) model
[12, 6, 5]. The formulation is a continuous analogue to the Tensor Train decomposition
[12, 6, 5]. Our goal is to apply the surrogate model to the Energy Exascale Earth System
Model (E3SM) Land Model [1]. The E3SM Land Model has both stochastic and physical
inputs. Currently FTT models deal with all inputs in the same way and approximate
functions with one output [6]. Our goal is to treat the stochastic and physical inputs
separately, approximate functions with multiple outputs, and develop optimization methods
to fit the modified FTT models to data that depends on stochastic and physical inputs.

1.1. Notation and Tensor Multiplication. A tensor is a multidimensional array,
i.e. a vector is a one dimensional tensor, and a matrix is a two dimensional tensor. Lowercase
bold letters denote vectors: a and uppercase bold letters denote matrices: A. Calligraphic
uppercase bold letters denote order 3 or higher tensors: A. A lowercase letter with subscripts
denote elements of the corresponding tensor; for example, is the entry in position (i, 1, j)
of A. Variables with superscripts in parentheses denote a specific instance of that variable;
for example, A(k) is the kth tensor in the sequence of tensors {A(1), A(2), . . , A(d)}.

Let A be a N1 x N2 X • • • x Nd tensor and c be a length Nk vector. The tensor-vector
multiplication of A with c is an order (d — 1), N1 x N2 X • • • x Nk_1 x Nk+1 • • • x Nd size
tensor with entries

Nk

a 2 .. dcnk(A x k C)215,2, n n na 'n••• k-1, 
•

nk=1

The subscript in x k refers to the dimension of the tensor that is being contracted with the
vector [9].

1.2. Overview of previous work. A FTT approximation for a function with one
output that does not depend on a physical input is given by

f (x) f(x , 0) = F(1) (x1 19 , 1F (2) (_ 1,_ ,X2, 02) . . • F(d)(xd,Od),
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t University of Michigan, goroda©umich.edu
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1Sandia National Laboratories, ksargsy@sandia.gov

(1.2)
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where d is the dimension of X [12, 6]. The term F(k)(xk,Ok), called a tensor train core,
k

is a rk x rk+1 matrix where the entries, 4
()
3 (xk, Ok,,,3), are univariate functions in xk that

depend on a set of parameters 0k,i,3. The first and last ranks r1 = rd+i = 1 so that the
multiplication through the tensor train results in a scalar output. Linearly parameterized
univariate functions are written as

f(k-) (X k) = E ok,i,j,l4k)(xo,3
1=0

where 0/
(k)
 (xk) is a basis function with corresponding coefficient Ok,,,3,1. One example of

linearly parameterized univariate functions are Polynomial Chaos Expansions (PCEs) that

represent the stochastic input xk [11], where 0/
(k)
 (xk) is a degree l orthonormal basis polyno-

mial [11]. Another choice of a linearly parameterized function is a Fourier series expansion
[4]. Non-linearly parameterized functions can, for example, be represented as Gaussian
kernels,

Pk/2
—1.(k),

(Xk) = E eki,71 exp (x — 0k,i,j,l+Pk12)2
/=1

where a is a standard deviation chosen by the user [6]. The tensor train cores do not need
to have the same parameterization as the entire set of cores.

In order to simplify the notation, for the rest of this paper we assume that the univariate
functions are linearly parameterized. Non-linearly parameterized functions are implemented
similarly to linearly parameterized functions.

When the univariate functions are linearly parameterized, we express the tensor train
cores as [6],

F(k)(xk, 0) = A(k) x2 (1)(k)(xic),

where A is a rk X pk X rk±i tensor with

a(k 0,1),3 ki,3,1)

and c/,(k) is a length pk vector with basis polynomial 0/ as entry l of the vector.
An illustration of a FTT for a function with d = 5 inputs is shown in Figure 1.1. The

first rank of the first core and the last rank of the last core are both one because we are
using the FTT to approximate a function with one output. In the illustrations in this paper
blue cores only depend on stochastic inputs x, red cores only depend on physical inputs p,
and purple cores depend on both stochastic and physical inputs x and p.

F(1)(Xi) F(3) (x3) I I F(4) (x4) F(5) (x5)

Fig. 1.1: Illustration of FT with d= 5 inputs. The cores do not depend on physical inputs.

2. Variations of the Functional Tensor Train Approximation. We present three
FTT formulations that will be used to approximate functions with both stochastic inputs
and physical inputs. These variants differ in how the physical input is handled by in the
ensemble of FTT cores. These options are called the Multi-Output Tensor Train (MTT),
the Augmented Tensor Train (ATT), and the Parametric Tensor Train (PTT).
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2.1. Multi-Output Tensor Train (MTT). The MTT incorporates dependence on
physical inputs by evaluating the FTT at N points at the same time. These N points
represent values for N different physical inputs.

The FTT is evaluated at multiple points by fitting multiple FTTs to the data points
with one FTT per data point. Some cores can be shared between the FTTs. This happens
when the input corresponding to the shared core does not vary for the different outputs.
Sharing FTT cores across several models reduces the total number of parameters.

Figure 2.1 illustrates an FTT with d = 5 inputs and three outputs. The first, third,
and fifth cores are shared between the three outputs, while the second and fourth cores are
different instances.

F(2) (x2) F (3) (x3)

M._

F (4) (x4)

Fig. 2.1: Illustration of FT with d= 5 inputs and 3 outputs. The first, third, and fifth cores are shared for all
three outputs, while the second and fourth core have a different instance for each output.

This method of creating a FTT with multiple outputs is used by the ATT and PTT
versions of the FTT to approximate a function with multiple outputs.

2.2. Augmented Tensor Train (ATT). The ATT incorporates dependence on phys-
ical inputs by inserting an additional tensor train core in position k that depends on the
physical inputs. This amounts to treating the physical inputs similarly to the stochastic
inputs. The resulting tensor train,

.f(x p, 0) = F(1) (x, 0 i)F(2) (x 02)) • • •

F(k-1)(
m n ) f

uk_1).r1u3, up)r ‘k‘ xic,0k) • "F(d)(xd70(1),

has d + 1 cores: d cores for the stochastic inputs and 1 core for the physical input. The
tensor train core dependent on the physical inputs, p, is

F1(p, Op) = AP x2 l,b(p),

where AP is a tensor of coefficients and 11)(p) is a vector of basis functions evaluated at p.
The basis functions, 0, do not need to be univariate. If the physical input is multi-

dimensional, then can be a multivariate function, and it can be constructed as a tensor
product of the univariate basis functions [11].

An example of the ATT is given in Figure 2.2. There are d = 5 stochastic inputs and
the fourth core corresponds to physical inputs. The cores dependent on stochastic inputs
are blue and the core dependent on physical inputs is red.

F(3) (x3) F(1) (p) F(4) (x4) F(5) (x5)

Fig. 2.2: Augmented tensor train with 5 stochastic inputs and with the tensor core for the physical inputs as the
fourth core.
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2.3. Parametric Tensor Train (PTT). The PTT incorporates the physical inputs,
p, by making the parameters, dependent on the physical inputs. We do this by
redefining the parameter, as a parameterized function:

= E
s=1

where Os(p) is a basis function with corresponding coefficient Ok,i0,1,s. The basis functions for
the physical inputs are handled in the same way as for the ATT approach. The dependence
on two sets of basis functions redefines the tensor train cores as:

F(k) (x, p, Bk) = (A(k) x 4 0(19)) ><2 cP(xk). (2.1)

The coefficient tensor, Afk), is now a rk x pk x rk+1 x S tensor. The last dimension of
A(k) are the coefficients to the basis functions, O. The result of the tensor contraction
A(k) X 4 '0(p) is a rk x pk x rk±i tensor that is used in the same way as the coefficient tensor
for the MTT and PTT.

An example of the PTT is given in Figure 2.3. There are d = 5 stochastic inputs and
all cores are also dependent on the physical inputs.

F(1)(x1119) F(2)(x2)/9) F(3)(x3,p) F(4) (x4) p)

Fig. 2.3: Illustration of PTT for problem with 5 stochastic inputs and all cores also dependent on physical inputs.

It is possible to introduce dependence on the physical inputs to only a subset of cores,
leaving the rest dependent only on the stochastic inputs. This can be done if some of the
stochastic inputs do not depend on the physical inputs. This is somewhat similar to when
only some cores in the MTT have a different instance for each physical input. The advantage
of not introducing a dependence on all the cores is that it reduces the amount of parameters
that need to be computed.

The ATT can be viewed as a special case of the PTT. This is because the PTT can be
made into the ATT using the following steps:

1. Add a dimension to stochastic input x in position k
2. Make the univariate functions corresponding to the new dimension of x degree zero

polynomials
3. Only introduce dependence on p to the parameters corresponding to the new di-

mension of x
This works because parameterizing the new tensor train core with degree zero polynomials
removes the dependence on x from that tensor train core.

3. Computing the coefficients for the PTT. We start with a data set y E
RM)(N)<17 that was obtained from some function f in the form of (1.1). The first dimension
of y corresponds to the output of the function for M instances of the stochastic inputs x,
the second dimension corresponds to N instances of the physical inputs p, and the third
dimension corresponds to the V outputs of the function. To fit a PTT, f (x, p), to the data,
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we find the set of parameters, 0, that minimize the objective function

[

1 M N V

2J(9) = 2 E E E (y.,m,u — lu(x(m),p(n),(9))  + All9fl •

m=1 n=1 u=1

59

(3.1)

This the least squares objective function with L2 regularization [2]. The regularization
parameter, À, is chosen by the user. When the univariate functions in the tensor train
cores are orthogonal and linearly parameterized, then the L2 regularization is equivalent
to the regularization presented in [6]. To minimize this function we can use alternating
least squares [9, 13] or gradient based methods such as L-BFGS [3] and Stochastic Gradient
Descent [2] or its variants [8].

3.1. Gradient of the Objective Function. To use gradient based methods, we need
to know the partial derivative of (3.1) with respect to all the coefficients O.

PROPOSITION 3.1. [6, Extension of Proposition 1] The partial derivative of the objective
function J(9) from (3.1) with respect to the coefficient Ok,i,j,v,I,s is

M NaJ 
E E (Ym,n,v 

fr(x(m),p(n))) 
afv(x(m),p(n), 9)

(90 k,i,j,v,l,s m=1 n=1 
/ 00 k,i,j,v,I,s

The partial derivative of the PTT with respect to the same coefficient is

af,(x(m), p(n), 61) = Fv(1) (x1(m) p(n) 91)y(u2)(x2(m)p(n) 92) . . .
00 k,i,j,v,I,s

—1) (x(km)l, p(n) k_1)GF?+1) (xj,m+1, p(n) k+1) Kci) (x(dm) P(n) 0 cl) (3.2)

where F,n is the tensor train core corresponding to output v of f(k). G is a rk x rk+1
matrix defined as

f,„,„,(4,m),p(n),61)

gw ,z — 80k,i,i,v,i,s (D, z) = j)

(w, z) (i, j),
(3.3)

where fw,z,v is entry (w, z) of F,,k)
Proof. Because taking a partial derivative is a linear operator, it is sufficient to show

the derivative for one term in the sum of the objective function, J, from (3.1).
First apply the chain rule to one term in the sum to get

a 1 
YM,„nu — fu(x(m),p(n),0))  ( 

2

= (ym,n,u — fu(x(m) , p(n) 0)) 
ai.

aek
(x(m) , p(n) , e) (3.4)

,i,j,v

with 1 < n < N, 1 < m < M, and 1 < u < V.
Now we compute the partial derivative of the PTT approximation, given by

fu(x(m) p(n)) — Et1) (x7n) p(n))F p(n)) • • • F,c1)(X(dm),P(n))



60 Functional Tensor Train

Apply the product rule to this equation and get

afu(x(m),p(n))
aek,i,j,v,1,8

(d q-1
=E ritv(47), 13(n))

q=1 b=1

(OFV (4m) , p(n)) fi
ktb)(x(bm),p(n)) . (3.5)

061k,i,j,v,l,s b=q+i

Finally, we compute the partial derivative of core q. The parameter Ok
appears in core k for output v, so

491',,q) (4n) ,p(n))„ _ 0
q k or u v (3.6)

aak,i,j,v,l,s

Additionally, parameter Ok,i,j,v,1,8 only appears in entry (i, j) of F.,k) (4m) , p(n)), so the par-
tial derivative of this core with respect to Ok,i,j,v,1,s is the partial derivative of the univariate
function in position (i, j):

(9F,k)(x(km) ,p(n)) a f (4.'),13(n),e) G := 

aOlc,i,j,v,l,s 0

(w, z) = j)

z) j).

j,v,l,s only

Substituting this equation along with (3.6) into (3.5) results in (3.2). Substituting (3.2) into
3.4) proves the proposition. 0

3.2. Alternating Linear Least Squares. If the univariate functions in the tensor
train cores are linearly parameterized, then we can use alternating linear least squares to
minimize (3.1). Alternating least squares works by fixing the parameters of all cores except
one then performing linear least squares to solve for the parameters in the remaining core.
We then cycle through the same process for the rest of the cores, and possibly repeat the
process.

Here we show alternating least squares algorithm to compute the parameter tensor
,A(") in the PTT by showing how to express the PTT as a matrix-vector product with a
reshaped version of A(") as the vector. Express the PTT as

f(x(m),p(m),60, = T(m'n'v) X ((A(k,v) x4 41(p(n))) x2 4)(k)(xzrn))) X U(m'n'v)

where T(m'n"v) and U(m'n'v) are r1 x rk and rk x rd+1 matrices, respectively, representing
the multiplication of all cores before and after core k for output v and instance m and n of
inputs x and p respectively. Define the rlMrd+1NV x rkpkrk+1S matrix H as

hco 
(p
(n))01(x(m))t,cm7 ri,v)u rnz,,n,v)

and the rkpkrk+1S length vector a(k,v) as

a(k,v) = a(k,v)r,p,q,s,

where the indices a and a are

a = wMrd+1NV + mrd+1NV + zNV + nV + v

13 = rpkrk+1S prk+1S + qS + s.
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Then

Ha(k,v) = Y,

where Y is a reshaped version of y with

-.&,/ = Ym,n,v•

Linear least squares can be used to solve

(
Vkij
II) a(k,,, _ ()

())

for a(k), which is equivalent to solving for the optimal coefficient tensor A.(k) with L2
regularization parameter À.

3.3. Choosing the Regularization Parameter. To choose the regularization pa-
rameter À, we divide our data for fitting an FTT model into a training set and a validation
set. We then use the training set to fit the FTT and use the validation set to measure the
error of the fitted FTT model for several values of À. The value of À that produces the
lowest error with the validation set is selected for the optimization process.

4. Testing the Algorithms. We test the algorithms that compute the FTT approx-
imation by validating the gradient computation and then using the FTT to approximate
synthetic data.

4.1. Testing the Gradient. The gradient in the FTT algorithms is computed ana-
lytically using the formula in Proposition 3.1. To verify that the gradient was derived and
implemented correctly, we compare the analytic gradient to an approximation of the gra-
dient computed using finite differences. The error was measured using the relative infinity
norm error between the analytical expression and finite differences gradients. The gradient
was compared using 10 random PTTs that have 10 cores each. The median and maximum
errors from the 10 tests are in given Table 4.1. The PTT code is used to generate both the
MTT and ATT variants of the FTT so it is sufficient to only test the gradient function with
the PTT code.

Median infinity-norm error Maximum infinity-norm error
3.84 x 10-7 6.90 x 10-7

Table 4.1: Relative errors for the gradient functions

4.2. Approximating a random tensor with a functional tensor train model.
Next we approximate a randomly generated FTT with a similar model. For this test we
assumed a 10-dimensional input x, the rank of each tensor train core was 4, and the uni-
variate functions for x were degree 2 Legendre polynomials. For the ATT and PTT tests,
the functions for p were degree 2 Chebyshev polynomials. We trained and tested the FTT
on 100 instances of x and for the ATT and PTT, 100 instances of p. The PTT had physical
dependence imposed on the last core. The FTT approximations were trained using L-BFGS.
The errors on the training and test data are in Table 4.2
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Model Training Error Testing Error Time To Compute
MTT 2.43 x 10-2 4.92 x 10-2 1.03
ATT 1.50 x 10-2 3.90 x 10-2 4.55
PTT 3.60 x 10-3 1.17 x 10-2 17.33

Table 4.2: Training and testing error for FTT approximations with all three models of random FTT data as well
as the time to compute the approximations.

The ATT and PTT both had lower error than the MTT while the PTT took longer to
compute than the others approaches. This is because imposing spatial dependence on an
existing core multiplies the number of parameters that need to be solved, having the same
effect on the number of parameters as adding S tensor cores without dependence. This is
contrasted with the ATT that only adds one tensor core to the problem. The quality of the
code does not have an effect on the speed difference of the PTT and ATT because the ATT
was computed using the PTT code. The accuracy and time behaviors are seen in the other
test problems as well.

4.3. Approximating systems of ODEs with an FT. We also generated test data
using systems of ODEs, specifically the Lorenz modes [10],

dx

dt
dy

dt
dz

dt

and the SIR model [7],

= cr(y — x)

= x(p— z)— y

= xy —

dS
- = —13SI
dt
dl 
- =
dt 

13SI —71

dR

dt - = '11

We treated the parameters in the models above as stochastic inputs and time as the physical
input. For both ODE systems, none of the FTT cores were shared between the different
outputs, and all cores in the PTT were dependent on time.

For the Lorenz system, we sampled 160 times points between t = 2 and t = 3 and 160
normally distributed parameters with means of 28, 10, and 8/3 for a, p, and respectively
and with standard deviations of 5% of those nominal values. The univariate functions for
x were degree 2 Hermite polynomials and the functions for p were 50 term Fourier series.
The ranks of all the tensor train cores was 4 and the FTT models were computed using
Alternating Least Squares. The training and test errors are given in Table 4.3, and plots of
ODE solutions with one sample of training and testing data each are in Figure 4.1.

Model Training Error Testing Error Time To Compute
ATT 1.07 x 10-1 1.53 x 10-1 0.46
PTT 5.08 x 10-2 1.35 x 10-1 45.29

Table 4.3: Training and testing error for FTT approximations ATT and PTT models of Lorenz model data as
well as the time to compute the approximations.
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Fig. 4.1: Lorenz system true value and FTT model approximation. Approximations with the median error for the
training and testing sets were chosen. The error in the plot title is the relative error for this particular sample.

The SIR model was approximated in the same way as the Lorenz system except for a
few changes. We selected 100 points along the time axis between 0 and 3. A number of
50 stochastic parameter samples were picked from independent normal distributions with
means 0.2 and 0.8 for l3 and 7 respectively with a standard deviation of 25% of those nominal
values. The FTT models were computed using L-BFGS. The results for the SIR model FTT
approximations are in Table 4.4, and plots of ODE with one sample of training and testing
data each are in Figure 4.2.

Model Training Error Testing Error Time To Compute
ATT 6.21 x 10-2 9.31 x 10-2 11.82
PTT 1.20 x 10-2 9.29 x 10-2 481.54

Table 4.4: Training and testing error for FTT approximations using ATT and PTT for the SIR model data as
well as the time to compute the approximations.
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Fig. 4.2: SIR model true value and FTT model approximation. Approximations with the median error for the
training and testing sets were chosen. The error in the plot title is the relative error for this particular sample.

The results for the Lorenz and SIR ode systems mirror the results to approximating
the random FTT. The ATT and PTT have similar levels of accuracy and the PTT is
slower to compute than the ATT. The plots of the ODE and the FTT approximation
show the approximation from the training or testing set that has the median error. The
approximations for the SIR model are more accurate than the approximations for the Lorenz
system. This is most likely because the chaotic nature of Lorenz model.

5. Summary and Future Work. The functional tensor train can be used to approx-
imate data that depends on some inputs. We implemented three variations of the functional
tensor train that treat stochastic and physical inputs to the data separately. The variations
incorporate physical inputs into the FTT by adding a new core and treating the physical
inputs as one more stochastic input (ATT), or the physical inputs were incorporated by
making the coefficients in the cores dependent on the physical inputs (PTT). In our numer-
ical experiments both methods result in similar levels of accuracy but the ATT model is
faster to compute than the PTT model since the number of parameters in the former is less
compared to the later approach.
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LINEAR ALGEBRA-BASED TRIANGLE COUNTING VIA
FINE-GRAINED TASKING ON HETEROGENEOUS ENVIRONMENTS

ABDURRAHMAN YASAR* AND SIVASANKARAN RAJAMANICKAMt

Abstract. Triangle counting is a representative graph problem that shows the challenges of improving
graph algorithm performance using algorithmic techniques and adopting graph algorithms to new archi-
tectures. In this paper, we describe an update to the linear-algebraic formulation of the triangle counting
problem. Our new approach relies on fine-grained tasking based on a tile layout. We adopt this task based
algorithm to heterogeneous architectures (CPUs and GPUs) for up to 10.8x speed up over past year's graph
challenge submission. This implementation also results in the fastest kernel time known at time of pub-
lication for real-world graphs like twitter (3.7 second) and friendster (1.8 seconds) on GPU accelerators
when the graph is GPU resident. This is a 1.7 and 1.2 time improvement over previous state-of-the-art
triangle counting on GPUs. We also improved end-to-end execution time by overlapping computation and
communication of the graph to the GPUs. In terms of end-to-end execution time, our implementation also
achieves the fastest end-to-end times due to very low overhead costs.

1. Introduction. With increased use of accelerators for achieving better performance,
proposing algorithms that require ideally no architecture specific changes on code base
is crucial for portability on heterogeneous environments. This paper addresses these two
primary problems, using general purpose accelerators for the graph challenge and doing that
in a portable manner.

In this paper, we focus on a triangle counting algorithm that utilizes both CPUs and
GPUs on a compute node and uses a portable tiled layout that requires almost no (algo-
rithmic or layout) change between different architectures. This paper improves our previous
work [12, 13] by using the linear algebra based triangle counting algorithm on a tiled layout
and exploiting multiple levels of shared-memory parallelism on CPUs and GPUs.

This algorithmic changes allow us to achieve the fastest times for real world graphs
like twitter and friendster compared to past champions utilizing the GPUs. We achieve 3.7
seconds on twitter and 1.8 seconds on friendster graphs as opposed to 6.5 and 2.1 seconds by
past champions [5] when the graph is GPU resident. However, we believe assuming the graph
is on the GPU is not realistic for several use cases, therefore in this paper we also focus on an
end-to-end time metric when the graph is not GPU resident. In this case, we are able to count
triangles in twitter and friendster graphs in 4.6 and 3.1 seconds where data copy is overlapped
with computation. In the following sections we only report end to end results. In this paper,
we propose a new linear algebraic formulation for triangle counting problem that uses
tiles and a fine-grained parallel algorithm that exploits multiple level of parallelism on
different architectures. We implement a highly efficient multi-core, multi-GPU hybrid
framework that outperforms state-of-the-art. Experimental results demonstrate that our
codes achieve the fastest kernel times on real-world graphs when the graph resides on the
GPU and the fastest end-to-end times when the graph is not on the GPU. The performance
improvement is up to 10 x over our previous state-of-the-art implementation.

2. Background.

2.1. 2017 Static Graph Challenge. We used a linear algebra-based triangle count-
ing implementation, KKTri (previously designated TCKK) [12] in the the 2017 Static Graph
Challenge [10]. That work, focused on efficient shared memory parallelism on top of a
portable SpGEMM (called KK-MEM) [2] in the Kokkos Kernels library [6]. The primary
focus of that work was on two linear-algebra based formulations of triangle counting:

*Georgia Institute of Technology, ayasar@gatech.edu
tSandia National Laboratories, srajama©sandia.gov
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1. D = (L x U). * L: This formulation represented triangle counting in terms of
sparse matrix-matrix multiplication followed by an element-wise matrix multiplica-
tion where L and U are the lower and upper triangle parts of the adjacency matrix
for the graph.

2. D = (L x L) . * L: This formulation was used primarily for the 2017 Graph Challenge.
This formulation follows the same logic as the previous method.

Three optimizations were used to achieve good performance: (1) in-place masked SpGEMM
which reduced the memory needed for triangle counting; (2) data compression on the right
hand side matrix that allowed using efficient bitwise operations (3) ordering of the vertices
a common heuristic to reduce number of operations.

2.2. 2018 Static Graph Challenge. For the 2018 Static Graph Challenge [9], we
designed a linear algebra-based triangle counting implementation KKTri-Cilk that inherited
from the KK-SpGEMM algorithm [3] and improved load-balancing and efficient hyper-
thread usage issues using Cilk based programming model and optimizations.

The parallelization strategy and the runtime system is the main difference between
KKTri-Cilk and KKTri. KKTri used a very simple scheme, partitioning the matrix evenly
into partitions of a fixed number of rows. To balance the work among the tasks, KKTri-Cilk
uses an heuristic to find the partitions, creating partitions such that the number of non-zeros
within each partition are approximately equal.

Compression of the right hand side matrix can decrease the problem size significantly,
and allow using efficient bitwise operations. However, compression is not always successful
because of the natural order of the matrices.

3. Approach. A lightweight 2D partitioning algorithm is implemented to create tiles.
This algorithm partitions the graph in two dimensional space where diagonal tiles are re-
quired to be squares. This partitioning is known as symmetric generalized block distribu-
tion [4].

In Equation 3.1, we propose a new linear algebra based triangle counting formulation
that uses tiles. Similar to LL and LU this formulation represents triangle counting in terms
of sparse matrix-matrix multiplication followed by an element-wise matrix multiplication but
with tiles. If number of tiles is one then this formulation is identical with LL Algorithm [12].
Figure 3.1 illustrates this formulation. In the context of this paper, a "task" , t, counts the
triangles in a given triple of tiles, t = {To , Ta,k,Tt,k}. However, counting triangles in
all possible triple of tiles, ends up counting each triangle three times. Considering tasks,
t = {T,,j,T3,k,T,,k} where i < j < k avoids unnecessary counting.

Di = (Tij x Tj,k). * Ti,k (3.1)

Latapy et al. [7] proposes to use list intersection based counting for small degree vertices
and a hashmap based intersection for the other. In this work, a similar approach is used;
i.e. any task with sparse tiles will use list based intersection and denser tiles will use a dense
hashmap accumulator.

We use both CPUs and GPUs to process tasks together. There is no architecture
specific algorithmic change in the code-base. This will allow execution on any accelerator
and CPU combination. However, because of architectural differences, the parallelization
approach differs between CPU and GPU itself. While, CPU threads execute different tasks in
parallel, GPU threads execute cooperatively to complete the same task in parallel. Assigning
heavier tasks to GPUs is one of the primary optimizations that is being used in hybrid
approaches [11] due to massive parallelism capabilities of these devices. Hence, we try to
estimate and execute heavier tasks on GPUs.
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Fig. 3.1: Tiled Triangle Counting

N

We use Cuda streams to simultaneously execute several tasks on the GPUs. Four Cuda
streams are created for each GPU in the node. Then, a CPU thread is created and made
responsible for the operations on the stream. GPUs and CPUs compete for tasks and get
a new one from a queue when they are ready. Tasks are ordered based on their size in a
task queue. GPUs start to process tasks starting from the heaviest task and CPUs start to
process tasks from the lightest tasks. This continues until all tasks have been executed.

4. Experimental Evaluation. We present several experiments to identify the per-
formance trade-offs of the proposed work. These experiments were carried out on three
architectures with multicore processors and GPUs that are shown in Table 4.1. GNU com-
piler (g++) version 7.2, Cuda runtime version 10.0 and OpenMP version 4.0 are used to
compile and run the code on all the architectures.

4.1. Dataset and Copy Time Included Peak Rates. Table 4.2 lists 23 graphs
that we used in our experiments along with the number of vertices all), number of edges
a El), number of triangles an, size of the graph in memory (Raw Size), number of tiles
and number of tasks in the graph. In addition to 20 Challenge graphs for which triangle
counting is particularly costly, 3 additional large real-world graphs [8, 1] are included in
our experiments. We used the Graph Challenge procedure of symmetrizing the matrices
(using undirected graphs). For all experiments, we report the best of the median time of
five runs with different number of GPUs. Table 4.2 reports copy included best execution
time and rates on different architectures for each graph. This work outperforms last year's
submission by 6x on friendster graph and achieves 5.6 x 108 rate.

4.2. Relative Speedup comparisons to Last Year's Submission. Figure 4.1
presents relative speedup between this work and our last submission (KKTri-Cilk) [13].
This work outperforms KKTri-Cilk in 20 of 23 cases. In three small instances (flickrEdges,
amazon0505 and cit-Patents) KKTri-Cilk performs better. This years work can achieve up
to 11 x speedup on large graphs in which GPUs become more useful.

4.3. Strong Scaling on GPUs. Figure 4.2 presents strong scaling of the three largest
graphs with respect to different number of GPUs using Stream and CopyFirst algorithms.
These results are gathered on DGX architecture and all tasks are executed on GPUs. From
Figure 4.2(b) we observe that triangle counting algorithm has an almost linear strong scaling
with respect to number of GPUs. However, for the CopyFirst algorithm (see Figure 4.2(c)),
when number of GPUs on the node is increased copy time becomes the bottleneck and
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Table 4.1: Overview of the Architectures. Pinned: transfers using pinned memory. Page-able: transfers using
page-able memory. H2D: host to device. D2H: device to host.
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Fig. 4.1: Relative speedup between this work (on DGX architecture) and last year's submission. Black dashed
line represents the baseline. Graphs are sorted on x-axis based on their number of edges.

strong scaling is affected badly. From Figure 4.2(a) we observe that, Stream algorithm
scales very good up to 5 GPUs. However after 5 GPUs, scaling starts to get worse due to
DGX machine's poor bandwidth (see Table 4.1).

Note that, friendster graph's strong scaling gets affected faster than twitter and scale25
graphs. Because, computation time of friendster graph's tasks are lighter than twitter and
scale25. Hence, GPUs finish processing tasks faster and becomes idle until required tiles for
the next task are copied.

4.4. Effect of bandwidth on speedup. Figure 4.3 presents strong scaling of the
friendster graph up to 4 GPUs on two machines; with NVLink and without NVLink. We
observe from this figure that with NVLink enabled architecture we get better scaling. Hence,
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we believe that if we would have a server with 8 Volta GPUs with NVLink, we could get
even better execution times than the reported ones.



Data Set IV' iEl ITI Raw Size Tiles Tasks
Best

Time (s)
Rates (x108)

DGX Newell Minsky

cit-HepTh 27,770 352,285 1,478,735 2.2 MB 64 120 0.002  0.9 0.9
email-EuAll 265,214 364,481 267,313 9.5 MB 64 120 0.002 1.' .1.1 0.9
soc-Epinionsl 75,879 405,740 1,624,481 3.9 MB 64 120 0.002 2.1 0.9 1.0
cit-HepPh 34,546 420,877 1,276,868 2.7 MB 64 120 0.002 2.1 1.6 1.1
soc-Slashdot0811 77,360 469,180 551,724 5.4 MB 144 364 0.002 2.' 0.9 1.3
soc-Slashdot0902 82,168 504,230 602,592 5.7 MB 144 364 0.002 3.1 1.3 1.2
flickrEdges 105,938 2,316,948 107,987,357 14 MB 144 364 0.016 1. 1.3 1.1
amazon0312 400,727 2,349,869 3,686,467 28 MB 144 364 0.006 3. 3.4 3.1
amazon0505 410,236 2,439,437 3,951,063 29 MB 144 364 0.007 3. 3.4 2.8
amazon0601 403,394 2,443,408 3,986,507 28 MB 144 364 0.006 .4.4 ie A 3.3
scalel8 174,147 3,800,348 82,287,285 26 MB 256 816 0.021 1.8 r 1.4 1.4
scalel9 335,318 7,729,675 186,288,972 56 MB 400 1540 0.041 1.9 1.5 1.4
as-Skitter 1,696,415 11,095,298 28,769,868 146 MB 400 1540 0.027 4.1 3.4 3.2
scale20 645,820 15,680,861 419,349,784 110 MB 400 1540 0.079 2.0 1.7 1.5
cit-Patents 3,774,768 16,518,947 7,515,023 352 MB 400 1540 0.038 4. 3.6 3.4
scale2l 1,243,072 31,731,650 935,100,883 216 MB 400 1540 0.144 2. 1.8 1.7
soc-LiveJournall 4,847,571 42,851,237 285,730,264 534 MB 400 1540 0.121 3.6 3.3 2.7
scale22 2,393,285 64,097,004 2,067,392,370 464 MB 576 2600 0.325 2.0 1.7 1.5
scale23 4,606,314 129,250,705 4,549,133,002 915 MB 576 2600 0.549 2.4 1.5 1.1
scale24 8,860,450 260,261,843 9,936,161,560 1.9 GB 784 4060 1.154 2.3 1.2 0.8
scale25 17,043,780 523,467,448 21,575,375,802 4.0 GB 1024 5984 2.400 2.2 0.9 0.6
twitter 61,578,414 1,202,513,046 34,824,916,864 13 GB 1296 8436 4.582 2.6 1.1 1.0
friendster 65,608,366 1,806,067,135 4,173,724,142 16 GB 1296 8436 3.133 AIM 2.6 2.2
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5. Conclusions. We developed a fine-grained tasking based multi-core, multi-GPU,
triangle counting method. This linear algebra implementation is up to 10.8x faster than
our previous submission. This implementation results in the fastest end-to-end time known
at time of publication due to very low overhead costs.

Acknowledgments: We thank Simon Hammond, Cynthia Phillips, and Stephen Olivier
for helpful discussions.
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Abstract. We explore the use of Vagrant and Ansible to set up the standardized virtual machine
environment used by staff on a large software engineering project for development and testing. The current
setup process of building a virtual machine from scratch is manual, tedious, and time consuming. This
research explores the advantages and challenges of using Vagrant and Ansible individually and as a team.
The Vagrant/Ansible setup is tested by different users, and is timed to evaluate the efficiency of the new
setup procedure relative to the current procedure. The results demonstrate the Vagrant/Ansible setup
process is faster and more user friendly.

1. Introduction. For our team a virtual machine is used as a standard environment
to run the software project on a Red Hat Enterprise, Linux environment. To properly func-
tion as a development environment, the basic Red Hat installation requires additional setup
through shell scripts and manual actions. Time spent on this process is overhead; therefore,
it is important that it is quick and straightforward. Unfortunately, while people have im-
proved the process over time, both in terms of decreased setup times and fewer interactions,
the current setup still requires a substantial amount of time and leaves much room for user
error. This sparked the need to explore different tools, such as Vagrant and Ansible, to
further improve the setup method. Ansible was explored as a replacement to shell scripts
and manual commands; Vagrant was explored as a tool that could complement Ansible by
automating the creation of the virtual machine itself.

2. Background.

2.1. Past Issues with VM Environment Setup. Initially, the environment setup
process was lengthy and highly manual, with setup instructions maintained on a set of wiki
pages. While a person familiar with the process could complete it in one to two hours
(assuming no problems), in practice newcomers to the project often found it took days to
complete. The instructions were often out-of-date as important changes — for example, a
change in the remote repository for software packages — would be made to existing environ-
ments but not to the wiki pages. Despite their best intentions, developers would often not
revise and re-test the instructions in light of the change, as they would have already lost
valuable time making and troubleshooting it on their existing environments. The instruc-
tions were also contradictory in some areas, as developers operating in heterogeneous host
configurations (such as different hardware, software, and networking) would often encounter
different problems in creating their VM environment.
The steps to create the virtual machine environment included:

• Creating the virtual machine itself
• Installing the Red Hat Enterprise Linux (RHEL) operating system
• Specifying remote repositories for system updates, software packages, etc.
• Configuring network proxies over HTTP and SSH
• Distributing credentials required for various services
• Installing required software applications and libraries
• Configuring environment variables
• Initializing background services
• Fetching code repositories

*University of California Davis Computer Science, anwoodsAucdavis.edu
f Sandia National Laboratories, eagbaya@sandia.gov



A.N. Woods and E.D. Agbayani 75

• Verifying the result by building and running the code
Many of the above steps, including the entire sequence of creating the virtual machine and
installing RHEL, were done manually. Some parts of the process were automated with bash
scripts. Unfortunately, these were prone to break, especially when the environment of the
person running the scripts differed from that of the scripts' authors. The team also ex-
perimented with using golden images, which are discussed in the next section. While this
approach has brought improvements to the process, there were still lingering problems.

2.2. Golden Image. A golden image is a template for a virtual machine such that
can be cloned and used by other users. Using the golden image has advantages including
limiting the number of opportunities for error that arise from manually building a virtual
machine through command line entries. The golden image allows developers to avoid having
to install the many of the required tools and applications. The main disadvantage inherent
to the golden image is its static behavior. This means if a developer wishes to update their
current golden image, it would require creating a completely separate golden image and
reuploading it. The reuploading process would then, depending on the size of the image and
networking conditions, take up to a full day to upload. For the case of changing or adding
one line of code in the image, this is an inefficient use of time and discourages developers
from regularly updating the golden image. In addition, the golden image could not cover
the entire setup process, as certain aspects of the environment (e.g. credentials) must be
customized for each developer; as a result, it did not eliminate the problems associated
with manual setup. While the Vagrant and Ansible approach described later is not fully
divorced from golden images — in particular, Vagrant boxes are close to golden images — it
does mitigate these shortcomings.

2.3. Ansible. Ansible is an "IT automation engine that automates cloud provisioning,
configuration management, application deployment, intra-service orchestration and many
other IT needs" [1]. While shell scripts also focus on automation, Ansible differs from them
in its use of idempotent modules. The concept of idempotency is that an operation can be
repeated multiple times, with the same result as if the operation was only done once. Ansi-
ble's idempotent modules check the state of the machine to determine if any operations need
to be performed to achieve a desired state; if the machine is already in that state, Ansible
avoids changing it. Creating idempotent shell scripts is possible but it requires more code
and concentration compared to Ansible, which has pre-made idempotent modules. Using
these, one can create playbooks consisting of different tasks that automate the configuration
management process. A playbook in Ansible is an idempotent script; unlike a shell script,
which may have adverse and unexpected effects if executed multiple times, Ansible ensures
that it is safe to execute playbooks more than once. Additionally, playbooks are easier to
read and follow than shell scripts as the playbooks use the Jinja2 language and YAML syn-
tax that is considered to be more human-readable. Ansible can help our goal of automating
the setup of a virtual machine environment by converting configuration management shell
scripts to quicker, and easier to read Ansible scripts.

2.4. Vagrant. Vagrant "is a tool for building and managing virtual machine envi-
ronments" in a single setup process as much as possible [2]. It accomplishes this through
configuration files and boxes. A box is a compressed file that contains a virtual machine
environment that has been formatted for Vagrant and can be copied onto multiple machines.
Vagrant instantiates an environment from the box using a Vagrantfile, a configuration file
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which describes machine requirements when provisioning the virtual environment. As a
result, Vagrant lowers the setup time of a virtual machine as well as the room for human
error. When combined with Ansible playbooks, Vagrant can help make the setup process
easier for users by distributing the box to their machines and enabling the configuration of
the box in a timely, automated manner.

3. Ansible and Vagrant Integration.

3.1. Ansible Script Integration. The current process of the golden image still re-
quired setup tasks consisting of interactive shell scripts that prompted the user for input
throughout the process. First, we converted those shell scripts into tasks that were em-
bedded inside an Ansible playbook. Each task in Ansible is defined as a module with the
required arguments and a name. They are individual actions that Ansible completes if the
computer is not in the desired state. The conversion to the Jinja2 language and YAML
syntax made the scripts easier to read and therefore gave a better understanding of what
the tasks are doing. To further minimize the user interaction, an additional task was added
to the beginning of the playbook to require the user to define most of the variables before
the playbook executes. The variables can be assigned via command line entry; however, the
playbook will inform the user if any variables were not defined in the command to prevent
any errors. After the variable check, the playbook begins to complete its required tasks.
The script was purposely designed to have most of the required user interaction take place
at the beginning of the script. This provided clarity for user to know when their attention
is required for the script to continue.

3.2. Vagrant Integration. After the Ansible scripts were integrated into the current
golden image, we used VMware management tools commands to defragment and shrink
the vmdk file from approximately 50 GB to 15 GB. All the necessary files are tarred into
the .box format that Vagrant reads. The .box file is then imported to Vagrant through a
command so that the box can be referenced in the configuration management file called
Vagrantfile. The main jobs of the Vagrantfile are to define the box to create the virtual
machine from, the type of provider, how to provision the machine, and any VM-specific
settings such as networking and hardware configurations. Once the Vagrantfile and box are
created, then the user only has to type "vagrant up" to instruct vagrant to begin creating
and provisioning a new VM. For our research we used VMware as the provider and tool to
run the virtual machine. During the "vagrant up" command, Vagrant begins to clone the
box requested by the Vagrantfile and runs the virtual machine on the provider, VMware.
When the virtual machine is powered on, the user can run the Ansible script to provision
the machine. The combination of using Vagrant and Ansible can be accomplished differ-
ently. Vagrant has provisioning capabilities allowing a user to provision the guest virtual
machine by specifying an Ansible playbook within the Vagrantfile. Therefore, the "vagrant
up" command would cause Vagrant to read the Vagrantfile and automatically execute the
specified Ansible playbook on the guest machine. This alternative approach of Vagrant and
Ansible was attempted but we ran into a "ssh" error that is believed to be caused by proxy
issues. Consequently, the Vagrant and Ansible setup process that will be used is the one
where the user has to manually run the Ansible script on the guest machine.

4. Testing Vagrant/Ansible Setup Process.

4.1. Procedure. A Vagrant box and Vagrantfile were first created and distributed to
three different operating systems via a network shared drive. The operating systems were
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RHEL 7 Linux, macOS Mojave, and Windows 10. On each operating system, two different
users, totaling of six different users, followed instructions from a wiki page to create a
virtual machine starting with the Vagrant box. The timer started with the user adding the
"golden" Vagrant box to Vagrant and then running the command "vagrant up" to create the
virtual machine. After the machine was created, the user followed an interactive Ansible
script previously baked into the "golden" Vagrant box to provision the virtual machine.
Provisioning the VM included: creating an ssh key, linking maven to artifactory to enable
a Java build, configuring git, and cloning repositories and directories. The timer officially
stopped once the Ansible script was completed.
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Fig. 4.1: A bar graph depicting how long it took to run the Vagrant/Ansible setup process on a specific
operating system. Each bar depicts a different user, total six users.

4.2. Results. The results initially were surprising as there was a drastic range of
time it took to complete the setup process on different machines. This required further
investigation to understand the variability of the results. Observations during the trials
indicated that most of the variation occurred during steps which were disk-intensive, such
as "vagrant up". Therefore, a disk performance test was run on each of the machines using
the command:

time sh -c "dd if=/dev/zero of=/tmp/testfile bs=10000k count=lk && sync"
This test used the dd (disk dump) command which can be used to simulate large disk write
operations. The arguments after dd provide a test which writes 10GB into /tmp/testfile;
in conjunction with the time command, this produces a figure for disk speed. The results
demonstrated that the Linux machine's disk performed at 1700 MB/s while the Windows
machine's disk performed at 155 MB/s - an order of magnitude discrepancy. The "vagrant
up" command clones the Vagrant box, meaning the command requires reading and writing
of about 15 GB of data. If the disk speed is slow then it will take the Vagrant command
longer to complete reading and writing from the Vagrant box. The slow disk speed of
the Windows machine provided an explanation of why it took longer to complete the setup
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Fig. 4.2: A bar graph depicting the disk speed of the machine with the specific operating system.

process compared to the Mac and Linux machines 1. These results demonstrate the relation-
ship: the faster the disk speed of the machine, the faster the setup process will be completed.

Based on the Fig 4.1, the average time it takes to complete the setup process from all three
operating systems is 22.67 minutes. A part of the setup process skipped during the trials
included installing Vagrant, VMware, and the VMware plugin for Vagrant. This installation
process will vary per machine as it also relies on the disk speed. The installation steps were
also skipped because it only has to occur once, while the development environment might be
provisioned multiple times. When installing the required software before the trials began on
the Mac machine, the estimated completion time was about 1 hour. This means on average
the total setup process would take about one hour and 23 minutes. According to our team
lead the original setup process took about 4 hours at best and could even take multiple
days at worst. When comparing to this time, the Vagrant/Ansible process is approximately
three times as fast as the original setup.

5. Discussion.

5.1. Golden Image versus Vagrant Box. Both the golden image and the Vagrant
box act as a template for a virtual machine, having essential applications prebaked into the
machine. In both setup processes the virtual machine still requires provisioning which is
done by the shell scripts or the Ansible script. The main difference that exists between these
two processes is the behavior of the golden image versus the Vagrant box. The golden image
has a static behavior, i.e. it is difficult to change its contents without creating another golden
image. Initially, the Vagrant box has the same static behavior as the golden image; however

1Fig 4.2 does not represent the disk speed of all Linux, Mac, or Windows machines
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it is Vagrant's provisioning capabilities that adds a dynamic behavior to the Vagrant box.
During the "vagrant up" command, Vagrant will create the machine according to the con-
figuration in the Vagrantfile, which can be easily edited as a text file. Furthermore, if the
Vagrantfile includes a provisioning Ansible script then Vagrant will automatically provision
the virtual machine according to that script. For our project specifically, Vagrant could au-
tomatically clone the most recent repositories and directories onto the VM. This automatic
provisioning allows the Vagrant box to be dynamic as the Ansible script can keep changing
and updating with the most recent repositories and directories - without having to recreate
the box each time.

5.2. Editing a Vagrant Box. Another key disadvantage that came with using a
golden image is the amount of time it takes to edit and reupload the golden image. Con-
sequently, the editing and repackaging of the Vagrant box were tested. Vagrant provides a
command that takes the currently running virtual machine and packages the state of the
machine into a different box file. This means if a user wanted to add a folder to the "golden
box" , the user would create the folder in his current machine and then run the vagrant
command:

vagrant package —output golden-box_vX.Y.box
to create a new box named "golden-box_vX.Y". Changing and uploading the golden image
was a tedious process that could take 19 hours to package. Based on 10 trials of running
the command with one new directory in the virtual machine, the average time to repack-
age the box was 40 minutes and 29 seconds. These trials were run on the Mac machine
for the purpose of using a medium disk speed. This vagrant command makes editing and
reuploading the Vagrant box 28 times faster than the original method. Overall, the Vagrant
box has better tools than a golden image to allow easier editing and provisioning capabilities.

6. Future Steps. Further steps to improve the Vagrant/Ansible setup include editing
the Ansible script to further limit required user interaction. One part of the Ansible script
includes copying and pasting from a website to a terminal and vice versa. This part, during
the trials, was observed to be the part that slowed users down the most. It required them
to read the directions which tend to be skipped. A way to improve the Ansible script is to
minimize both the user interaction and the directions the user has to read. Another way
to increase the speed of the setup would be to have Vagrant automatically provision the
Ansible script during the "vagrant up" command. This was attempted but was blocked
by a complex Vagrant ssh error. Despite venturing through numerous command logs it is
difficult to determine what is causing this connection error. If this error gets fixed then the
automatic provisioning would eliminate the user having to copy and paste the command
to run the Ansible script manually. Additionally, the provisioning uses a standard entity
account baked into the Vagrant box; the name of this account is not the same as a user's
domain ID, which requires additional configuration to specify this ID during certain oper-
ations. The Ansible scripts could be edited to provision a local account for a user that is
aligned with their domain ID; doing so would simplify the existing setup and avoid potential
issues in the future.

7. Conclusions. Based on the results, using Vagrant commands to create a virtual
machine from a "golden" box file with Ansible scripts baked in is approximately three times
as fast as the original setup process. Running Vagrant and the Ansible script is reliant on
the disk speed of the machine. Consequently, if the user wants the fastest setup time then
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they should acquire a machine with fast disk speed. Despite the varying times from the
different operating systems, the results prove that the new setup process can successfully
be implemented on several operating systems. The Ansible script was coded so that most
of the user interaction takes place at the beginning of the script. Having the user define
the variables in the command line eliminates unnecessary pausing in the script to ask for
user input. Similarly, the use of Vagrant limits user interaction to only three commands:
vagrant box add, vagrant up, and ansible playbook. After using Vagrant, the Ansible script
requires limited user interaction; therefore, minimizing the number of times user error may
occur. Overall, the combination of Vagrant and Ansible resulted in a more expedient setup
process that sufficiently limited user interaction and user error.
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AN ANALYSIS OF SCALABLE DATABASE DESIGN TECHNIQUES FOR
MODULE BASED WEB APPLICATIONS

ARTHUR K. ZHANGt AND MATTHEW WONGt

Abstract. Designing scalable and maintainable databases is a common software challenge with web
applications. Traditionally, only backend web developers needed to worry about designing efficient databases
for managing user data. As such, using memory efficient storage techniques like relational databases with
multiple joins became the standard in database design. However, the increased processing power of personal
computers rapidly led to the development of complicated web-based user interfaces with complex workflows.
This increases the difficulty of managing user interface states and challenges trusted database designs to
meet the demands of modern browsers. This paper presents our ideas on how to implement efficient frontend
state management and improvements upon backend database design principles to better suit modern web
design. We demonstrate that these new implementations enable create, read, and update operations in
constant time without sacrificing the ability to perform atomic operations. This improves upon previous
limitations with database design that force users to decide between having bidirectional references or the
ability to perform atomic updates when working with denormalized data. Furthermore, we demonstrate our
design's robustness and scalability by analyzing its efficacy on DMAMC CharCat (Data Mining Analysis and
Modeling Cell, Characterization Catalog), a web-based instrument response catalog for CWMD (Countering
Weapons of Mass Destruction) designed from the ground up with these principles in mind.

1. Introduction. This paper considers the implementation of database design from
the point of view of CharCat, an emerging web application where a preexisting structure
has not been defined yet. CharCat is a web-based nuclear detector characterization cata-
log designed for CWMD, and by extension DHS (Department of Homeland Security). Its
primary purpose is to store and display instrument response data collected by scientists.
This reduces the amount of duplicated response tests conducted using instruments that are
already in the catalog, which saves scientists time for more important work. Researchers are
able to quickly find these instruments on the catalog because each instrument is assigned a
unique serial number reference. Early web applications, such as CharCat, rapidly evolve and
often take on unforeseen features, both from the programmers' and users' perspective. This
presents several notable challenges to the database architect. When dealing with complex
web applications, a key aspect of both frontend and backend database design is composabil-
ity, a system design principle that deals with the inter-relationships of components. Modern
web development practices often revolve around the concept of component based applica-
tion design. Component based design is the practice of splitting the user interface (UI) into
smaller, more manageable parts with clear names [1]. There are three groups of user inter-
faces that must be managed by the database: pages, the actual screens of the application;
compositions, the containers within the pages that contain components; and components,
blocks on the screen that contain elements such as graphs, plots, and buttons. We show an
example of these UI modules on CharCat in Figs. 1.1, 1.2, and 1.3. Instrument response
data is blurred for privacy purposes.

As UI workflows become more complex, we find that it is necessary to properly design
a DBMS (Database Management System) for storing persistent application data as well as
databases that track the current state of the user's session as well. Below, we will discuss at
a high level the different challenges frontend and backend database architects may encounter
while working on a component based application.

tUniversity of Michigan, Computer Engineering Undergraduate, arthurzhAumich.edu
tSandia National Laboratories, mhwong@sandia.gov
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2. Background.

2.1. Frontend DBMS Requirements. Component based design for scientific pur-
poses presents an interesting problem to frontend database architects by making it difficult
to define a set schema for the application. New components may need to be added at any
time while existing components may need to be adjusted to account for changes in the
application. In addition, existing data for these components will not only be constantly
queried, but also constantly modified as well. Along with tracking individual states for each
of the components, our front end database must somehow manage a global state for each
page the user interacts with. We would also like our new database to address several short-
comings of existing database management systems (DBMS). More specifically, our database
should be highly extensible, able to adapt to eventual schemas of scientific investigations;
highly efficient, able to process exponentially increasing datasets in sub-exponential time;
and intuitive to non-backend engineers, such that frontend programmer could easily modify
the existing data store. In past years, computer scientists have come up with architectures
such as Flux', an architecture pattern for managing client-side application data to address
these issues. However, we have found that Redux, a library for managing client-side data
stores, is more suitable for database design because it gives architects the ability to strictly
enforce standard principles such as immutability of data objects and atomic updates. This
is important for creating a database that is safe from race conditions, unintended behavior
that is dependent on the sequence or timing of uncontrollable events. A summary of the
key distinctions between Flux and Redux can be found in figure 2.1.

Flux CXD

Store
Multiple
Store

multiple source of truth

singleton dispatcher

mutable state

Redux

Single
Store

one source of truth

no dispatcher

immutable state

Fig. 2.1: High level feature comparison between Flux and Redux [4]

2.2. Backend DBMS Requirements. Traditionally, there are two distinct database
styles used in industry: relational and non-relational databases. Relational databases store
data in tables and rows and allow programmers to link information from different tables

lhttps://facebook.github.io/flux/
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through foreign keys, which is useful for processing complicated queries and database trans-
actions. Relational databases follow ACID (Atomicity, Consistency, Isolation, Durability),
which are a set of properties for database transactions intended to guarantee validity of
operations in the event of unforeseen events: power failures, errors, etc [7]. Non-relational
databases simply store data without explicit mechanisms to link data from different tables
to one another [2]. Non-relational databases do not strictly follow the ACID protocol by
design. Despite the consistent behavior that relational databases provide, they are not well
suited for storing records in the same collection with different fields, de-normalized database
schemas, and a dynamic schema as a result of the data model. This is applicable to early
stage scientific web applications because scientists and programmers are unable to predict
exactly what is needed due to natural volatility of data in research. In addition, exper-
imental data from scientific research, when modeled, is often deeply nested, resulting in
unnecessarily bulky join operations and is more naturally suited to a de-normalized data
structure. Given these reasons, we believe that non-relational databases are preferable to
use for early stage application development. For our implementation, we have chosen to
use MongoDB, a non-relational database, in conjunction with Mongoose to assist in de-
livering complex queries. To guarantee the validity of transaction operations, a common
issue with non-relational databases, we have developed several database rules that enforce
the CAP theorem (Consistency, Availability, Partition tolerance), a similar set of princi-
ples for non-relational databases [3]. A summary of key distinctions between relational and
non-relational databases can be found in figure 2.1.

Table 2.1: High level feature comparison between relational and non-relational databases

Relational Non-Relational
Data
Schema
Scalability
Queries
Flexible
Transaction

3. Methods.

Structured data in tables
Static
Vertical

joins for complex queries
rigid schema

ACID

Unstructured data in JSON
Dynamic

Horizontal
Library prepares complex queries

Non-rigid and flexible schema
CAP theorem

3.1. Redux DBMS Implementation. Our Redux store is denormalized and avoids
deep nesting, allowing us to update specific UI components as slices in the database. Each
UI component is initially unknown to Redux, and is only created once the user has modified
the component. This minimizes the memory required to initially load and operate CharCat.
When each component is used, the client calls a unique "Action", which is a function that
refers to a unique set of instructions on how to appropriately modify the component in the
Redux store. To modify the appropriate UI component in the store, the client generates
a "Context Driven Component ID" for the modified component. This generated ID is a
period separated string that uses the location of the component as tags. For instance, in
our application, we have created entities known as instruments, each of which have been
assigned unique serial ID. Each of these instruments display different data types, and each
of these data types contain different UI components. If two of the same UI components
are found in the same data type, they are further differentiated by a designator number.
With all of these identifiers working together, we are able to piece together a unique ID for
each component that can also be used to determine where the component is modified in
the context of the application. The ability to determine the parent container for any given
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object in the database using its ID is especially useful for updating individual components
efficiently. Instead of iterating through a deeply nested structure, we can simply perform an
efficient 0(1) lookup for the component in a slice of the database and update the slice in-
stead, another 0(1) operation. This also makes adding new components to the Redux store
systematic. To track new components, the user simply needs to define the default schema
to initialize the component with on creation and write the component's create/update func-
tion. The task of generating context driven IDs and efficiently updating the component is
automatically done by our implementation of Redux. In addition, this makes the process
of querying between components intuitive for even non-computer scientists. If component
A needed to access the contents of component B, component A could simply use context
information like which instrument and data type component B belongs in to do so. An
overview of the Redux store structure is shown below in figure 3.1.

Despite storing denormalized data, we retain the ability to atomically update the
database by enforcing numerous design rules. One such rule is that users cannot reas-
sign parent and child ID links between one to many and many to one relationships between
components. This prevents the database from having to update both the child and parent
references to each other, which is a non-atomic transaction. The key benefit in enforc-
ing these rules is that we maintain the advantages of denormalized data: efficient lookups
and infrequent joins; while avoiding its flaws: non-atomic updates and creations. However,
these advantages come at the cost of storing duplicate data and additional documentation.
In addition to optimizing CRUD (Create, Read, Update, Delete) operations with Redux, we
strictly use immutable objects in the Redux store and rely on pure functions for mutating
the Redux state. By using immutable objects, we allow sophisticated change detection tech-
niques to be implemented easily, which ensures that computationally expensive operations
like updating the DOM are only performed when absolutely necessary [6]. The rationale
behind mutating the state with pure functions stems from the fact that multiple React
components may attempt to edit the same datum asynchronously. With a shared state and
multiple parallel processes running, this quickly becomes a race between the processes that
results in nondeterministic behavior. By forcing programmers to update the redux state
using pure functions, we guarantee that given the same input, our functions always return
the same output without any side effects. Removing side effects is essential because in
Javascript, all non-primitive objects are passed into functions as references. If our function
directly mutates a property on an object, the object changes outside the function as well.
Therefore, the only way to know the full effect a function has on an object is by knowing the
full history of the object that is passed in. This produces non-deterministic behavior, which
is difficult to debug, especially with applications with complex logic and state management.
However, by following these design rules, we reduce the possibility for race conditions in our
application and ensure fully deterministic behavior.

3.2. MongoDB DBMS Implementation. The MongoDB is quite different from the
Redux store in that it has no notion of a user interface, rather it stores data based on how
it is organized by test scientists. Experimental data is first organized by which instrument
it belongs to, the dataset number, the data element type, and then the entry number. This
structure is shown in figure 3.2 for clarity.

Each object type uses a different schema that represents its contents. In addition, if
an object is an immediate parent to a child, it contains a link to the child by using the
child's ID. However, the child is unaware of the parent and does not link back. This lack
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entities: ( Screen types referred to as entities
instruments: {

byld: (
.serialNumberi.: (

id: .serialNumberl",
dataElements: (

dataElementName: [.uiElementidl., "uillementld2"],
// data elements will be added as new unique components are rendered in ui

),
selectedDataElement: dataElementld2,
selectedDatasetlds: [datasetldl, datasetld2

)
),
allIds: ["serialNumberl., .serialNumber2.]

)
1,

{ Ul components grouped together
datasetLegends: (

byld: {
"datasetlegendIdl.: (

id: .datasetLegendIdl.,
colorMap:

datasetldl: .Red.,
datasetld2: "Blue,

),
selectedDatasets: ["datasetIdl., "datasetId2.],
shapeMap:

.radionuclidel.: "Circle.,

.radionuclide2.: "Square.,

),
rads: ["radionuclidel", .radionuclide2.],
hasBeenSet: true

1,

aliIds: ["datasetLegendIdl., "datasetLegendId2.]

),
fits: (

byld: (
"fitIdl.: (

dataElementld: .dataElementIdl.,
fitting:

id: .dataElementId.,
instrumentld: .instrumentIdl.,
type: .polynomial.,
degrees: .2.,
coeffs: [.2., .4., .1.],
xScale: .linear.,
yScale: .linear.,
distance: .50",
points: [1.x1", .y1.), (.x2.,
stdErrs: [(.xlErr", .ylErr.],
changed: true

...],
(.x2Err", .y2Err.]),

allIds: [.fit/d1., "fitId2., ...]

1,
testFilters: (

byld: (
.testFilterIdl.: {

activeFilters: (
.Distance.: [.50., .100., ...],
.Radionuclide.: pradionuclidel., .radionuclide2.,
"Source ID.: [.sourceID1., "source/D2", .souceID3.
"Test Event.: ["TestEventl., ...],

allIds: [^testFilterIdl", .testFilter/d2", ...]

Fig. 3.1: Redux store structure

of bidirectional referencing between parent and children is especially important to main-
taining atomic consistency in denormalized data stores [5]. If a child component needs to
switch parents, this operation can be conducted in a single update because only the parent
collection needs to be modified. However, if the child referenced the parent ID as well, then
we would not be able to guarantee this transaction's validity because ownership transfers
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CharCat Data Organization

Data

Element 1

DATASET 1 DATASET 2

Data

Element 3

Ent;41 '

Data

Element 2

Entry 2

I NTRU ME NT 1._

DATASET 3 DATASET 4

Data element

I MI. attributes

Entry 3

Entry 4 r
Entry 5 1101/ Entryattributes

$
$

DATASET 5 
attributes

r
1 Instrument

1 attributes

Fig. 3.2: MongoDB organization structure

4mi Dataset 1

require two operations. An example of this parent child relation is shown in figure 3.3 for
the Dataset object. Each Dataset contains an array of data elements, and each of these data
elements own data entries. The data elements reference the data entries by ID unidirection-
ally. We chose to use Mongoose, a schema-based solution to model application data. This
library comes with built in type casting, validation, and advanced query building features.
These features help guarantee our database's adherence to the CAP theorem. Mongoose
validates all database transactions to ensure consistency, simplifies response handling for
high availability, abstracts database sharding to maintain partition tolerance, and offers
an efficient solution to process complex queries to MongoDB, an essential functionality of
any complete DBMS solution. In addition, Mongoose also supports several atomic update
transactions for MongoDB collections that are not deeply nested. This works in tandem
with our denormalized database to ensure the validity of database updates.
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/*

* Dataset schema

import mongoose from 'mongoose':

const Schema - mongoose.Schema;

const datasetSchema = new Schema({

serialNumber: ( type: 'String' },

.Dataset Number.: {type: 'Number'},

name: { type: 'String' },

Unique Identifiers

testStartDate: { type: 'Date' },

testEndDate: type: 'Date' },

measurementStartDate: type: 'Date' },

measurementEndDate: { type: 'Date' },

testScientistInstitution: { type: 'String' },

measurementPurpose: { type: 'String' },

testCampaign: ( type: 'String' },

rndrURL: ( type: 'String' },

raasURL: ( type: 'String' },

coolerRunHours: type: 'Number' }, // HPGe only

measurementLocation: { type: 'String' },

measuredDataElements: { type: 'String' },

elements: [{

name: { type: 'String' },

description: { type: 'String' },

elementName: { type: 'String' },

entries: [{ type: Schema.Types.Objectld, ref: 'Entry' }],

fullTable: [{ type: 'String' }},

displayTable: [{ type: 'String' }],

x: { type: 'String' },

xError: { type: 'String' },

y: { type: 'String'1,

yError: { type: 'String' },

y2: { type: 'String'},

y2Error: { type: 'String' },

searchFields: [{ type: 'String' }],

.Element Name.: { type: 'String' },

11,

} ;

export default mongoose.model('Dataset', datasetSchema);

ID Links to children components

Fig. 3.3: MongoDB Dataset Collection Code Snippet

4. Conclusion. We developed two database implementations that handle commonly
encountered issues in modern web development. Both database implementations, Redux
and MongoDB, have required little to no maintenance once set up and efficiently scaled to
meet the needs of CharCat as more datasets and instruments were added. Redux's usage
of context driven user interface IDs is well suited for UI state tracking for components
because it only tracks components as needed, which guarantees the same initial application
performance speed regardless of the number of datasets loaded. In addition, any update
transactions to Redux only update a small slice of the database, ensuring that operations
remain efficient. In fact, a typical Redux transaction requires 70 milliseconds for completion
on average with slice updates, while full updates require 300 milliseconds. The overall
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Redux structure required zero significant refactors during the development cycle of CharCat
once defined, demonstrating its durability towards user interface refactors. The usage of
non-relational, denormalized data stores for both Redux and MongoDB resulted in less
bulky joins and improved the efficiency of query lookups and updates to 0(1) speed while
maintaining ACID principles. This reduces the likelihood of race conditions at the cost
of additional memory used for storing duplicate data. In fact, zero race conditions were
encountered during database transactions with MongoDB during the lifetime of the app.
In the future, we plan to explore novel methods for further improving the efficiency of
high volume database transactions to MongoDB and reducing the amount of duplicate
information stored for both Redux and MongoDB.
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Abstract. Graph coloring can be used as a preprocessing step used to parallelize scientific computations,
many of which happen in a distributed, multi-GPU environment. Many algorithms exist for graph coloring
that run on single GPUs, or in distributed memory, but hybrid MPI+GPU algorithms are less common. We
present an implementation of Gebremedhin et. al's [3] distributed algorithm that uses an implementation
of Deveci et. al's [7] parallel coloring for on-node parallelism. The on-node parallel coloring is implemented
in Kokkos Kernels [8], meaning that we have an MPI-FX coloring algorithm. Additionally we propose a new
algorithm that aims to reduce the total amount of communication involved in other distributed distance-1
coloring algorithms. We examine the effects of different prepartitioning methods on our algorithms' runtimes,
as well as the number of colors used in the graph coloring.

1. Introduction. Graph coloring is a graph problem where colors are assigned to ver-
tices in such a way that no neighboring vertices have the same color. There are many
useful applications of graph coloring, but it is typically used to find concurrency in com-
putations [7] [1], and printed circuit testing [9]. Additionally, graph coloring is used as
a preprocessing step to speed up the computation of Jacobian and Hessian matrices [11].
The problem of minimizing the number of colors in a graph coloring is NP-hard, but the
applications that use coloring as a preprocessing step benefit from colorings that use fewer
colors. Deveci et. al. [7] show that a smaller number of colors used by a coloring-based
preconditioner improves the runtime of a conjugate gradient solver by 33%.

We present and examine two hybrid MPI+X implementations of two distance-1 coloring
algorithms. Distance-1 colorings are an instance of graph coloring where neighbors are
defined as vertices that are connected with an edge. We focus on hybrid implementations
because most scientific computing applications run on distributed-memory systems, and it
may not be feasible to assemble the associated graphs on a single node and run a sequential
coloring algorithm [3]. In order to apply to the widest variety of architectures, we use the
Kokkos parallelism framework [8] for on-node parallelism. The combination of Kokkos and
MPI allows us to use either OpenMP or Cuda over multiple compute nodes in a system.

Our contribution is two MPI+X algorithms that are able to run in both CPU and GPU-
equipped systems. For Multi-GPU runs, we achieve a 3.6x speedup, while the number of
colors used increases by about 24% in the worst case.

2. Related Work. There are many variations of the graph coloring problem. Distance-
1 graph coloring is the typical instance. Distance-2 coloring is a variant where each vertex
v must have a different color than any vertex at most two edges away from v. Partial
Distance-2 coloring is a special case of Distance-2 coloring on a bipartite graph in which
only one set of the vertices gets colored.

For graph coloring in general, minimizing the number of colors is NP-hard, but serial
algorithms based on greedy heuristics are effective for a number of applications [10]. The
serial greedy algorithm colors vertices one at a time, using a heuristic to control the order
in which the vertices get colored. Generally, colors are represented as numbers, and the
smallest usable number is used as a vertex's color. Conflicts in a coloring are edges where
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t Sandia National Laboratories, egbomanAsandia.gov
1Sandia National Laboratories,kddevin@sandia.gov
1Sandia National Laboratories, srajama@sandia.gov

11 Rensselaer Polytechnic Institute, slotag@rpi.edu
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both endpoints share the same color, and colorings that contain conflicts are not valid
colorings, or "pseudo-coloringe . A Coloring's "quality" refers to the number of colors used;
colorings with higher quality use fewer colors, while lower quality colorings use more colors.

In a distributed-memory setting, graphs get split into subgraphs and assigned to sep-
arate processes. In order for processes to communicate values associated with their local
vertices, there must be a consistent global identifier (GID) for each vertex. The local iden-
tifiers (LIDS) that each process uses for vertices is likely different from these GIDs, so each
process must have a way of mapping their LIDs to GIDs.

There are two popular approaches to parallel graph coloring. The first is to concurrently
find independent sets of vertices, then concurrently color all of the vertices in each set found.
The second, referred to as "speculate and iterate , is to color as many vertices as possible
in parallel, and then fix the conflicts in the resultant pseudo-coloring iteratively until no
conflicts remain. Jones and Plassmann [15] propose a parallel coloring algorithm based on
the independent set approach. Catalyiirek et. al. [5] and Rokos et. al. [17] present shared-
memory implementations based on the "speculate and iterate approach. Additionally,
distributed-memory and hybrid algorithms such as those proposed in [3, 12, 18] largely
use the "speculate and iterate approach, and Bozdag et. al. showed that in distributed
memory this approach is more scalable.

Our approach builds on the framework presented by Bozdag et. al. Their framework
groups vertices on each process into a group of vertices that do not neighbor any vertices
on another process, called "interior vertices", and vertices that do neighbor vertices on
another process, called "boundary vertices". Each process's set of interior vertices can
then be colored independently, without creating any conflicts, and without requiring any
communication. Boundary vertices are colored in rounds in order to reduce the chance of
conflicts occurring, which in turn reduces the amount of communication necessary to color
the boundary vertices.

In this framework, we are free to color the interior vertices in any way, and we use
an algorithm proposed by Deveci et. al. [7] for a number of reasons. Their algorithms are
implemented in KokkosKernels [8], which allows them to run efficiently using either OpenMP
or Cuda without requiring any changes to the implementation. Additionally, Deveci et. al.
propose and implement several optimizations to traditional vertex-based colorings, and their
most optimized version is called VB-BIT. They also note that approaches that iterate over
vertices and check neighbors' colors have inherent load-balance issues due to the fact that
in real graphs vertex degrees vary widely. To counter this load balance, they propose an
edge-based algorithm that they show is more efficient than VB-BIT on the GPU.

3. Methods. We propose two MPI+X implementations that build off of the dis-
tributed framework presented by Bozdag et. al. and the parallel coloring algorithms pre-
sented by Deveci et. al. There are several coloring algorithms implemented in KokkosKer-
nels, but we only use the algorithms proposed by Deveci et. al, namely the vertex-based
(VB-BIT) and the edge-based (EB) approaches. VB-BIT is an optimized vertex-based col-
oring that can be run on GPUs. VB-BIT's implementation in KokkosKernels can finish
incomplete colorings, as it assumes that a vertex with a color of zero is uncolored. EB is an
edge-based algorithm that is more efficient than VB-BIT on GPUs. Since the algorithms
proposed by Deveci et. al. are implemented in KokkosKernels, they are able to run with
OpenMP and on GPUs without modification. Algorithm 1 shows our general approach.

Because our algorithms run in distributed memory, each process has a subgraph of the
original input graph. Typically, we refer to this subgraph as a process's "local graph", and
the vertices as "local verticee . A process is said to "own" its local vertices.

Our approach initially colors the entire local graph on each process independently using
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Algorithm 1 Overview of our approach

procedure HYBRID-COLOR(Graph G=(V,E), rand)
Color all local vertices with KokkosKernels
Communicate colors of owned vertices to ghost copies
Detect global conflicts
while Global Conflicts Exist do

global conflicts = Resolve-Conflicts(G, colors, rand)

the VB-BIT for CPU platforms and EB for GPU platforms. Then, as Bozdag et. al. point
out, only boundary vertices can be in conflict with one another. Similarly to Bozdag's
approach, we initially tried to reorder the order of the vertices in the graph so that we could
easily access the boundary vertices without having to also loop through interior vertices.
This reordering is done by changing the underlying structure of the graph representation
to group all of the boundary vertices together. This optimization did not pay off, as this
reordering procedure was an order of magnitude slower than the KokkosKernels coloring of
the entire local graph. Because of this, we decided not to reorder the graph, and simply use
KokkosKernels' coloring to fix any distributed conflicts.

After the local vertices are colored on each process, we communicate this new coloring
information to vertex copies on other processes using the Trilinos library [13]. We used the
FEMultiVector class of the Tpetra package [14] to communicate the colors of locally-owned
vertices to their copies on other processes, also known as "ghosts" . After each process gets
this coloring information, it detects conflicts by checking every owned vertex's color against
the color of each of its neighbors. This conflict-finding process is trivially parallelizable, and
we parallelize it using Kokkos.

When a conflict is found, only one vertex involved in that conflict must be recolored.
Additionally, since the conflicts will likely happen on two processes, it is critical that both
processes recolor the same vertex, otherwise conflicts may never get resolved. We adopt
the same random conflict resolution scheme presented in [3]. Specifically, we use a random
number generator seeded on the Global Identifier (GID) of each vertex, as this produces a
consistent set of random numbers across processors and does not require any communication.
In a conflict, the vertex with the larger random number gets recolored. The rand argument
in Algorithm 1 represents this set of consistent random numbers.

We use KokkosKernels coloring to recolor the vertices in need of recoloring. First, we
needed to alter the KokkosKernels coloring function to allow it to accept a partial coloring.
It was also necessary to test the reaction of KokkosKernels to various partial colorings. For
instance, we found that VB-BIT would fix the conflicts in an input coloring. Since we control
the conflicts using a distributed scheme, this sometimes meant that our coloring could not
resolve all the conflicts, as each process may be correcting the coloring. If no conflicts were
present in the coloring provided to VB-BIT, then the colors were not changed. This was
unfortunately not the case for the implementation of EB, as each attempted recoloring, with
or without conflicts, resulted in a coloring with around the same number of conflicts as the
initial coloring.

Thus, our final recoloring solution used the VB-BIT implementation in Kokkos Kernels,
and our conflict resolution approach is illustrated in Algorithm 2. We set all vertices that
needed recolored to have a color of zero, which VB-BIT interprets as those vertices being
uncolored. Each process may need to recolor some ghosted vertices, even though that process
does not have enough coloring information to correctly recolor that vertex. This is done to
prevent VB-BIT from resolving conflicts on its own, and these colors are overwritten in the
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Algorithm 2 Our coloring conflict resolution approach

procedure REsoiNE-CONFLICTS(Graph G = (V, E), colors, rand)
for all v E V do

for all neighbors n of v do
if colors[v] == colors[n] then

if rand[v] > rand[n] then
colors[v] = 0

else
colors[n] = 0

colors = VB-BIT(G, colors)
Communicate colors of owned vertices to ghost copies
global-conflicts = 0
for all v E V do

for all neighbors n of v do
if colors[v] == colors[n] then

global-conflicts + = 1

return global-conflicts

subsequent communication.
Our first implementation, called "1 Ghost Layer" (1GL), follows the methods described

so far. Our second implementation, called "2 Ghost Layee (2GL), follows these methods,
but adds to the subgraphs stored on each process. In a typical graph distribution, the
subgraphs for each process do not include any of the neighbors of ghost vertices, unless those
neighbors are owned by the process. In our 2GL approach, we include all the neighbors of
the ghosted vertices in each process's subgraph, giving us two ghost layers.

To the best of our knowledge, this 2GL approach has not been explored before. The
main reason we use this approach is in an attempt to reduce the total amount of commu-
nication involved in the 1GL approach. The 2GL approach has the potential to reduce the
total number of collective communication operations because in well-partitioned and reg-
ular input graphs, the second ghost layer is likely to be made up of interior vertices that
are owned by other processes. This means that after their initial coloring, these vertices
are likely to retain their initial color. Thus, each process should be able to resolve more
conflicts independently and in a way that is consistent across processes. However, in the
2GL scheme, each communication is more expensive than in the 1GL, so in order to see a
speedup the number of rounds must decrease enough to make up for the increased cost of
each communication.

Algorithm 3 shows our approach to constructing the connectivity of the copied vertices.
The gids argument is an array containing the GID of each local vertex, and the owners
argument is an array containing the owning process ID of each local vertex.

After this connectivity information is added, we follow the same general approach as
before. However, we are able to optimize our conflict detection in a similar way to the
boundary vertex reordering as presented in [3]. We are able to find all the distributed
conflicts by only looking through the ghost vertices' adjacencies, since they neighbor all
local boundary vertices. Thus, if we keep the new connectivity information distinct from
the original graph, we can safely detect all conflicts by only looking at the ghost vertices'
colors and their neighbors' colors.
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Algorithm 3 How we build the adjacency information for copied vertices

procedure BuILD-COPY-ADJS(Graph G = (V, E), gids, owners)
gids-to-send 0
for all (u,w) E E do

if u V V then
gids-to-send <- gids[u]

if w lEt V then
gids-to-send <- gids[w]

send each entry in gids-to-send to its owner
for all gids received do

send vertex's adjacency list back to sender

Construct graph from received adjacency information.

4. Experimental Setup. The scaling results we present were obtained from the DCS
supercomputer housed at Rensselaer Polytechnic Institute. The system has 16 nodes each
equipped with 2 IBM Power 9 processors clocked at 3.15 GHz, 4 NVIDIA Tesla V100 GPUs
with 16 GB of memory each, 512 GB of RAM, 1.6 TB Samsung NVMe Flash memory,
connected with a Mellanox Infiniband interconnect.

Table 4.1: Summary of input graphs

Graph Class #Vertices #Edges Savg Smax
G3_circuit Circuit 1.6 M 7.7 M 4.83 5

ldoor PDE Problem 0.9 M 42.5 M 44.6 77
Audikw_l PDE Problem 0.9 M 76.7 M 81.28 345

Bump_2911 PDE Problem 2.9 M 124.8 M 42.87 194
QueenA147 PDE Problem 4.1 M 325.3 M 78.45 89

hollywood-2009 Social Network 1.1 M 112.8 M 98.91 11467
soc-Livekurnall Social Network 4.8 M 85.7 M 17.68 20333

europe_osm Road Network 50.9 M 108.1 M 2.12 13

A summary of the inputs we used is listed in Table 4.1. We used graphs from the
SuiteSparse Matrix Collection (formerly UFL Sparse Matrix Collection [6]). The max de-
gree, Smax, is used as an upper bound for the number of colors used, as any incomplete,
connected undirected graph can be colored using at most Smax colors [4]. We selected many
of these inputs because they were used by Deveci et. al. and we would be able to com-
pare our performance against theirs. We include inputs which are primarily from Partial
Differential Equation (PDE) problems because they are close to our target application. We
include social networks to show how our approach fairs against small-world inputs. Our
preprocessing removed self-edges and multi-edges, but did not reorder the vertices as in [3].
We used ParMETIS [16] for pre-partitioning, and ran experiments for pre-partitioning based
on vertices and edges. Our performance results include runtime, number of colors used, and
how many rounds of communication were necessary.

5. Results. Figure 5.1 shows the runtimes of both of our approaches with different
pre-partitioning strategies. The timings do not include the time it takes to construct the
graph in either case, to focus analysis solely on the performance difference between these
two approaches after the graphs are constructed.
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Fig. 5.1: Mu1tiGPU runtimes for the 1 Ghost Layer (1GL) and 2 Ghost Layer (2GL) approaches.
Pre-partitioning schemes include no pre-partitioning (no part), vertex pre-partitioning (vert part), and

partitioning where vertices are weighted by degree (edge part).
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We use ParMETIS [16] to pre-partition our inputs. We use two different partitioning
objectives on our inputs. The first creates partitions so that each process has a similar
number of vertices. The second weights vertices by their degree and partitions them so
each process has a similar total weight. We will refer to this strategy as "edge-balanced"
partitioning. The default, which we call "no partitionine partitions the vertices by their
global vertex ID and gives each process a different set of contiguous vertex IDs.

The single-node runs only include the time it takes for KokkosKernels to color the entire
input graph on a single GPU. In these runs, each MPI rank gets its own GPU, so the number
of MPI Ranks corresponds directly to the number of GPUs. The initial spike in the runtimes
is due to the introduction of communication overhead. For the pre-partitioned inputs, this
overhead should decrease as the number of ranks increases. This is because partitioning aims
to reduce the number of edges between vertices owned by different processes, thus reducing
the amount of communication necessary between processes. This also speeds up our conflict
resolution, as we need to communicate the updated colors after conflicts are recolored. Our
results show that pre-partitioning the inputs is essential to obtaining speedup from the
single-node runs.

As Figure 5.1 shows, both of our approaches scale for a majority of our inputs. For the
hollywood-2009 (Figure 5.2(f)) and soc-LiveJournall (Figure 5.2(g)) inputs, we do not see
scaling because these graphs are from social networks which means they are almost certainly
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"small-world" graphs. Small-world graphs characteristically have a few vertices with very
high degree, and many vertices with relatively low degrees. This makes partitioning difficult,
and it means distributed algorithms will need a large amount of communication to color
this class of graphs. Our results show this, but they also show that partitioning is able to
mitigate this communication overhead somewhat.

The rest of our inputs are from problems that we would expect our algorithms to handle
well, and our results show this. The best speedup from the single node runs is seen in the
europe_osm graph, in Figure 5.2(h). The 2GL approach sees almost a 5x speedup from its
single node run. Both algorithms see on average around a 3x speedup, with the smallest
input, G3_circuit (Figure 5.2(a)) having the smallest speedup of 2.18x.

Another interesting note is that there is no clear-cut winner between both of our meth-
ods. On the Audikw_1 graph, the 1GL approach beats the 2GL by 1.17x. However, for
G3_circuit, the 2GL is faster by 1.13x. This likely means that for certain graphs, the com-
munication cost of maintaining the second ghost layer does not result in a corresponding
decrease in the rounds of communication. However, in other graphs, the number of rounds
decrease enough to offset the increased cost of communication.

Fig. 5.2: Number of collective communication rounds used for the 1 Ghost Layer (1GL) and 2 Ghost Layer
(2GL) approaches. Pre-partitioning schemes include no partitioning (no part), vertex partitioning (vert part),

and edge-balanced partitioning (edge part).
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Figure 5.2 shows how many rounds of collective communication are used by each ap-
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proach and pre-partitioning strategy. Our results show that for our input graphs, the 2GL
approach generally uses fewer rounds than the 1GL approach using the same pre-partitioning
strategy. There are a few exceptions to this rule, such as the 8 node run of the QueenA147
graph, (Figure 5.3(e)). Also worthy of note is that even though the 2GL approach sees a de-
crease in the rounds of communication for LiveJournal (Figure 5.3(g)) and hollywood-2009
(Figure 5.3(f)), the corresponding runtime plots show that the partitioned 1GL generally
outperform the 2GL, because the decrease in rounds does not make up for the additional
communication cost.

Fig. 5.3: Number of colors used for the 1 Ghost Layer (1GL) and 2 Ghost Layer (2GL) approaches.
Pre-partitioning schemes include no partitioning (no part), vertex partitioning (vert part), and edge-balanced

partitioning (edge part).
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Figure 5.3 shows how many colors our approaches use as the number of MPI ranks
increase. Generally, we expect to see that increasing the number of MPI ranks increases the
number of colors used. This is because we are using independent, parallel greedy coloring
algorithms on each process, and then resolving those greedy colorings together. However,
our plots show that there does not seem to be a strong trend to how the number of colors
change as the number of ranks increases. The most pronounced increase can be seen in
the Audikw_1 graph, in Figure 5.4(c), but in the worst case, that input sees about a 24%
increase in the number of colors used. We also stay below the max degree for most of these
inputs, with the exception being G3_circuit (Fig. 5.4(a)), where we use one more color.
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6. Future work. We have many directions for future work based on this project. We
have an idea that may eliminate iteration in a distance-1 coloring that involves the concept
of vertex separators. Vertex separators are sets of vertices that divide a graph into two
disconnected components. If, instead of coloring the boundary vertices, we are able to find
vertex separators between each process's subgraphs and color those separators, each process
should be able to color the rest of its subgraph independently without any iteration.

Additionally, we plan to extend this hybrid implementation to distance-2 coloring, and
partial distance-2 coloring. Our final aim will be to have a hybrid MPI+X implementation
for all of these coloring problems. This work's final application is the optimization of the
computation of sparse Jacobian and Hessian matrices, both of which are used in automatic
differentiation and other computational problems [2].
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Abstract. The EMPIRE project is a plasma physics simulation code developed by Sandia National
Laboratories. In an effort to improve overall software quality and software engineering practices, certain
tasks were accomplished. These include creating an onboarding checklist in EMPIRE's documentation to
better orient newcomers to the team, renovating an incomplete testing suite to improve the amount of code
covered by the tests and the documentation of the tests, and rewriting a collection of scripts to be more
organized, better documented, and fully tested. Continued work includes restructuring the project's wiki.

1. Introduction. Sandia National Laboratories' Electromagnetic Plasmas in Realistic
Environments (EMPIRE) team at focuses on bleeding edge research in the area of plasma
physics simulation software. Over the past two years, Jason M. Gates has been working to
improve the professionalism of EMPIRE's software infrastructure. This includes Software
Engineering practices such as:

• Using GitLab for lightweight project management.
• Establishing a clear workflow and guidelines for contributing to the code.
• Encouraging documentation and code style guidelines for the software.
• Protecting the main development branches and requiring code review before merging

changes.
• Setting up and maintaining nightly code testing and integration processes utilizing

the Jenkins continuous integration (CI) software.
As a 2019 summer intern working on this project, I have helped further develop the

software infrastructure for the EMPIRE team. The main projects involved in doing this
were

• Creating an onboarding checklist,
• Renovating an incomplete test suite, and
• Rewriting a collection of scripts to be better organized, better documented, and

fully unit tested.

2. Creating an Onboarding Checklist. This first task was aimed at providing bet-
ter documentation for those who are new to the EMPIRE team. At the start of the summer,
the state of EMPIRE's documentation was very much geared towards those already familiar
with the project. An important software engineering practice is to develop great documen-
tation such that anyone can take a look at it and quickly come up to speed on the project,
how to use it, and how to contribute to it in a way that meshes well with the existing
team [7]. The first step towards that goal was to create a dedicated Onboarding Checklist
page.

This page is placed on EMPIRE's GitLab wiki, and it contains checklist items for new
team members to work their way through as a first step in getting up to speed on the
project. The team member's mentor copies and pastes that into a GitLab issue and assigns
the issue to the new team member. Any questions the new member has can be posted in
the comments section of the issue, where anyone on the team can see it and reply.

3. Renovating test_empire_testing_uti1s. The next task in developing better
software infrastructure for EMPIRE was to renovate a test suite for a section of EMPIRE
code. The amount of code covered by these tests was below what it needed to be, and the
tests needed some restructuring for better documentation and cleaner code. This is another

*Oral Roberts University, School of Engineering, bbraunjagmail.com
Sandia National Laboratories, Software Engineering and Research Department, jmgate@sandia.gov
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key software engineering practice[2]: write well-documented, clean, and readable code. The
idea behind this is that code is more often read than it is written. Even if it is only yourself
who is going to be looking at the code, it is still good practice to do this. If code is hard to
read and undocumented, it can be very easy to come back a couple weeks, months, or years
later and not have any idea why the code was written the way it was, or even what it does.

The test suite in this task was written using pytest, a Python testing library that aims
to "make it easy to write small tests, yet scales to support complex functional testing for ap-
plications and librariee [4]. Many of this testing library's features, such as parametrization,
and built-in fixtures, like monkeypatch and tmpdir, were used to create elegant, effective
tests.

The code coverage at the beginning of renovating this test suite was 57%, and by the
time work was finished, the coverage was raised to 82%, as shown in Figure 3.1. Generally,
code coverage above 80% is considered good[3], so this is a huge improvement over the
previous code coverage level. Several files did not have any tests written to test them, so
tests had to be created from scratch.

Module ni statements missing excluded coverage

/home/josbrau/em_builds/empire_2o19-o9-3o/build-hybrid-spin/vvtest_config/empire_testing_utils/StREEQ.py 39 to o 74%

/home/josbrau/em_builds/empire_2o19-o9-30/build-hybrid-spin/vvtest_config/empire_testing_utils/_init_.py too 7 0 93%

/home/josbrau/em_builds/empire_2o19-o9-30/build-hybrid-spin/vvtest_config/empire_testing_utils/ main .py 12 12 0 0%

/home/josbrau/em_builds/empire_2019-o9-3o/build-hybrid-spin/vvtest_config/empire_testing_utils/automatic_diagnostics.py 58 52 0 to%

/home/josbrau/em_builds/empire_2019-o9-30/build-hybrid-spin/vvtest_config/empire_testing_utas/convergence_grid.py 133 11 o 92%

/home/josbrau/em_builds/empire_2019-o9-3o/build-hybrid-spin/vvtest_config/empire_testing_utils/cubit_runner.py 36 0 o t00%

/home/josbrau/cm_builds/empire_2(319-o9-3o/build-hybrid-spin/vvtest_config/empire_testing_utils/empire_execution_control.PY 64 43 o 33%

/home/josbrau/em_builds/empire_2o19-09-3o/build-hybrid-spin/vvtest_config/empire_testing_utils/empire_tpls.py 34 4 0 88%

/home/josbrau/em_builds/empire_2o19-09-3o/build-hybrid-spin/vvtest_config/empire_testing_utils/exodus_reader.py 151 7 0 95%

/home/josbrau/em_builds/empire_2o19-09-3o/build-hybrid-spin/vvtest config/empire testing_utds/h5part_reader.py 25 0 100%

/home/josbrau/em_builds/empire_2o19-o9-3o/build-hybrid-spin/vvtest_config/empire_testing_utils/history_file_reader.py 123 6 0 95%

/home/josbrau/em_builds/empire_2o19-o9-3o/build-hybrid-spin/vvtest_config/empire_testing_utils/parse_constants.py 40 0 80%

/home/josbrau/em_builds/empire_2o19-09-3o/build-hybrid-spiryvvtest_config/empire_testing_utils/read_install_info.py 9 o 89%

/home/josbrau/em_builds/empire_2019-o9-3o/build-hybrid-spin/vvtest_config/empire_testing_utils/trilinos_bin.py 55 3 0 95%

/home/josbrau/em_builds/empire_2019-o9-3o/build-hybrid-spin/vvtest_config/empire_testing_utils/xdmfdiff.py 183 29 0 84%

Total 1062 193 o 82%

Fig. 3.1: Code coverage for empire_testing_utils.

4. One build_empire.py Script to Rule Them All. At the start of the summer,
the scripts used to build EMPIRE from its source were scattered and disorganized. There
were different scripts written in bash for each different machine, and consequently, they
were not very well-maintained across the various machine scripts. Additionally, unit testing
options for bash are limited; some options exist, but none are as useful as pytest, which
would be used in the new build script. These build scripts were collected into a single
GitLab repository, but because these were specific to Sandia testbeds and high-performance
computers (HPCs), team members also had their own build scripts lying around.

Furthermore, the main EMPIRE wiki had several different pages for instructions on
building EMPIRE, most of which were out of date and would no longer work. Documenta-
tion of the scripts was hit or miss, and certainly no HTML documentation existed.

The goal for this task was to create a single build_empire.py script to rule them
all. It would be written fully in Python3 (although some calls to bash are necessary), fully
documented, and fully unit tested (meaning a coverage score above 80%). Its capabilities
would include:

• Clone the EMPIRE repositories from GitLab.
• Configure EMPIRE for building.
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• Choose an existing Trilinos installation to build against or build and install Trilinos
from scratch (using another script file).

• Build EMPIRE in different ways, depending on command-line options.
• Run various components of the EMPIRE test suite.

This script would be deployed across all nightly testing of EMPIRE that currently
happens. Additionally, all EMPIRE developers would be guided to this script for their
building needs via the wiki.

4.1. Documentation. A major goal in writing this script is to showcase what well-
documented code in EMPIRE should look like. This is done through the following:

• Descriptive, Google-style[6] docstrings.
• Sphinx-generated HTML documentation from docstrings.
• Helpful README's within the BuildScripts GitLab repository.

4.1.1. HTML Documentation. Figure 4.1 shows the main page of the Sphinx-
generated HTML documentation. This takes after the style of the popular documentation
website Read the Docs.

* BuildScripts

0111111111
CONTENTS

Build EMPIRE Utility

Update EMPIRE Utility

Install Trilinos Utility

Update Trilinos Fork Utility

Common Functions

Logger

Docs . BuildScripts View page source

BuildScripts

Contents:

• Build EMPIRE Utility

o Required Arguments

o Trilinos Install Args

o Workspace

o Stages to Execute

o Parallel Execution

o EMPIRE Flavor

o CCI (Code Comparison Infrastructure)

o Refs

o Other Arguments

• Update EMPIRE Utility

o Reqired Arguments

o Optional Arguments

• Install Trilinos Utility

Fig. 4.1: Homepage of Sphinx-generated HTML documentation.

The way that documentation is generated from docstrings within the code is shown
through the code snippet in Listing 1 and the corresponding Sphinx-generated HTML in
figure 4.2. The class docstring is a combination of Google-style and reStructuredText meth-
ods of Python documentation. This allows for a combination of readability within the code
provided by the Google-style (i.e. the Attributes: section) and useful syntax highlighting of
reStructuredText (i.e. the double backticks around ̀ em', ̀pic', 'fluid', 'hybrid', and 'spin' in
the first bullet point). These docstrings and the syntax within, as shown in figure 4.2, are
intelligently interpreted by Sphinx and converted into easy-to-read HTML documentation.

class BuildEmpire ():
/) 71 /I

This class takes care of any *E1V1PIRE* building needs . For
usage information , run python build \ _empire .py  help
on the command line . The basic capabilities of this class
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are the following:
Clone *EIVIPIRE* (choosing "em" , "pic " ,
" fluid ' ' , " hybrid ' ' , and/or " spin ' ' ).

9 B uild *EIVIPIRE*.
10 Choose existing *Trilinos* install to build
11 against
12 Build & Install *Trilinos* (using another script
13 file ).
14 If all goes well , update list of blessed SHAs on
15 the wiki.
16
17 Attributes:
18 args (Namespace): Contains data for all the flags/
19 arguments passed to this script .
20 build_dir (str ): Path to *EIVIPIRE*/*SPIN*'s build
21 directory.
22
23 7)7777

List ng 1: Class docstring for figure 4.2

In addition, Sphinx is able to recognize code snippets within docstring and provide
formatted, syntax-highlighted representations of them in the HTML documentation. This
is shown in figure 4.3.

Another notable feature of Sphinx is its ability to use plugins to extend its features.
This capability was used in the BuildScripts documentation to document the command-line
options of the build_empire . py script. The plugin sphinx-argparse converted the Python
argparse object used in the script into Sphinx-compatible documentation. An example of
how this looks in the HTML is shown in figure 4.4.

To make it easy for users to compile the code documentation into HTML, a simple
script was created and placed in the doc folder of the BuildScripts repository. All users
have to do is run the following command:
$ ./make_html_docs.sh

4.1.2. README Documentation. An important part of developing good documen-
tation is having helpful READMEs throughout the repository. This gives users information
that will help them get started with the software quickly and with clear direction. Because
modern code hosting websites will typically display the formatted README's contents be-
low the file listing, it makes it even easier for users to get information quickly. An example
of how this is used in the updated BuildScripts repository is shown in figure 4.5.

4.2. Unit Testing. As mentioned in section 3, unit testing is an important software
engineering practice. Consequently, any further development work that is done (such as
this build_empire . py script) should be fully unit tested, meaning the test suite covers
at least 80% of the code base [3].

Since it was unclear at first where the script was going and what exact behavior was to
be expected, it was difficult to achieve an ideal test-driven development (TDD) workflow;
that is, where one writes a test, sees it fail, writes code to make the test pass, refactors
the code, and repeats this process to develop the software[1]. Rather than this approach,
a method called spiking was used. Through this method, one simply focuses on exploring
the libraries that will be used and writing code that works. It is meant to be "quick and
dirty" [5], but I modified the approach somewhat by writing good docstrings as I went.
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doss build_empire.BuildEmpire

Bases: object

This class takes care of any EMPIRE building needs. For usage information, run

python build_empire.py • •help on the command line. The basic capabilities of this class are the

following:

• Clone EMPIRE (choosing em , pic , fluid , hybrid , andiror spin ).

• Build EMPIRE.

• Choose existing Trilinos install to build against.

• Build & Install Trilinos (using another script file).

• lf all goes well, update list of blessed SHAs on the wiki.

args

Contains data for all the flags/arguments passed to this script.

Type

Namespace

build_dir

Path to EMPIRE/SRN's build directory.

Type

str

Fig. 4.2: Sphinx-generated class documentation from class docstring in Listing 1.

This made it easier to write the docstrings so it would not be one large task at the end
that had been put off. Once a clear understanding of what the code should look like has
been established, the method calls to throw away the code and start from scratch using a
methodical TDD approach. Rather than doing this, I focused on writing tests that enforced
functionality as desired and refactoring code to be better organized, more concise, and more
readable.

Code coverage is not the only measure of how well-tested the code is, but it is the
most concrete. All it refers to is how many statements of the code are run by the testing
suite compared to the total number of statements in the code. Much can be run by the
test suite while a certain functionality is not explicitly tested. The goal in unit testing
the build_empire.py script was to achieve both high code coverage and all functionality
tested.

The testing library used to test the build_empire.py script is the same as that
used in section 3: pytest. The code coverage of the build_empire.py script, helper files
like common_funct ions .py and logger .py (discussed further in section 8), and the
build_trilinos.py script (discussed further in section 5) are shown in figure 4.6.



104 Providing Software Engineering Support for EMPIRE

doss comman_funct ions .Timerttimer_nome, dirt_to_sove_ to)

Bases: object

This class can be used in a with statement to automatically time whatever is in the with

statement and save that to the dictionary that is passed in.

For example, this code:

db =

with Timer('spam', db):

print("Going to sleep")

time.sleep(1.234)

print(db)

Produces this output:

"" Start Timer 'spam'

Going to sleep

"" End Timer 'spam' (1.23 seconds)

f'Timer: spam': 1.23433780670166021

Fig. 4.3: Code snippets in Sphinx-generated HTML documentation
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Build EMPIRE Utility

usage: Build EMPIRE Utility [-h] [--trilinos-install-dir TRILINOS_DIR]

[--install-trilinos]

[—compiler fgnu,intel,cuda,clangl]

[--build-type fopt,debugl]

[--node-type [serial,Pascal60,Kepler37,openmp}]

[--lib-type fshared,staticl]

[--trilinos-ref TRILINOS_REF]

[--workspace WORKSPACE]

[--stage fclone,configure,build,ctest,pytest,vvtest,extendedtestingl

[-j J] [-jbuild JBUILD] [-jtest JTEST]

[-jctest JCTEST] [-jvvtest JVVTEST]

[-jpytest JPYTEST]

[--flavor fem,pic,fluid,hybridl] [--spin] [--cci]

[--blessing-timestamp BLESSING_TIMESTAMP]

[--develop] [--prefix PREFIX] [--send-email]

[--SNLCLUSTER SNLCLUSTER] [--ref REF]

[ em ref EM_REF] [--pic-ref PIC_REF]

[--fluid-ref FLUID_REF] [--hybrid-ref HYBRID_REF]

[--spin-ref SPIN_REF] [--ex-test-ref EX_TEST_REF]

[--build-dir BUILD_DIR] [ dry run] [--nightly]

[--replay] [--build-system fninja,makel]

[--warning-emails] [--werror-off]

Required Arguments

--trilinos-install-dir

Install directory for Trilinos to build against. Note that this is NOT REQURIRED for CCI.

Trilinos Install Args

--install-trilinos

Install Trilinos from scratch into the directory specified by r-trilinos-install-dir' (unless • •cci is

specified).

Default: False

Fig. 4.4: Sphinx-generated argparse documentation.
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Buildscripts

This repo contains four main scripts:

1. build_empire.py

o Configure, build, and test EMPIRE.

2. install_trilinos.py

o Configure, build, test, and install Tribnos.

3. update_empire.py

O Utility that helps check for any EMPIRE updates, push those updates to a separate branch for testing, and merge those tested branches

into master. .

4. update_trilinos_fork.py

o Utility that helps bring updates from t rilinos/Trilinos : develop into the EM-Plasma fork of Trilinos while verifying that changes

do not break compatibility with EMPIRE.

Getting Started

Building EMPIRE

TFie basic required arguments for the build_empire script are the following:

• - -t rilinos - install. - di r : The location of the Tribnos install to build EMPIRE against.

• - -flavor FLAVOR or - -spin : One of these flags must be specified. The FLAVOR can be either em , pic , fluid , or hybrid .

For further information about command line options, run:

$ ./build empire.py --help

Fig. 4.5: Portion of the README in the root directory of the BuildScripts repository

Module 1 statements missing excluded coverage

build_empire.gy 591 110 0 81%

common_functions.py 296 37 0 88%

install_trilino s..py 226 15 0 93%

lo gger.py 175 2 0 99%

Total 1288 164 0 87%

Fig. 4.6: Code coverage for BuildScripts
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5. One build_trilinos.py Script to Rule Them All. The situation for the
scripts used to to build, test, and install Trilinos at the beginning of the summer was not as
bad as the situation for those used to build EMPIRE, but redoing them was still in order.
They were still written in bash, not unit tested, and not very well documented.

The goal for this task was much as it was for the build_empire .py script: create a
single build_trilinos .py script to rule them all. It would be written fully in Python3
(some calls to bash necessary), fully documented, and fully unit tested. Its capabilities
would include:

• Clone the Trilinos repository from GitLab.
• Configure Trilinos for building with a variety of command-line options.
• Build Trilinos.
• Test Trilinos.
• Install Trilinos.

The approach for this script was much as it was for the bui ld_empire . py script,
but development went much quicker having the other script as a base. Essentially, the
build_empire .py script was copied and pasted into a new build_trilinos .py file,
modifications were made to support Trilinos rather than EMPIRE, and unit tests were
made. The task was much simpler because, unlike the bui ld_empi re .py script which had
to support multiple configurations (the various combinatorics of five source repositories)
and multiple test types (ctest, pytest, multiple vvtest1 suites), the Trilinos script only had
to support one configuration (Trilinos) and one test type (ctest). As seen in figure 4.6, the
test coverage for this script is 93%.

6. update_empire.py Script. Another utility that needed to be converted to Python
was a script called updateEMPIRE. This script has the following capabilities:

• Check the EMPIRE repositories' develop branches to see if they are ahead of their
respective master branches. If so, copy the develop branches to new branches
where tests will be run on them to see if they are suitable to be merged into mast er.

• Merge updates from the testing branches into mast er.

The expectations of the creation of this script were similar to those of the previous two
scripts: fully documented and fully unit tested. Documentation is up to the same standards
as the previous two scripts, but because of the nature of this script, it was not feasible to
run unit tests on most of it. Most all of the logic and actions of this script involve Python
subprocess calls to an external program: git. Because the interface of doing this is through
a single run_cmd () function, which runs the bash commands, the ability to test the script
is limited.

Normally, when testing a script or module that interacts with an external service, it is
desired to "break" this dependency on the external service. The best way to do this is with
mocks, which allow a test to create a Python object that poses as the external service. That
way, tests are able to verify certain behaviors (such as "does the script behave correctly when
git does xyz?") consistently, without the unpredictable responses of the external service.

Mocks work by posing as other Python objects or functions. However, because so many
different git commands are run via the single run_cmd ( ) function, there is no opportunity
to mock any one git command. This means that tests are not able to be reproducible;
they are at the mercy of the response of the external git commands. Some days there may
be EMPIRE updates and other days there may not be. These limitations have led to the
testing suite for this script being very limited in scope, with a code coverage of 44%.

lA Sandia-developed testing tool.
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7. update_trilinos_fork.py Script. A similar utility to updateEMPIRE that
also needed to be converted to Python was a script called updateTrilinosFork. To
understand the capabilities of this script, one must first understand the structure of EM-
PIRE's use of Trilinos. Because EMPIRE and Trilinos are both under active development
and EMPIRE wishes to use the latest code developed by the Trilinos team, a system must
be set up to ensure that updates to the develop branch of Trilinos are safe to use with
EMPIRE before using them full-time. To do this, EMPIRE maintains a separate fork of
Trilinos with four main branches:

• trilinos-develop point to the latest commit on the real Trilinos develop
branch (trilinos/Trilinos :develop) that EMPIRE has validated through
its nightly testing pipeline.

• develop contains everything in trilinos-develop, plus any changes that EM-
PIRE developers have made that have not yet made it into Trilinos' develop
branch. These additional changes are rare, but EMPIRE requires this flexibility as
they continue to push the bleeding edge.

• potential-trilinos-develop points to the tip of the real Trilinos develop
branch, and it will become the new t rilinos-develop whenever EMPIRE's
nightly testing pipeline passes.

• potential-develop points to the merge commit created when you merge
potential-trilinos-develop into develop, and is the branch that will be
tested in the midst of the nightly pipeline.

Because the process for getting updates into Trilinos' develop branch can take days
with its automated testing system for pull requests, the develop branch of the EMPIRE
fork serves as a quicker way to merge in new changes that EMPIRE developers may need to
make. Changes that are merged into this branch still need to be reviewed and approved by
Trilinos developers, but they don't have to go through the long automated testing process.

With this system in mind, the update_trilinos_fork.py script has the following
capabilities:

• Check to see if there are any updates to Trilinos' develop branch such that we
can update the t r il inos-deve lop and develop branches of EMPIRE's fork.

• Push updates from potent ial-develop to develop.
This script, like the update_empire.py script, has excellent documentation but has

limitations when it comes to unit testing. In fact, this script is so reliant on Python sub-
process calls that writing tests at all is unfeasable. Consequently, this script lacks a test
suite.

8. Logger. In the process of creating the build_empi re .py script, a Logger utility
was created. This utility was subsequently integrated into the other three scripts because
of its usefulness. Every shell command and print statement in these scripts is executed via
a Logger object. As a way to document the commands, a message describing its purpose is
required. The output of these commands and print statements is put into an HTML file,
where each command is expandable to show more information about it. This includes the
timestamp, the command itself, the current working directory, return code, st dout, and
s t de r r. For an example, see figure 8.1.

The way this is structured in the scripts is that there is one parent Logger object for
the whole script and each stage within the script has its own Logger object that is a child
of the parent. This makes it easier to categorize commands and print statements. In the
HTML output, each child Logger is initially collapsed (figure 8.2) but can be expanded to
see more information (figure 8.3).

In addition to the HTML output, the Logger class outputs all the log data except
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• Cloiling /homenosbrau/Documents/em_builet07_1319/FMPIRE from scratch.
Duration: Oh Om 3.53s

• Time: 2019-07-15 09:46:14.672704
• Command: git clone —origin em-plasma git@cee-gitlab.sandia.gov:EM-Plasma/EMPIRE lhomeipsbrau/Documents/em_build_07_15_19/EMPIRE
• CWD: /homMosbrau/Documents/em_build_07_15_19
• Return Code: 0
• stdout:
• stdem

Cloning into Thome6osbrau/Documents/em build 07 15 19/EMPIRE...

Fig. 8.1: HTML expanded command information

Build EMPIRE Log

► Setup Trilinos environment
Duration: Oh Om 0.55s

• Clone EMPIRE/SPIN
Duration: Oh Om 22.17s

• Configure EMPIRE/SPIN
Duration: Oh Om 26.5s

• Build EMPIRE/SPIN
Duration: Oh 15m 42.42s

• Test EMPIRE/SPIN
Duration: 1h 48m 1.49s

Fig. 8.2: HTML collapsed child Loggers

for stdout and stderr into a JSON file. This allows for quick machine parsing of that
information so that it can be analyzed over time. For example, one could see how the
duration of the build stage changed over time by parsing this information from multiple
JSON log files.

Another consideration in the creation of the Logger class was memory consumption
with large stdout and stderr streams. The particular use case that brought about this
consideration was building EMPIRE with CUDA, which can generate st dout/st derr
logs several gigabytes in size. Because of this, the stdout and st de r r streams cannot
simply be stored inside of the Logger object as an attribute. This would use up far too
much memory.

To solve this issue, the stdout and stderr streams are saved to files uniquely associ-
ated with that command as the streams are generating data. When the HTML file is built,
those files are read and written to the HTML file one line at a time to avoid loading all
of that information into memory. It was deemed unnecessary to put stdout and stderr
in the JSON file since viewing information is not its purpose. However, since it has all
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Build EMPIRE Log

1. Setup Trilinos environment
Duration: Oh Om 0.55s

Clone EMPIRE/SPIN
Duration: Oh Om 22.17s

###############################################################################
Cloning EMPIRE/SPIN
###############################################################################

Cloning /homOosbrau/Documents/em_build_07_15_19/EMPIRE from scratch.
0. Cloning /homenosbrau/Documents/em_build_07_15_19/EMPIRE from scratch.
Duration: Oh Om 3.53s

Checking out 'develop'.
0. Get current branch ref.
Duration: Oh Om 0.02s

Fig. 8.3: HTML expanded child Logger

the other information on the commands, including the unique command ID associated with
the stdout/st derr files, the HTML file is able to be generated using just the JSON and
stdout/stderr files.

9. Refactor Project Wiki. The last task for the summer was to refactor the project
wiki. The state of it at the beginning of the summer was one that made it difficult for
newcomers to the project to get up to speed. The Onboarding Checklist was a first step to
make this process better, but the whole wiki really needed to be restructured. The home
page was essentially just a list of helpful links and resources, rather than a README-style
page with intro, install, usage, and contributing sections. The overall goal in refactoring the
wiki was to provide easy-to-access information about EMPIRE that guides one through the
basics of the project and provides resources for digging deeper. This process is currently in
development, but is getting close to being finished. Overall, this process will be very helpful
for the use of EMPIRE as a software package.

10. Conclusions. The changes to the EMPIRE wiki and existing test suite, the ren-
ovated scripts, and the new Logger utility are worthwhile improvements to the quality of
EMPIRE as a software package. Not only do they lessen the barrier to new team member-
s/users, but they also unify parts of the project that had become disjointed over time.

Continued work will involve restructuring the EMPIRE wiki to be even better suited
for people unfamiliar with the project. Currently, the homepage is essentially just a list of
helpful links for those who already know what is going on. The goal would be to provide
documentation that is easy for newcomers to follow and get up to speed on all they need to
know about the project.
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Abstract. Neuromorphic computing is known for its integration of algorithms and hardware elements
that are inspired by the brain. Conventionally, this nontraditional method of computing is used for many
neural or learning inspired applications. Unfortunately, this has resulted in the field of neuromorphic
computing being relatively narrow in scope. In this paper we discuss two research areas actively trying to
widen the impact of neuromorphic systems. The first is Fugu, a high-level programming interface designed
to bridge the gap between general computer scientists and those who specialize in neuromorphic areas. The
second aims to map classical scientific computing problems onto these frameworks through the example
of random walks. This elucidates a class of scientific applications that are conducive to neuromorphic
algorithms.

1. Introduction. Computer scientists have been fascinated by the brain and its con-
nections to scientific computation for years. The father of theoretical computer science Alan
Turing himself was tormented with the question "can machines think?" in his 1950 paper
Computing Machinery and Intelligence. Now with modern technology, we are finally able to
begin developing an answer to that question. The brain has inspired several projects that
are paramount to our technological advancements today.

One such project is the EU's Human Brain Project, that has tasked itself with partially
simulating a human brain. Using traditional computing methods, the brain is a computa-
tional nightmare due to its enormous number of neurons with their high connectivity [3].
However, as technology advances, we are able to simulate these neurons and their connec-
tions more efficiently using computing methods that are inspired by how the actual brain
computes: neural networks.

Another common research project that has taken the world by storm and was first
inspired by the brain is Artificial Intelligence (AI). The consequence of AI is that we are
able to replicate human behavior on computers without having to hardcode that behavior
explicitly. Machine Learning (ML) is a highly popular subset of AI that allows computers
to take in data to solve an unknown algorithm. An exciting and popular result of ML is
that computers, when exposed to more data, can distinguish items on their own without
an explicit algorithm [2]. It has become hugely popular to use neural networks to assist
this training of computers. ML techniques that are reliant on artificial neural networks are
similar to human brains, as they get trained and essentially "learn".

In order to make these types of projects more scalable, numerous researchers in these
fields have turned to neuromorphic computing, which is also known for its inspiration from
the brain and use of neural networks. Although neuromorphic computing is widespread
in many learning and neural applications, it is not found in many other engineering or
computing applications. It is important to integrate these more general applications onto
neuromorphic systems to see the benefits of neuromorphic spread into other areas.

1.1. Neuromorphic Computing. Neuromorpic computing blends two aspects of
computing, both influenced by the brain. This nontraditional method of computing com-
bines software paradigms that are brain-inspired with physical computer hardware that uses
artificial neurons as their computational elements. In this paper we are primarily referring
to spikng neural algorithms due to their ability to relay a significant amount of information

f Colorado School of Mines, lreeder@mines.edu
t Sandia National Laboratories, jbaimon@sandia.gov
1Sandia National Laboratories, wmsever@sandia.gov
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in small interactions [7, 10]. The spiking neural networks can be programmed onto hardware
that is specifically designed to run these networks in an efficient manner with impressively
low energy.

We can pair neural inspired algorithms that result in spiking neural networks with new
computer architectures to achieve significant energy and volume efficiency [12]. This is es-
pecially desirable in the event that traditional computers could require more power than
is reasonable due to the projected future of semiconductors and the end of Moore's Law
[4, 16]. While spiking neural networks can run on traditional computing devices, when
these networks are coupled with neuromorphic hardware, the computational advantages are
significant [6]. Unfortunately, implementing these spiking neural algorithms and program-
ming them on this specialized hardware is non-trivial, which has prevented neuromorphic
computing from being wide spread in the general scientific community.

1.2. The Future of Computing. For decades, the scientific computing community
has been focused on numerically solving challenging mathematical problems. The world's
best supercomputers have been built in order to comply with the high demands scientists,
engineers, and mathematicians have to compute these difficult problems. When this technol-
ogy curve winds down due to the end of Moore's law, nontraditional methods of computing,
such as neuromorphic, can rise up in the ranks [9].

Unfortunately, neuromorphic computing is not as ubiquitous as its traditional counter-
parts because a large knowledge base of neural computation is required. In this paper we will
discuss several efforts at Sandia National Laboratories to try to bridge this gap. In Section 2
we will discuss Fugu, a high-level interface currently being developed to make neuromorphic
computing more accessible to the general scientific computing community. In Section 3 we
will then present a well known scientific computing technique, random walks, that has been
implemented with a neural algorithm and on neuromorphic hardware. These two sections
embody current efforts to show that not only can we implement non-neural and non-learning
applications on these frameworks, but we can also achieve significant performance benefits
on these computations as well.

2. Fugu. Fugu, a high-level tool for scientific applications, allows users to utilize and
build spiking neural algorithms for arbitrary computations [1]. This is especially desirable
because it allows users to be able to adopt neural algorithms for general computations,
showing that neuromorphic paradigms can be used in strictly non-neural application spaces.
In addition, Fugu significantly expands the population space of those who can benefit from
neuromorphic computing. There are many potential contributors to Fugu, which we have
grouped into the following three classes,

• A: Those without intimate knowledge of neural computing.
• B: Those who have experience with writing neural algorithms.
• C: Those with significant knowledge of neuromorphic hardware.
Our goal is to ensure that each type of user will be able to use Fugu with relative ease

and contribute to it in any of the three manners. Fugu contains a library of different neural
algorithms that are able to solve a variety of computations.

For example, several graph algorithms have been instantiated, such as shortest path and
breadth first search. People in group B will be able to contribute to Fugu and implement
other useful algorithms identified by the people in group A's needs. In addition to algo-
rithms, Fugu also contains several different neuromorphic backends that will be able to run
these algorithms efficiently, as they have been designed and optimized for neural algorithms.
People in group C will be able to develop new backends as more neuromorphic hardware
becomes available. The end result is a plethora of spiking neural algorithms for a multitude
of application spaces with plenty of backend options.
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Fig. 2.1: An example of the underlying neural structure of a large graph computation with Fugu. Each different
colored node in the graph corresponds to a neuron of a particular brick. In this instance, the purple neurons

represent the input map, the orange represents the classification, green the graph search, and blue the constraint
satisfaction.

2.1. Structure. Fugu itself is composed of two main parts: bricks and scaffolds. The
idea is that bricks are simple computations that users may want to use as a part of a larger
computation. In this sense, users can combine bricks to form a scaffold.

For example, say a user wanted to determine if a destination on a map is within a certain
vehicle's range. To compute this with Fugu, the following bricks would be needed: an input
of the map, classification on that image, a resulting graph search, and then a constraint
satisfaction. Each of these bricks would then be combined into a scaffold and computed in
the specified order. The resulting network of neurons created from this example simulation
can be seen in Figure 2.1.

2.2. Features. Fugu has several features that make it especially distinct compared to
other platforms that run neural algorithms efficiently. The main distinction is that Fugu can
run non-neural applications in addition to many learning and neural applications. In Section
3 we present one non-neural application, a Markov process random walk. This exemplifies
a class of computations that fit nicely in spiking neural algorithms.

Another Fugu feature, shown in Figure 2.2, is the debugging tool created for Fugu. The
idea behind this tool is that when users are creating a brick, it is important for them to
determine if their brick works. This debugging tool can be used to ensure that the spikes are
happening when expected and the bricks are connected in a reasonable way. A difficult part
of not only neuromorphic, but computing in general is the fact that debugging is difficult.
As neuromorphic computing is not as widespread as traditional computing, there are not
any best practices for debugging in place. We hope that this debugging visualization tool
can be used effectively for any computation used on Fugu and can help set good practices
for others in the neural network computing realm as well.

2.3. Goals. Eventually, we hope to have Fugu open to the general public. For now, it is
being developed at Sandia National Laboratories with collaborators at Lawrence Livermore
National Laboratory and Los Alamos National Laboratory. Our goal is to have Fugu be
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Fig. 2.2: An example of a Fugu scaffold computation in the built in debugging tool. In this example, the input is
a vector. Then, that vector is copied and two different dot products are applied to one copy of the vector.

Finally, the resulting value of the dot products are checked against two thresholds to determine if the resulting
value is above or below each threshold.

open source so a variety of people can use it and contribute to it, which would enhance the
neuromorphic community as a whole.

3. Random Walks and Diffusion. Here we present a scientific application, random
walks, that has been shown to map well onto a neuromorphic system. A random walk
models particles moving in a diffusion scheme, or randomly in a free space. In a simplified
scheme, particles start at a location on a one dimensional line and have defined probabilities
of moving one step to the right or left. If we let the particle take one step at each time
step, over time the motion of the particle would result in a random walk over its domain.
A depiction of a 1-D random walk can be seen in Figure 3.1. This can extend easily to two
or more dimensions. For an in-depth introduction on random walks, see [15].

The motion of particles in a random walk inherently solves the well known diffusion
equation partial differential equation (PDE) [14]. The diffusion equation, also referred to as
the heat equation, models the phenomenon of particles spreading throughout a domain. This
is a well known PDE that arises in many scientific computing and engineering applications.

3.1. Spiking Neural Algorithm. The spiking neural algorithm that we use for ran-
dom walks was first presented in [13]. This algorithm tracks positions of random walkers in
time by tracking the nodes on a graph and counting the number of walkers at each node at
any given point in time.

To do this, there is a spiking neural circuit embedded at each node in the graph that
randomly determines which direction the walkers will go. A random walker's direction is
determined by a specific neuron spiking in a probability gate. At a given time step, if a walker
is at a node, neurons will propagate and spike throughout the circuit at that node, ending
at this probability gate. The output neuron that spikes in the probability gate specifies
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Fig. 3.1: One dimensional random walk simulation depicting 50 particles.

which neighboring node the current node will send a walker to. This neighboring node is
where the walker will be at the next time step. These probabilities are all user-determined,
so this algorithm can be ubiquitous over a variety of applications.

3.2. Applications. The most common applications of random walks are a variety of
graph algorithms and image processing tools such as path finding and image segmentation.
More details on these types of applications and how they were implemented as spiking
neural algorithms can be found in [11]. Here we focus on several more general engineering
applications radiation transport and electrical capacitance. Each of these applications can
be modeled with different modifications of a simple random walk.

3.2.1. Radiation Transport. Radiation transport is an important and relevant ap-
plication as many scientists try to model particles being emitted from a radioactive slab.
Solving this radiation transport problem with random walks is not new; it is common to use
Monte Carlo approaces to solve these types of particle transport problems [5]. Here we focus
specifically on a one dimensional model problem. For a one dimensional radiation transport
scheme, we consider random movement throughout a slab, where spatial locations are only
defined along one direction. Particles are either absorbed or reflected at random spatial
intervals along the slab. This results in three random numbers to consider at each particle
location: distance particle traveled, direction of particle movement, and rate at which the
particle is absorbed.

We are working on mapping this to our spiking neural algorithm. The first inherent
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Fig. 3.2: A potential 1D radiation transport scheme. The slab of material contains nodes along the x direction.
A neural circuit is embedded at each node. Walkers have a probability to move from one node to another with a
certain probability determined by a double tailed exponential distribution. Arrows represent transitions from
node i. Transitions with higher probabilities are denoted in green with a thicker arrow. Transitions with low
probabilities are denoted in yellow with a thin arrow. Nodes R and T represent reflection and transmittance

nodes respectively.

difference from a simple random walk lies in the fact that we have more random events
occurring. As it is, our algorithm can deal with particles moving in an arbitrary number of
directions, but we will need to instantiate other random factors on top of that, such as a
random absorption event. We also have particles that are randomly diffracted and change
directions rapidly. As we are considering a one-dimensional case, we can represent this by
creating highly connected neural circuits, so more potential directions are available at a
single instance.

This does not require changes to the algorithm itself, but changes to how it is instan-
tiated by the user. To model the possible directions and transition probabilities needed
for this application, the length of the slab needs to be discretized. We set the transition
probabilities following a double tailed exponential distribution, where walkers at a location
are much more likely to move to closer neighbors rather than positions located on the other
side of the slab. Here it is important to ensure that probability is conserved over all of
the possible directions. Figure 3.2 shows how the model can be set up, with thicker arrows
corresponding to connections with higher probabilities.

In the algorithm, we are primarily concerned with particles being either reflected, trans-
mitted, or absorbed. We can keep track of this throughout the random walk simulation
because if a particle reaches beyond the left-most point of the domain, we can qualify this
as the particle being reflected back from where it first entered the slab. If a particle reaches
beyond the right-most point of the domain, then we can qualify this as the particle being
fully transmitted throughout the slab. To quantify these positions in the actual simulation,
we append two more possible locations to either end of the slab, one to simulate reflection
and one to simulate transmittance.

Particles that are being absorbed fit more naturally to the original random walk model.
To integrate absorption into the model, we create another random draw before spikes are
sent to neighboring neurons. If we check the result of this draw to the specified probability
of absorption, we can move spikes along if it does not meet the threshold and hold spikes if
it does, signifying that the walker has been absorbed.
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3.2.2. Electrical Capacitance. Using introductory electrostatic concepts, calculat-
ing the capacitance can be thought of as calculating the surface integral of the charge density
of a capacitor. Let S E 110 represent a conductor and OS be its surface in which we are
calculating the charge density on. Additionally, let C represent the capacitance of S, and µ
represent the charge density distribution. Then, capacitance can be found with the following
equation,

C = µ(y)do-(y). (3.1)
as

To calculate the charge density n(y) of a given object, a random walk on the surface of
that object can be conducted. After n timesteps, the charge density can be calculated by
determining the amount of particles at each position on the surface of the object [8].

In this random walk scheme, a particle starts at a particular location on the surface of
a cube. The particle can then randomly move to another face of the cube with a random
angle B along the current face of the cube and random angle 0 above the current face of the
cube. This can be seen in Figure 3.3.

This general random walk model can be implemented quite easily with the neural algo-
rithm that we already have; however, there will be a large bottleneck if we do not modify
how the particles are connected. In the original scheme, each particle has the potential to
move to any location on any remaining face of the surface. In our neural algorithm, this
translates to building a network of neurons before the simulation begins and connecting a
neural circuit at each node to circuits at all of the remaining nodes that can be reached. Al-
though this can be done, our random walk algorithm will be very inefficient if we implement
it at face value due to the significant number of highly connected neurons.

A

Fig. 3.3: A depiction of how the particles move in a random walk scheme on a surface of a cube. A particle
begins at face A then moves to face B as a result of two random draws: one for the angle 19 E [0, 27r) and one for

the angle ¢ E [0, r].

Instead, we are exploring hierarchical connections of the nodes so we do not have to
initialize a significant amount of neurons and connections that have a very low probability
of being used. As we build our network of neurons before the simulations start, we need to
prune the number of outcomes of walkers that arrive at each node so that there are a more
reasonable number of connections at each node. This can be done in a variety of ways, but
it is not clear just yet what the best implementation is. It is important when implementing
these applications on neural platforms that we are able to adjust the algorithm so that it
is able to work well throughout the application spaces and continually show performance
benefits with this nontraditional method of computing.
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4. Conclusion. We have shown that neuromorphic computing is a promising field
with a significant number of unexplored research applications. Previous concerns regarding
neuromorphic systems have accused it of being niche as it does not extend well to non-
neural applications. However, we have discussed a variety of non-neural applications that
show how neuromorphic can be used in addition to or instead of traditional architectures
and paradigms. We hope to further this area of research and continue to develop useful
algorithms that utilize the unique features of neuromorphic architectures to their fullest
extent.
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PERFORMANCE MODELING OF VECTORIZED SNAP INTER-ATOMIC
POTENTIALS ON CPU ARCHITECTURES

MARK P. BLANCO* AND KYUNGJOO KIMt

Abstract. SNAP potentials are inter-atomic potentials for molecular dynamics that enable simulations
at accuracy levels comparable to density functional theory (DFT) at a fraction of the cost. As such, SNAP
scales to simulation sizes on the order of 104 — 106 atoms. In this work, we explore CPU optimization of
potentials computation using SIMD. We note that efficient use of SIMD is non-obvious as the application
features an irregular iteration space for various potential terms, necessitating use of SIMD across atoms in a
cross matrix, batched fashion. We present a preliminary analytical model to determine the correct batch size
for several CPU architectures across several vendors (Intel, IBM, and ARM), and show end-to-end speedups
between 1.66x and 3.22x compared to the original.

1. Introduction. Spectral Neighbor Atom Potentials (SNAP) is a molecular dynamics
approach that achieves similar accuracy to density functional theory (DFT) codes, while
scaling to many more atoms at a fraction of the time [9]. SNAP achieves this by projecting
inter-atomic interactions between a source atom and each of its neighbors into a basis space
called the ̀ bispectrum.' The collection of inter-atomic bispectrum components are used as
a feature space for a statistical model previously trained on high-accuracy reference data for
a training set of atomic configurations. In this way SNAP scales to simulations with orders
of magnitude more atoms (on the order of 105 — 106 atoms).

Performance modeling of scientific applications plays a pivotal role in achieving efficient
and portable execution of applications on diverse parallel computing platforms. As the
variety of parallel computing architectures increases, establishing an accurate model becomes
also more complicated, since a model must account for a variety of factors on performance.
Furthermore, performance modeling of scientific applications is even more challenging as
it requires domain-specific knowledge of both applications and computer architectures to
accurately model their dynamics. For this reason, performance modeling tends to focus on
characterizing the performance of a kernel in an algorithm on a given hardware system i.e.,
roofline models. Although roofline models can expose inherent hardware limits of kernels,
they do not expose performance bottlenecks or design issues of the algorithm implementation
itself. Hence, exploring and modeling the performance opportunities in an application,
across platforms, is necessary to identify performance-portable expressions of workloads
that can be analytically tuned for a range of platforms.

In this work, we focus on developing a single-core performance model to guide devel-
opers (or their compilers) in how to best implement SNAP and take advantage of SIMD
hardware through data parallelism. First, we review the mathematics behind SNAP and
analyze a baseline code written directly from the mathematical formulation. We identify
critical operations in SNAP subroutines where most computations occur, and offer a batched
execution model that enables better exploitation of data parallelism. Next, we design an
initial performance model based on our data-parallel formulation that narrows the space of
batch sizes that need be considered in deploying SNAP to other architectures. Finally, we
evaluate our model and demonstrate performance improvements on Intel, IBM, and ARM
processors, showing end-to-end speed-ups between 1.66x and 3.22x across all test cases.

2. SNAP, Initial Algorithm, and Profiling. In this section we briefly introduce
relevant mathematical details of the SNAP formulation. We then review the current al-
gorithmic formulation, our analysis of the iteration spaces present, and run-time profiling

*Carnegie Mellon University and Sandia National Labs, markbl@cmu.edu
tSandia National Laboratories, kyukim@sandia.gov
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results on the test implementation. These analyses and profiling results guide our optimiza-
tion efforts by highlighting important trends in computational cost and opportunities for
parallelism.

2.1. Overview of Mathematics for SNAP. For additional details on the SNAP
formulation, we direct the reader to reference [3, 9]. A key part of the approach taken by
Thompson et al. in the design of Spectral Neighbor Analysis Potentials is in mapping spatial
relationships between pairs of atoms to a basis space called the bispectrum. As a result of
mapping to this basis space, a large fraction of the computations in SNAP no longer scale
in complexity with the number of neighbors to each atom, but instead to the size of the
basis space used.

Wigner Matrices. To arrive at the new basis space, SNAP represents 3D spatial
relationships between atom pairs in terms of two angular components and a radius. The
three coordinates are mapped onto a point on the surface of the unit 3-sphere in 4D space. A
set of hyper-spherical harmonic basis functions known as Wigner matrices are evaluated at
the point. The Wigner matrices are complex-valued functions of three angles that we write
here as Uim,m' (00, 0, 0). Further details on this coordinate transformation can be found in
[3, 9, 10]. For a given atom i and neighbor i', their relative polar coordinates map to the
following partial term:

Urre ,rre ; partial(i,i' fc(riv)wiU41,m, (011 O7 (1)) (2.1)

where fe(rii,) is a function designed to decrease the effects of neighboring atoms i' that are
farther away, going smoothly to zero at some cutoff distance; wi is a weighting for atom i;
and the third polar angle is given by 00 = %max Rr t for cut-off radius Rcut and cut-off angle
00. These components are accumulated for all atom neighbors

2G3m n, = U;17„, (0, 0, 0) + E uimn,; partial(i,V) (2.2)
rii,

Repeated for each atom, we obtain the complex-valued expansion coefficients for each atom
in the simulation. Throughout this text, this part of the computation is referred to as
computation of u-terms, and in algorithm listings is part of Phase I of SNAP.

Bispectrum Components. Each atom i's component representation in the bispec-
trum is given by a combination of u-terms over a set of iteration labels ji, j2, j3, and their
corresponding mn, m'n sub-labels:

71 72 i3

= E E (ui3 , , uil ui2

rn3,m3 31",17n1,32M27n2 ml 2Tn 
(2.3)

m1,m'1=-31 m2,772 =-32 m3074-33

The term H33m3m,3 , is a product of Clebsch-Gordan coefficients, defined by Thompsonnmimi,J2m2m2
et al. in [9]. The iteration labels ji = j1,./2,j3 are defined for jn = [0, 0.5, 1, 1.5, ... Jrnax]
and the labels ran, mci are defined over [—j„ . j„] for a given value of j,.

Note that the jn iteration labels are are defined on a ̀half-integral' space; for compu-
tational practicality these are scaled by two in order to be integral, and the ran, min labels
are correspondingly scaled and translated to fall in the range [0 ... 2 x jn]. Finally, we note
that 2,/max = 2 X Jrnax determines how many bispectrum omponents SNAP will use in
computations, which therefore scales accuracy and computational complexity. The jn terms
are constrained in the following manner:

O < jl < 2Jmax,
0 < j2 ji,

.71 — .72 j3 + j2s.t.ji +j2 + j3 e 2Z

(2.4)
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We direct the reader to [9, 10] for additional details regarding these constraints.

Gradients, Energies, and Forces. To compute inter-atomic energies, the bispec-
trum components for a given atom are linearly combined using pre-trained beta coefficients
(Oj1,32,33). For atomic forces, the gradients of the bispectrum components with respect to
each neighbor, by way of ri,,, are linearly combined with the same coefficients.

Computing Partial Bispectrum Components. As shown by Thompson et al.,
there are shared terms between the bispectrum components (B) and the gradients of the
bispectrum components. Therefore, they define a set of Z- and Y-terms for each atom i,
where the Z-terms are defined as a portion of the bispectrum components:

31 32

Zm"n3 E E H33m3m,3' , u,2
31 +32 ,33 311111 /n17327n21312 1311 0311 1n2,1n 

(2.5)
1111 ,111'1= -31 1n2 ,n2 = -32

The Y terms are computed as the product sum over ji and j2 of Zr":912,33 terms and their31 
Ail 02,33 coefficients:

33/,3 7".3

17-j3 3 = E E (2.6)

By computing and storing Y terms, both the inter-atomic energies and their update
forces can share repeated computation effort and reduce computational load. In Algorithm
4, computation of partial bispectrum components (Y-terms) is performed in Phase II, and
computation of gradients and force terms occurs in Phase III.

Next, we analyze the performance of the baseline implementation of the mathematics
above, highlighting the three distinct phases of SNAP computation: computing expansion
coefficients (u-terms), computing partial Y-terms in the bispectrum, and finally computing
gradients for use in force update calculations.

2.2. Initial Performance Analysis. The baseline algorithmic formulation of SNAP
is shown in Algorithm 4. Our initial analysis of SNAP is concerned with identifying where
the most time is spent in SNAP, and how data-parallelism is currently extracted in the base-
line. The algorithm listing highlights via comments the three main phases of computation
corresponding to mathematical operations described in the previous section. These phases
are distinct from each other because of the different iteration spaces used in computing
terms for each phase.

To identify the primary phases of computation, we profiled the baseline code using
gprof and Intel vTune. Reference data sets for the cases 2,/max = 8 and 2,/max = 14
were used to verify that the calculations were correct, modulo differences due to order-
of-operation effects. These two cases give a realistic number of bispectrum components for
SNAP simulations and provide good accuracy in simulations [9]. For both tests, the number
of atoms was 2000 and the numbers of bispectrum components to be computed were 55 and
204, respectively.

Multi-platform Profiling with GNU gprof. Single-threaded gprof profiling runs
were done on the Mayer, Blake, and White testbeds, which have ARM Cavium ThunderX2,
Intel Skylake-X, and IBM Power8 CPUs, respectively. Codes were compiled with g++
7.2 and level two optimizations, along with architecture-specific flags. SNAP was run for
10 iterations in each of the two test cases described above. The results of these profiling
runs are shown in Figure 2.1. Depending on the number of bispectrum components used
as determined by 2,/ma„ computation of Y-terms (Phase II) and computation of partial
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Algorithm 4 High-level of SNAP Algorithm Implementation in [9]

1: Inputs: Initial atom forces and positions, set of atoms, neighbors, inter-atom distances,
beta coefficients, and atom weights

2: Output: Updated forces and positions of atoms
3: initialize CG coefficients
4: set iterations =
5: while iterations < LIMIT do
6: for atom cti E atoms do
7: populate ai neighbor information from reference data

▪ // Phase 1: u-terms
8: for neighbor cti, E neighborhood(ai) do
9: compute ui i expansion coefficients
10: reduce ui,i, terms to total u_array

• // Phase 2: Y-terms
11: for j3 E iteration space defined by 2jrria do
12: compute Yji3

▪ // Phase 3: gradients and forces
13: for neighbor ai E neighborhood(ai) do
14: compute Sr

compute '55#15:

16: Update force components on atoms i and

17: iterations+ = 1
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Fig. 2.1: Proportion of time spent in SNAP routines across three architectures. The total time to execute the
10-iteration run for each architecture is shown in the x-axis label, in seconds.

derivatives (Phase III) trade places as the most computationally expensive. In the figure
legend, compute_yi_direct and compute_yt erm correspond to computation in Phase
II, while compute_deidrj, compute_cluidrj, and comput e_duar ray correspond to
computations in Phase III. All other subroutines listed correspond to Phase I, or 'other',
which represents one-time initialization of data structures and constant coefficients.

For the smaller case of 2Jmax = 8, these two phases are very close in runtime. When
2</max = 14, the most expensive function across all tests and architectures is computation
of Y-terms, which must also compute Z-terms even if they are not stored. As expected,
when 2Jmax is increased, the proportion of time spent in this routine increases since the
number of Z-terms increases much faster than any other compute-space characteristic of
the workload. For visual reference, Fig. 2.2 shows how the number of u-terms (ucount),
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Z-terms (zcount), and bispectrum components (nbetas) scales as 2Jrnax is increased.

Examining Autovectorization with Intel VTune. The opportunity for perfor-
mance through data-parallel hardware is especially present on the Intel platform, where
512-bit SIMD vectors are supported. To explore how well this resource was being utilized
by ICPC, we examined code on the Intel Skylake-X (SKX) platform using VTune. Examina-
tion in one of the inner-most loop for computation of Y-terms revealed limited vectorization.
Listing 2, lifted from the compiled code, shows this use of SIMD as generated by the com-
piler. In this instance, it can be seen that the vectorization is being done across values that
must eventually be reduced to one complex number. This means that the real (imaginary)
values that are side-by-side in the %ymm6 (%ymml) SIMD register must be reduced hor-
izontally. This is expensive because there are no instructions for adding all values in one
SIMD register together. Instead, the top upper halves of the original SIMD registers must
be moved to temporaries (lines 1 and 2), which can then be added to the unmoved lower
halves (lines 3 and 4). This process continues until all items in the original two real and
imaginary registers have been reduced to two scalar components (lines 5-10). Such use of
SIMD has high overhead because the majority of the operations are either vector packing
and unpacking operations, or vector additions of increasingly narrow width compared to the
full width offered on the platform.

vextractf128 $0x1, %ymm6, Vmmm10
2 vextractf128 $0x1, %yrnml, %xmm14
3 vaddpd %xmm10, Vamm6, %xmmll
4 vaddpd %xnam14, %mind, 'Yourim15
5 vunpckhpd %xmmll, %xmmll, Vamm12
6 vunpckhpd %xmm15, %xmm15, Voianm16
7 vaddsd %xmm12, %xmmll, 'Yornim13
s vaddsd %xmm16, Voxmm15, %xmm17
9 vaddsd (kanm7, %xmm13, %xcnrn7
lo vaddsd %xmm9, %xmm17, %xmm9

Listing 2: Horizontal add along registers compiled by ICPC
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Additional analysis by VTune for both the 2J8 and 2J14 cases indicate that accesses
to main memory are not a bottleneck, and even that accesses to cache are a performance
limitation in only small percent of the runtime. This is consistent with estimates of working
set size based on Fig. 2.2; since Z-terms are only computed in-flight, most of the memory
required is for u-terms, Y-terms, and B-terms.

Iteration Spaces. Between the three phases identified in SNAP, there are several
iteration spaces that offer the potential for data parallelism. These include the outer loop
over all atoms, loops over neighbors, and loops over iteration spaces for computing Y-terms
and gradient terms.

In Phase I, u-terms are computed across iterations for each atom, for each neighbor, and
for each labeling (j,m,m'). Within the innermost loop over (j,m, m') labels, there exists
a dependency between values. Therefore we do not consider this space further for data
parallelism. On the other hand, vectorizing across neighbors or across multiple atoms could
offer viable iteration spaces for data-parallel computation. This is similar to the approach
taken by Kim et al. in computing small matrix multiplications in batches [6]. Assuming
a fixed or minimum number of neighbors per atom, cleanup code would only be necessary
for a number of neighbors not evenly divisible by the batch size. Similarly, batching across
atoms would require cleanup code only when the number atoms is not evenly divisible.

The iteration space over (ji, j2, j3) for computation of partial Y-terms is complex due
to the conditions an outer loop's iterator label places on the inner labels (See Eqn.2.4).
Vectorizing over the (j1, j2, j3) iteration space would be difficult in practice as it requires
complex control code. On wide-vector architectures such as Intel, it would be difficult to
fill the vector registers, leaving significant performance potential unrealized. However, in
contrast to the case of computing u-terms where atoms may have a different number of
neighbors, computing Y-terms has exactly the same iteration space across all atoms. Thus,
by combining Y-term computation across multiple atoms in a data-parallel fashion, the cost
of looping machinery to iterate over the complex space can be amortized and regular SIMD
operation now becomes possible.

Finally, the computation of gradient terms in Phase III follows a similar iteration space
to that of computing u-terms themselves. Hence, data-parallelism across atoms or neighbors
are both possible for this phase.

In our profile analysis of SNAP, we identified that computation of Y-terms in Phase
II is one of the most expensive portions across both test scenarios. Therefore, we focus
on data parallel operation across multiple atoms for all three phases. We do this to avoid
re-packing data between phases, since data-parallel operation across neighbors or across
atoms require different changes to storage of computed values. In doing this, we can pursue
improvement and analytical modeling for Phase II of SNAP while at the same time using the
same data-parallel strategy to extract SIMD performance from the rest of the application.

3. Batched Approach and Analytical Model for SNAP. This section describes
the end-to-end data-parallel algorithm for SNAP, arranged for batched execution. This work
organization is intended to leverage SIMD hardware across multiple cores on CPUs.

3.1. Performance Principles. Vector based computation, and in general single pro-
gram multiple data (SIMD) hardware, require several conditions to be met to achieve their
peak possible performance. These conditions follow naturally from principles developed
around scalar programs, but can nonetheless be unintuitive or result in code that looks very
different from scalar scientific computing code.

Independent Operations. The first performance principle is that of filling functional
unit pipelines with independent operations. To make use of this principle, we define concepts
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of latency and throughput in a processor. In this work, we view throughput as the number
of cycles that must pass before another independent operation of a particular type can be
issued to a functional unit following issue of a prior independent operation. This definition
fits with Fog's definition in his x86 Instruction Tables for 'reciprocal throughput' [4]. In
contrast, latency is not the reciprocal of throughput. For our purposes, we take latency
to be the number of CPU cycles between issue of one instruction, and issue of the next
instruction of that type with a read-after-write dependency from the first to the second.

Based on principles of throughput and latency, more efficient use of SIMD hardware on
the test platform (SKX) should be possible over the horizontal add shown in the assembly
block. In Listing 2, two AVX-256 bit (ymm) registers containing four double values have
resulted from vectorization on the actual computations to be performed in computing Y-
terms. However, because computation is being performed for a complex Y-term, there are
two independent chains of operations: the horizontal addition of partial imaginary and real
Y-term components. The upper half of each ymm register is moved to a the lower half of
a different vector register, denoted as xmm The upper and lower halves are then summed,
and the result placed into a 128-bit xmm register. The horizontal addition is repeated so
that half of the xmm registers are moved and added, giving the sum of four partial terms
from each of the two initial (real and imaginary) ymm registers.

Note that the above process of horizontally adding values in vector registers represents
overhead incurred in order to use SIMD hardware. Again, note that there are only two
independent summations being performed at a time in comput e_yt ems. Furthermore,
if the code is not vectorized, that only the real and imaginary portions of a single Y term
are being computed limits used pipeline stages of scalar floating-point operations to two as
well. On many systems, the latency of a floating-point addition or multiplication is more
than two cycles, leaving bubbles in the pipelines [4]. Therefore, while the code is originally
written with scalar execution in mind and would perform adequately in that mode, it is very
difficult for the compiler to fully leverage the throughput offered by SIMD, or even scalar
hardware, as-is.

Vectorization and Data Access. The second performance principle, relevant to both
scalar and SIMD computation, is that of data organization. Modern computing systems are
designed with multiple levels of memory. Starting from the processor and moving farther
away, the speed of the memory decreases, both in latency and bandwidth, while the overall
capacity increases. This encourages that both scalar and SIMD programs be designed to
place and retain data in closer cache levels. This also means that it is best to access data
in a contiguous fashion, such that the next piece of data to be accessed will be one next to
or very close to the last piece accessed.

For scalar programs, this improves spatial locality, temporal-reuse of cache lines, and
allows pre-fetchers to be effective in bringing data to nearer cache levels by the time it is
needed. For SIMD code, contiguous accesses are vital to ensure efficient use of the memory
subsystem and load/store functional units. While gather-scatter instructions for long-vector
architectures such as Intel Skylake-X do exist, these dramatically increase the cost of loading
data into a vector register and storing to memory. Therefore, data for each SIMD vector of
data to be processed must be arrayed contiguously in memory to ensure packed loads and
stores.

Batching for Increased Throughput. The performance principles outlined above
must be satisfied by a SNAP re-written to effectively use SIMD hardware. To achieve higher
SIMD performance compared to the current results produced by the compiler, more inde-
pendent operations need to be introduced so that the functional units can fill their execution
pipelines and operate closer to peak throughput rather than being latency-bound. In ad-



Student Mark P. Blanco and Mentor Kyungjoo Kim 127

dition, vectorization requires contiguous data access for each vector register to avoid being
load- or store-bound. In the previous section, we noted that the iteration space in SNAP
most amenable to SIMD execution is over independent source atoms. This strategy fits with
the first performance principle: each additional atom introduces another independent oper-
ation across all compute phases in SNAP. In this way, atoms can be computed across the
entirely of SNAP in batches. Batching atoms also accommodates the second performance
principle: input and output data for batched atoms can be placed contiguously, thereby
enabling efficient SIMD loads and stores. The end-to-end algorithm with batching is shown
in Algorithm 5.

Algorithm 5 End-to-End Batched SNAP Algorithm

1: initialize cg_list(), root_pq(), u_indices(), z_indices()
2: for atom_batch E num_atoms do
3: UBATCH (:, :1:),UBATCH_TOT(:, :1 0 BATC H(:, :)

4: let n(i) be the neighbors of atom i
• Phase One:

5: for j E [0,num_neighbors) do
6: for jju E u_indices do

Note: jju has loop-carried dependence
vectorized on CPU:

7: for i E atom_batch do
8: compute UBATC j jU,i)

9: UBATCH _TOT (j i) += U(j, jju,i)

• Phase Two:
10: for jjz E z_indices do

vectorized on CP17:
11: for i E atom_batch do
12: compute y BATC j 2", i)

• Phase Three:
13: for neighbor j E num_neighbors do

vectorized on CPU:
14: for i E atom_batch do
15: compute_duidrj(j, i)
16: compute_deidrj (j , i)
17: update forces for atoms i and j
18: update energies for atoms i and j

3.2. Analytical Model. An analytical model is a system of rules for implementa-
tion of an HPC workload that select program parameters, such as cache blocking or batch
sizes, across a range of targeted architectures. This approach differs from auto-tuning and
statistical inference models in several important ways. First, while all three approaches
are in theory capable of selecting program parameters for a given architecture, each new
architecture will require a new search of the implementation space on the part of an auto-
tuner. Second, a machine learning model, like an analytical model, should generalize to
new architectures. However, a machine learning model may not provide an explanation or
clarity for why certain parameters are selected. In contrast, an analytical model is defined
on an high-level machine model, enabling it to generalize to similar future architectures and
provide explanations of the performance achieved.
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In this section, we apply the performance principles in Section 3.1 to batched SNAP to
develop an initial analytical model that delineates a performant range of atom batch sizes
to be processed across the entirety of the application. Note that the number of atoms is
being selected, but in our current end-to-end batched implementation we focus on auto-
vectorizable code. We make this decision in order to make the model and code easier to
read and maintain, while recognizing that hand-written kernels based on SIMD intrinsics
may perform better.

The performance model is defined over several inequalities based on the target archi-
tecture and relevant problem parameters for SNAP. The architectural parameters are the
following:

• VLEN - target vector length
• VLAT - latency of FMA or ADD and MUL vector operations
• VTHP - throughput of FMA or ADD and MUL vector operations
• CLIm - size capacity of the limiting cache level
• Esz - the size of a double-precision floating point element

In this work, we assume fused-multiply-accumulate (FMA) to be the bottleneck compute
operation. Finally, for the capacity limit CLIM, we select on each system either the size of a
core's slice of the shared level cache, or the largest private cache it has available. Selecting
the largest cache that reasonably will not incur capacity contention from other cores is
especially relevant for SNAP operating in thread-parallel mode, as threads will all contend
for shared cache resources. Additionally, limiting atom batch size to avoid heavy use of
further caches stands to reduce the latency penalties incurred by the processor.

The relevant SNAP problem parameters are 2Jrnax and nmax. 2,4flax affects data sizes
including the number of Clebsch-Gordan coefficients, u-terms, and Y-terms. nmax repre-
sents the number of neighbors per atom, which we assume is constant and is set to 26 in
our tests.

We define our performance model by a lower limit based on pipeline filling, and upper-
bounded by the working set size of Y-term computation. The lower limit is based on the
principles for latency and throughput and the work of Low et al. [7] as follows:

Sbatch
VLEN X VLAT X VTHP

2
(3.1)

The terms on the R.H.S. indicate the architectural parameters necessary to fill processor
pipelines with useful work at every cycle. The factor of two is included because the most
important phases of computation in SNAP (computation of Y-terms and gradient terms)
involve complex numbers, which thereby already provide two independent operation chains
per atom being computed. Inequality, rather than strict equality, is used because a larger
batch size may be beneficial. A larger batch may prolong the CPU's high-throughput
steady-state between filling and draining pipelines.

Table 3.1: Input and output data arrays for each phase of SNAP computation. Arrays of real and imaginary
values are sub-scripted with r and i, respectively.

Phase Inputs Outputs
u-terms (I)

Y-terms (II)

b -terms (III)

rij, u)j, rij,cut, rootP4

ulistr_tot, ulisti_tot,
betalist, cglist
rootpq,

ulistr, ulisti,
ulistr_tot, ulisti_tot
ylistr,ylisti

dulistr, dulisti
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Table 3.2: Data array sizes for batched SNAP.

Array Name Array Elements

rii
nij
w •

rij;cut

rootpq
cglist
beta

ulist[ilr]

ulist[ilr]_tot
dulist[ild
glist[ilr]

3 X Sbatch X nraax
Sbatch X nmax

Sbatch X nmax

Sbatch X nmax

(2jmax + 2)2
(2jmax + 1)3

Manz—terms X 6 *
Sbatch x nmax X Manu—terms

Sbatch X n7LInu—terrns

Sbatch X nUM,u—terrns

Sbatch X MIL771,u—terrns

The second inequality is from the working set size of the second phase in SNAP: compu-
tation of Y-terms. While other phases of SNAP, especially computation of gradient terms,
do impact overall runtime, we see the most gains in the Y-term computation phase and
therefore focus on this phase's working set size. Especially for 2jmax = 14, computation
of the Y-terms dominates that of the gradient terms and all other less costly phases. The
working set size for Y-terms is based on the input and output data arrays used, shown in
Table 3.1. Table 3.2 gives the dimensions of each data array for a given batch in SNAP.

The working set size for Phase II is defined as:

WSSTItase II 

=E

+ 1)3 + nuniu—terms X
(3.2)

SbatchszX

[(1.4aax 

x 4 733L777Z—terms X 6]

From this, we have an upper bound:

X SbatchManu—terrnsCLIM > ESZ x [(2,/max + 1)3 x 4 + numz—terms X 6] (3.3)

Rearranging terms, we obtain: The working set size for Phase II is defined as:

Sbatch <
CLIMIESZ (2jrnax + 1)3 — numz —terms X 6 (3.4)

Manu—terms X 4

Additionally, it is desirable to set Shatch such that it is an integer multiple of VLEN so that
masked SIMD operations and partial SIMD use be avoided.

Given Eqns. 3.1 and 3.4, upper and lower limits on the batch sizes can be determined
for 2,/max = 8,14. Note that the upper and lower limits are based on the computationally
expensive Y-term computations. Therefore, refining understanding of how atom batch size
affects other SNAP phases is a direction for future work.

4. Results and Analysis. We evaluated SNAP on CPU architectures from three
different vendors. The Intel platform hosts a Skylake-X Xeon Platinum 8160 CPU run-
ning at 2.1 GHz with 24 cores. The ARM platform is based on 28-core Cavium Thun-
derX2 CPUs clocked to 2 GHz. The IBM system is based on the Power8 architecture,

*The size of this array is tied to the number of Z-terms and not the number of beta-terms because the
current implementation stores beta coefficients in an array of structs, also containing indexing information
for Y-term computations. The factor of six corresponds to the number of 64-bit elements in each struct.
Other indexing structures are not included in this assessment of working set size since they are not accessed
as frequently on the innermost loops.



130 Performance Modeling of Vectorized SNAP

has 8 cores, and has 8-way SMT enabled. SNAP batched code was compiled with GCC
7.2 on all systems. We enabled architecture-specific flags and also used -03 --pa r am
vect-max-version-for-alias-checks=100 -ftree-vectorize -fopenmp
-ffp-contract=fast for all targets. In all tests, batched SNAP ran reference problems
for Vmax = 8 and 14 with 2000 atoms. The outputs of each run were checked for correct-
ness against reference forces. The latency-throughput product gives a lower bound for atom
batch size in Y-term computation. The upper bound on batch size is given by the cache
capacity limit. For 2,Tmax = 8, the limit is based on the L2 cache since a unit batch size
initially fits within the L2 cache. For 2Jmax = 14, the capacity limit used is the L3 cache
slice size attached to a single core. However, in cases where the capacity bound is lower
than the latency-throughput lower bound, we set that upper limit equal to the lower limit.

- Total Phase 2

- Phase 1 Phase 3
Time for SNAP functions with 2jmax = 8 on BLAKE 

102,:cne,,,erms 7.7 c:,.1147:13a
— 13 cache slice 103

- Total Phase,

- Phase 1 Maze,

16.0 21.0 32.0 10.0

Number of Atoms in Batch

LL
Time for SNAP functions with 2jmax = 14 on BLAKE '2-- Trcne: cTc°,:c:Ire'h°1°

— 13 <ache slice KB

2 0 0 0 20.0 32.0 

Nurnber of Atorns in Batch 
00.0 60 0

Fig. 4.1: Runtime Plots for batched SNAP with 2J„,,„ = {8,14} on Intel SKX.
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In the performance plots, the per-phase and total runtime of SNAP is plotted on the
left-hand vertical axis against a range of atom batch sizes along the horizontal axis. Su-
perimposed on the performance bars are the lower and upper batch size bounds shown as
vertical lines in red and blue respectively. The Y-term working set size and the L2 and L3
slice cache capacities are plotted against the right-side vertical axis, so that the cross-over
points of WSS with respect to cache capacities can be seen. Note that SNAP is fully batched
in the performance plots below. Therefore, changes in the atom batch size affect runtime of
all three phases of computation.

The performance results for Intel Skylake-X on Blake reflect the tradeoffs between in-
creasing batch size to fill FMA pipelines and increasing the working set size past cache
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capacity limits (Fig. 4.1). Using a latency of 4, throughput of 2 vectors, and vector size
of 8 atoms, the predicted minimum batch size is 32 [4]. Runtime for Y-term computation
improves as the atom batch size approaches the predicted lower bound, and for 2,Tmax = 8,
the best performance for Y-term computation is achieved here (5.19x over the original).
For 2,7-max = 14, the performance clearly improves further up to a batch of 64 atoms,
beyond which runtime for Y-terms increases (3.19x speedup). End-to-end, performance
improvements for the entire batched SNAP track similarly to the Y-term computation for

2jmax = 14, but in the smaller test case the decrease in performance is due more to Phases
I and III losing performance as their working set sizes increase. The number of Y-terms
scales with the number of bispectrum components, so overall performance of the larger case
is more strongly affected by performance changes in computation of Y-terms than in the
other phases. Additionally, the working set sizes for Phases I and III are larger than that of
Phase II. In the larger test case, the best performance is achieved for a batch size beyond
the capacity upper bound. These dynamics suggest that further work in modeling the cache
hierarchy and other phases of SNAP is necessary to understand SNAP on Intel processors.

o 6
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Fig. 4.2: Runtime Plots for batched SNAP with 2,/-„,“ = {8,14} on the ARM Cavium ThunderX2 processor.

For the ARM-architecture ThunderX2 processor on Mayer, performance improvements
follow a similar progression as on the Intel platform (Fig. 4.2). For Mayer, we estimate
the latency-throughput product based on similar ARMv8.1 processors: 5 cycles for vector
FMAs, two vector units, and two elements per vector gives a minimum of 10 elements per
batch for peak throughput [1]. For 2,/max = 8, improvement in computation of Y-terms
appears to plateau in a range starting near the lower limit of 10 atoms. However, the
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best performance is actually achieved for 16 atoms in an unexpected dip in runtime (5.49x
speedup). This batch size is just past the cache capacity upper bound, suggesting that
upper bound is too conservative. For the larger 2Jmax case, the best performance is at the
lower bound (2.4x speedup on Phase II). For this case, the computed upper bound was lower
than the minimum bound, and was fixed to be equal to 10. Of note, the performance of
Phase III improves to some extent with increased batch size, but does not appear to be as
sensitive to batched computation compared to Phase II on this system. The performance
results on this system suggest once again that further work in determining the true upper
bound is needed for this system. The performance dip at 16 atoms for the smaller test case
hints at another architectural aspect to study further.
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Fig. 4.3: Runtime Plots for batched SNAP with 2J,-„„ = {8,14} on IBM Power8.
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The IBM Power8 system (White) has a lower performance bound of 14 atoms per batch
(7 cycles, 2 vector units, 2 elements per vector) [8, 2]. As expected, the best performance
improvements are visible in Fig. 4.3 after this point. However, White exhibits the least
negative sensitivity to large atom batches (Fig. 4.3). In fact, the best speedup for Phase
II on the smaller test case is seen at 20 atoms, while the best performance for the larger
case is at a larger batch of 28 atoms. For these batch sizes and test cases, the speedups are
2.74x and 2.14x, respectively. It may be that having a larger batch, coupled with the larger
register file of the Power8 chip, allows more operations and therefore memory requests to
be in flight, thereby hiding the latency of accesses to more distant caches. Nonetheless,
further study of the memory system on this platform is needed. Additionally, the dip in
performance from two to four atoms in a batch is unexpected. To understand this, further
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work on understanding the pipelines in the Power8 processor should be done.

Overall, applying the batched computation model affords good speedups to SNAP. Our
initial performance model can designate the start of a good region for batch sizes, but often
cuts the region short when a larger batch may yield better performance.

5. Conclusions and Future Work. In this work, we examined existing code for
Spectral Neighbor Analysis Potentials (SNAP), a recently developed molecular dynamics
formulation that offers near-DFT accuracy with lower computational cost scaling. We iden-
tified the most expensive computations of the application, namely the computation of Y-
terms, followed by the computation of gradient terms. Between the two accuracy levels
normally used in SNAP computations (2,4flax = 8, 14), we see that computation of Y-terms
dominates gradient computation for the larger case. Focusing our performance analysis on
computation of Y-terms, we identified that data-parallel hardware is more effective when
atoms are computed in batches. When compiled with auto-vectorization, Y-term compu-
tation is accelerated between 2.14 and 5.49 times, depending on the host architecture and
the number of bispectrum components being based on 2,/max. When batching is applied to
the entire application, SNAP as a whole is sped up between 1.66 and 3.22 times, before any
thread-parallelism is applied.

The primary direction for future work is to refine our understanding of SNAP from
a performance modeling perspective. The latency-throughput product gives a relatively
accurate lower-bound on the atom batch size that should be selected for best performance.
However, our suggested bound based on cache capacity is often too conservative and does
not fully capture performance scaling of Y-term computation. Additionally, the achieved
performances on each platform are lower than the computational peaks for SIMD Fused-
Multiply-Accumulate would predict. These limitations indicate that some other performance
choke-points must be identified and modeled to understand the performance characteristics
of SNAP across architectures.

While we applied data-parallelism to only one iteration space (across atoms), future
work could take advantage of multiple sources of data parallelism, including work across
neighbors, similar to the approach taken by Höhnerbach et al. on Tersoff atomic potentials
[5]. Finally, batching is a method that we expect to map well to thread groups on GPU
hardware in addition to the SIMD hardware we have examined. Deriving a performance-
portable analytical model for SNAP that applies to both CPU and GPU hardware is a
promising direction for future work.
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MODULAR WEB APPLICATION DESIGN FOR THE MANAGEMENT,
VISUALIZATION, AND ANALYSIS OF NUCLEAR DETECTOR
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Abstract. The Instrument Characterization Catalog (CharCat) is an online reference tool to be used
by the Department of Homeland Security and Countering Weapons of Mass Destruction (CWMD) test
scientists as part of the Data Mining, Analysis, and Modeling Cell (DMAMC) tool suite. The purpose of
the web application is to manage, visualize, and analyze characterization and inventory data for a variety of
radiation detection instruments. Utilizing modular web design principles along with modern web frameworks
in the creation of CharCat allowed for flexible, iterative development with scalable design solutions.

1. Introduction. The Data Mining, Analysis, and Modeling Cell (DMAMC) is a col-
laboration of subject matter experts from the radiation detection community responsible
for leveraging the information from more than 100 tests conducted or sponsored by the
U.S. Department of Homeland Security (DHS) Countering Weapons of Mass Destruction
Office (CWMD). In order to facilitate the archival, access and reuse of previously collected
radiation test data, DMAMC has developed a suite of web applications that specialize in
handling specific aspects of radiological data and instruments. These applications have been
developed by various teams of scientific staff members from most of the U.S. Department of
Energy National Laboratories, Johns Hopkins University Applied Science Laboratory, U.S.
Naval Research Laboratory, CWMD, and its contractors. The Characterization Catalog
(CharCat), developed under the lead of Sandia National Laboratories, fits right into the
DMAMC application ecosystem by providing users - CWMD test scientist and DMAMC
members - with an easy way of managing and analyzing the characterization and inventory
data of radiological instruments used and tested at CWMD test events. CharCat contents
are specific to each detector unit identified by its serial number. The CharCat web appli-
cation makes it easy to view, create, update, and manage data through the website's clean
interface shown in Fig. 2.1 and Fig. 2.2.

2. System Design.

2.1. Technologies Used. The Characterization Catalog utilizes modern web frame-
works to develop a modular web application. The application uses MongoDB*, Express.jst,
React.jst, Node.js1 (often called the MERN stack), and Redux11. React.js is a JavaScript
library used for building modular web user-interfaces by utilizing the component-focused
approach it provides. It's especially useful in developing single-page applications. Redux is
used for global component state management, and provides an easy way for multiple com-
ponents to interface with each other. Express.js is a Node.js framework used to write simple
webservers that serve the webpage, and provide an application programming interface (API)

f University of Southern California, M.S. Computer Science, mdemeterOalumni usc.edu
t University of Victoria, Computer Science Undergraduate, bkudryavtsev@uvic.ca
1Sandia National Laboratories, R&D S&E Physics, bcabrerAsandia.gov
liSandia National Laboratories, R&D S&E Computer Science, mhwong@sandia.gov
*https://www.mongodb.com/
f https://expressjs.com/
$https://reactjs.org/
1https://nodejs.org/
https://redux.js.org/
11The image is intentionally blurred to protect sensitive information
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for the web application to interact with. Node.js provides the runtime environment for all
the server-side code (including Express.js). Finally, MongoDB is the NoSQL database that
the Characterization Catalog uses to persistently store data.

2.2. Redux State Management. Redux is commonly used in applications with com-
plicated workflows as a solution for state management. The application uses Redux to cen-
tralize CharCat's application state and logic, enabling content persistence for the user. The
Redux store structure is flat and avoids deep nesting, making it easy to update specific slices
of the database using unique identifiers like instrument serial numbers efficiently. Despite
storing de-normalized data, the application retains the ability to atomically update fields
by removing the need for bidirectional references between one to many and many to one
relationships. The key benefit in enforcing these rules is maintaining the advantages of de-
normalized data: efficient lookups and infrequent joins; while avoiding its flaws: inefficient
updates and creations. However, these advantages come at the cost of storing duplicate data
and additional documentation. In addition to optimizing create, read, update, and delete
(CRUD) operations with Redux, the application strictly uses immutable objects in the Re-
dux store and relies on pure functions for mutating the Redux state. By using immutable
objects, the application allows sophisticated change detection techniques to be implemented
easily, which ensures that computationally expensive operations like updating the document
object model (DOM) are only performed when absolutely necessary. The rationale behind
mutating the state with pure functions stems from the fact that multiple React components
may attempt to edit the same datum asynchronously. With a shared state and multiple
parallel processes running, this quickly becomes a race between the processes that results
in nondeterministic behavior. By forcing programmers to update the Redux state using
pure functions, it is guaranteed that given the same input, functions always return the same
output without any side effects. Removing side effects is essential because in JavaScript,
all non-primitive objects are passed into functions as references. If our function directly
mutates a property on an object, the object changes outside the function as well. Therefore,
the only way to know the full effect a function has on an object is by knowing the full history
of the object that is passed in. This produces nondeterministic behavior, which is difficult
to debug, especially with applications with complex logic and state management. However,
by following these design principles, the development team reduces the possibility for race
conditions in our application and ensure fully deterministic behavior.

2.3. Regression Fit Algorithms. The development team created a custom library
for the plot fit panel that uses common regression techniques, such as linear least squares.
It also gives users the ability to customize settings like the number of degrees for polynomial
fits, independently scale the X and Y axes, and fit using a multitude of fitting types. The
panel draws the line of best fit on the chart and displays the fitting coefficients on the panel
with their standard errors. The library was tested against the CERN ROOTtt library to
verify its accuracy.

2.4. Dataset Filtering. The development team created a waterfall style filtering sys-
tem to give scientists a flexible method for manipulating datasets. Scientists initially filter
instrument data by the dataset they belong to, which affects the data available to lower
filters in the hierarchy. Our test case filters give the ability to filter available dataset entries
by common traits like the test event, recorded dates, radionuclides, and source ID. Any
filters selected in the secondary level updates the final layer, a list of filtered datasets that
can further be selected from.

**The image is intentionally blurred to protect sensitive information
tt https://root.cern.ch/
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3. Security Considerations. The Characterization Catalog web application is hosted
on Sandia National Laboratories owned servers. The login page is public-facing, however
only a few restricted users are able to access the whole application. Regular demonstrations
and tests of the application are conducted by various parties interested in determining in
which direction the product progresses. As such, it is of high priority to keep the system
reasonably safe and secure, even while its architecture, design, and features might swiftly
evolve. If a malicious actor were to gain access to the application, depending on how
widespread that access is, they could have Official Use Only (OUO) level information, or
the usernames of various system users leading to privacy concerns.

3.1. Security During Development. In software development, especially
while employing rapidly iterating, agile release cycles - such as the ones encouraged by the
Scrum framework - security can have a lower priority, creating some risk. Most of the focus
is centered on delivering features and fixing bugs, making security a lower priority. The
Characterization Catalog development team took several concrete steps to mitigate the risk
of security being an issue during development:

• Employing and utilizing secure coding practices by all software developers
• Conducting regular architecture and source code reviews
• Considering security during the initial system design, as well as later architectural

changes
• Paying close attention to online vulnerability lists (e.g. Open Web Application Secu-

rity Project (OWASP)*, MITRE Common Vulnerabilities and Exposures (CVE)t)
• Testing the application before deploying a new version to be hosted publicly with

restricted access

3.2. Security Architecture. The Characterization Catalog - under development - is
only open to a restricted number of users. To protect the website, and release data only
to authorized users, the application utilizes a login system. To authenticate, users utilize
basic access authentication to provide their credentials to the server. Through basic access
authentication, the credentials are sent in the request's "Authorization: Basie header field
as a Base64t encoded string in the form of "username:password". Due to the constraints
of working at Sandia National Laboratories, the team had limited access to hosting infras-
tructure. As a result, the packets are forwarded through an Apache web server before being
handled by the application's Express web server. Both servers authenticate the request's
validity. In order to avoid having users provide two separate sets of credentials at the time
of login, the passwords are compared against the same master list. Basic access authentica-
tion doesn't provide any method of encryption for the packets. Encryption is necessary to
protect the credentials, and other information from unauthorized eavesdroppers during their
transfer from client to server. As such, all the communication is done over transport layer
security (TLS). After receiving the credentials, the server uses the provided username as a
key to look up the password hash associated with that username from the master list. The
server then hashes the password received from the client and compares it to the password
on file. The user is authorized to access the rest of the application if the password hashes
match, however the user is denied access if they don't. The passwords are stored as salted
hashes on the same physical system as the web server.

*https://www.owasp.org/
f https://cve.mitre.org/
f https://www.ietf.org/rfc/rfc4648.txt
§https://www.ietf.org/rfc/rfc5246.txt
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3.3. Security Evaluation & Vulnerability Assessment. It is important to be
constantly aware of what potential vulnerabilities might exist due to how the application
evolved. For example, at the start of development, the web server did not need to process any
user-given input besides the username and password. However, as the application matured,
the API server now has to handle user input for managing and modifying characterization
and inventory data pertaining to the nuclear detector instruments in the system. To prevent
any type of injection attack by a malicious actor, the input has to be sanitized and correctly
stripped of troublesome characters.

3.3.1. Evaluation of MD5 for Password Hashing. The use of message digest
algorithm version 5 (MD5)1 as a hashing algorithm is strongly discouraged, as its collision-
resistance has been broken a long time ago [3, 2, 1] and can no longer be considered cryp-
tographically secure. It's currently not included in the National Institute of Standards and
Technology's (NIST) list of recommended hash algorithms for password storage. However,
for password storage, pre-image resistance is more important than collision-resistance. Pre-
image resistance means that given a hash, the original input that hashes to that output
cannot easily be determined. Collision-resistance means that it is very difficult to find two
inputs that result in the same hashed output. Since passwords are short, collisions should
not be an issue. Consider, the output of MD5 is 128 bits in length, resulting in a total of

2128 = 3.4028237e38

combinations. The number of passwords with an average length of 16 characters, given
that there are 95 printable American Standard Code for Information Interchange (ASCII)
characters, would be

9516 = 4.401266687e31

combinations. Since an administrator also manages credentials for the Characterization
Catalog (no availability of a sign-up system), potential collisions are a non-issue. A bigger
issue is creating secure, high-entropy, long passwords by combining characters, numbers, and
symbols. Given that strong passwords are enforced by the administrator, there is still an
issue of using a computationally intensive hashing algorithm in case the list of passwords is
compromised. Even by using Apache's implementation of MD5, which iterates a 1000 times
before the final output, an adversary is not seriously limited by the use of marginally more
resources. A more computationally resource intensive algorithm, such as bcrypt ll would be
advisable for password hashing implementation over the MD5 hashing algorithm.

3.3.2. Evaluation of Basic Access Authentication. The current login system is
centered around using basic access authentication**. Basic access authentication sends
credentials with every request in the header of the packet. It is often used in practice
with API calls, however it's not quite as useful for full-blown login systems. A token-based
system, such as OAuth 2.0tt would work better, as it provides key revocation options, and
as a result: session management. Session management provides users with the ability to log
out once they're done using the application, decreasing the likelihood that an authorized
person will gain access to the application solely based on the fact that it was left open.
The browser stores the basic access authentication credentials in a secure local storage, and
only clears it once the browser window is closed. Token-based systems such as OAuth 2.0

Thttps://www.ietf.org/rfc/rfc1321.txt

Ilhttps://www.ietf.org/rfc/rfc7914.txt
**https://www.ietf.org/rfc/rfc7617.txt
tthttps://www.ietf.org/rfc/rfc6749.txt
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provide the user with a token after authenticating an initial grant supplied by the user (in
the simplest case this can be a username, password pair). Tokens act as the temporary key
that users can utilize to access restricted resources. Tokens are more easily managed than
the user's more permanent password, and thus can be granted and revoked at a relatively
fast pace (e.g. daily).

4. Future Work. The Characterization Catalog is nearing the end of its development
at Sandia National Laboratories; it still has some features that need to be implemented be-
fore releasing it for production. As the project is handed off to the Department of Homeland
Security and is integrated with the rest of the DMAMC applications at Pacific Northwest
National Laboratories, it is a top priority to take steps to facilitate the transfer with as much
ease as possible. For this reason, the development team has decided to utilize Dockertt for
the containerization of the application. Containerization makes sure the execution environ-
ment of the application is always static and never changing, regardless of the environment
the docker container is running in. Furthermore, Dockerizing the application eliminates the
need to install any libraries and dependencies on the host system, as those dependencies are
part of the Docker container by default; after careful configuration of the environment.

5. Conclusion. In conclusion, the Characterization Catalog development team has
successfully developed a web application that is due to become part of the Data Mining,
Analysis, and Modeling Cell (DMAMC) ecosystem hosted on Pacific Northwest National
Laboratories' infrastructure. The application keeps track of nuclear detector characteriza-
tion data obtained by test scientists, as well as inventory data for unique radiological detector
instruments. Users are able to easily analyze and interact with the data through the well-
designed interface, facilitating the existence of a frequently updated and well-maintained
central repository for characterization data and instrument inventory information.
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VERIFICATION TESTING OF THE NimbleSM SOLID MECHANICS
FINITE ELEMENT CODE

ANN THOMPSON* AND DAVID LITTLEWOODt

Abstract. This report documents a set of solution verification tests for the NimbleSM code. NimbleSM
is a Lagrangian finite element code designed to produce force and displacement solutions to nonuniform,
three-dimensional solid mechanics problems. The tests involved were various patch and beam tests. Our
work has shown that NimbleSM functions correctly for the given set of verification tests.

1. Introduction. The Finite Element Method (FEM) is useful for solving partial dif-
ferential equations and is the most prevalent approach for solving the balance of linear
momentum for solid mechanics problems. Errors in FEM codes, however, can go unnoticed
because the codes may produce correct results under simple circumstances. It may only be
when the problems are sufficiently complex that accuracy is actually hindered, but these
complex problems are often the ones that are the most difficult to check. Because of this,
there have been many methods designed to test FEM codes for emergent errors. Of these
tests, we chose to use various patch and beam tests due to their well designed accuracy and
simplicity [5].

The focus of our testing, NimbleSM, is a Lagrangian FEM code used to find solutions to
solid mechanics problems [4]. Primary applications include solving for displacement, strain,
stress, and force for three-dimensional problems on nonuniform meshes. NimbleSM can use
either explicit transient dynamic or implicit quasi-static time integration when executing
simulations. The meshes inputted are made of eight-node hexahedral solid brick elements.
Hexahedral elements provide a good balance between computational expense and accuracy,
and, like all mainstream FEM element formulations, will produce increased accuracy under
mesh refinement. Testing NimbleSM was particularly important because the code is designed
to have performance portability across varying hardware architectures. A verification test
suite is critical to ensuring proper code performance on multiple hardware architectures.

2. Finite-Element Method. FEM is one of multiple strategies used for solving par-
tial differential equations. It is particularly useful for complex geometry and properties,
which makes it well suited for solid mechanics. It works through a process of discretization,
where an object is divided into numerous elements that are connected by nodes. By doing
this, a set of simultaneous algebraic equations is produced, which can then be solved for
values at desired locations. Since these elements are finite, the solutions provided are ap-
proximate. In solid mechanics, FEM is most often used to solve for displacement, velocity,
stress, strain, and force. In the following tests, displacement is the primary solution variable.

In order to solve a solids problem using FEM we must define the geometry, element
types, element connectivity, material properties, and boundary conditions. We used Cu-
bit [2], a meshing software, to create the material geometry, element types, and element
connectivity in a single mesh file. For the majority of the tests, the material properties are
the same. Each material is a Neo-Hookean solid, meaning that they are hyperelastic, but
do not have a linear stress-strain curve [7]. Their density is 7.8 g/cm3, their bulk modulus
is 1.6 x 1012 Pa, and their shear modulus is 0.8 x 1012 Pa. The boundary conditions of the
tests were displaced surfaces and fixed surfaces [3, 6].

Once these conditions are defined, a set of simultaneous equations is produced. This set
of equations embodies the governing equations and the boundary conditions. The combined

*University of Texas at Austin, aat2676@utexas.edu
t Sandia National Laboratories, djlittl@sandia.gov
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equations take the form

[K]ful = {f}, (2.1)

where [K] is a given property, {u} is a behavior that will be solved for, and {f } is a
given action. For example, in a typical solid mechanics problem, [K] is stiffness, {u} is
displacement, and {f } is force [3].

Once the simultaneous equations have been solved for the nodal values, the value for
any point in the body can be found using piecewise polynomial interpolation. This means a
piecewise function is produced that determines the solution value for any given point in the
body. Determining the primary solution values, in our case displacement, is sufficient to find
other quantities of interest, for example stress and strain [3, 6]. All of this can potentially
be calculated by hand, but to apply it to complex problems, software like NimbleSM is
needed. When using a program like NimbleSM, post-processing is generally required. We
used a python script to sort and print our results. We then put our results into Gnuplot [9]
to produce graphs.

The discretization, or meshing, involved in FEM can be created by using either Eulerian
or Lagrangian coordinates. Eulerian coordinates are located in the space around an object,
and do not move with the object. Lagrangian coordinates are located on an object and
move with it. The Lagrangian approach is generally better for finite element problems with
less sever mesh distortions. NimbleSM uses a Lagrangian finite element approach [8].

3. Approach to Testing. In order to test NimbleSM, running multiple problems with
known solutions was necessary. The most suitable initial tests for NimbleSM's function are
patch tests and beam tests for solids. Patch tests are particularly useful because correct
results in a patch test are a necessary condition for solution convergence under mesh refine-
ment, that is, an increase in accuracy as the number of elements is increased. The selected
beam tests are useful because they are a simple way to test NimbleSM with distorted ele-
ments under uniform strain. The goal for these tests is to demonstrate correctness relative
to a known analytic solution. We developed these tests by first creating the volumes and
meshes in Cubit [2]. Then we executed the NimbleSM code on a corresponding FEM prob-
lem and checked the results by inspecting numerical values and visualizing the solution using
Paraview [1]. Below are the tests we used. First is a patch test on a regular grid, followed
by an irregular patch test, and finally by beams with varying element shapes.

4. Patch Tests. Our first patch test is a cube with 2.0m sides that has mesh nodes
arranged in a smaller cube with 1.0m sides centered internally. In total it has seven elements
and 16 nodes. This can be seen in Figure 4.1(a). The purpose of this patch test is to provide
a basic solid that can be edited and also referenced by more complex solids. Because of its
simplicity, it is likely that NimbleSM would be able to pass this test even if it could not
pass others. We used this test by fixing one face, and displacing the opposite face in the X
direction. Figure 4.4 is an external visualization of this displacement [1]. In response, all the
nodes should be displaced to produce a linear relationship between X coordinate position
and X displacement. In Figure 4.2 these exact results can be seen for .00lm, .006m, and
.Olm displacements. They were correct to machine precision. This indicates that NimbleSM
is accurate in determining displacement throughout this solid.

Our second patch test uses the first patch test as a template. Each internal node from the
first has been moved in each of the three dimensions to a random position within 0.1m, as
shown in Figure 4.1(b). The specific coordinates for each inner cube can be seen in table
4.1. This test provides a lot more information than the regular patch test because it is
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Fig. 4.1: Meshes of Patch Tests
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practically impossible to pass by coincidence. Distorted elements are key to this. Again,
one outer face of the cube was fixed while the opposite was displaced. We were looking
for the same results in which there is a linear relationship between the nodal X coordinate
position and the nodal X displacement. In addition, we want these new lines to match those
of the first cube, despite having different coordinate positions. The ability of NimbleSM to
correctly solve this classical patch test, in which a linear displacement field is recovered on a
nonuniform mesh, is a necessary condition for other important properties of the FEM code,
such as mesh convergence.

The results for the second patch test, shown in Figure 4.3, indicate the ability of Nim-
bleSM to solve problems on a nonuniform mesh. All displacements are linear and are in
agreement with the expected values. This test did, however, exhibited small but negligible
errors in the the displacement solution. The use of a nonuniform mesh increases our confi-
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Fig. 4.3: Results of Second Patch Test
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Node Patch Test 1 Patch Test 2
X Y Z X Y Z

1 -1.000 -1.000 1.000 -0.970 -1.030 1.035
2 1.000 -1.000 1.000 0.985 -1.010 1.015
3 1.000 -1.000 -1.000 0.990 -1.000 -1.001
4 -1.000 -1.000 -1.000 -0.970 -1.020 -1.0301
5 -1.000 1.000 1.000 -0.980 1.020 1.040
6 1.000 1.000 1.000 1.000 1.040 1.020
7 1.000 1.000 -1.000 0.990 1.030 -1.025
8 -1.000 1.000 -1.000 -0.975 1.010 -1.045

Table 4.1: Coordinate Positions of Internal Nodes in Mesh 1 and Mesh 2.

dence in the correctness of NimbleSM. The lines shown in Figures 4.2 and 4.3 for 0.00lm,
.006m, and .Olm displacements are in agreement with the expected results, indicating that
NimbleSM is functioning correctly for both regular and irregular patch tests.

The final patch test we used was developed by Richard H. MacNeal and Robert L.
Harder [5]. It is a unit cube with an internal irregular cube of nodes. It is structured very
similarly to the second patch test, but with different internal node locations. These are
listed in table 4.2. In this specific test, our material parameters differ from the rest of the
tests. The material is a linear elastic solid, the density is 1 g/m3, the bulk modulus is
0.667 x 106 MPa, and the shear modulus is 0.4 x 106 MPa. The biggest difference between
this test and the others is that the displacement is a gradient. It follows the equations:

u = 10-3(2x + y + z)/2,

v = 10-3(x + 2y + z)/2,

w = 10-3(x + y + 2z)/2,

This unique displacement is visualized in Figure 4.5.

(4.1)

(4.2)

(4.3)
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Fig. 4.4: Paraview Rendering of Displacement of Both Patch Tests

Node X Y Z
1 0.249 0.342 192
2 0.826 0.288 0.288
3 0.850 0.649 0.263
4 0.273 0.750 0.230
5 0.320 0.186 0.643
6 0.677 0.305 0.683
7 0.788 0.693 0.644
8 0.165 0.745 0.702
9 0.0 0.0 0.0
10 1.0 0.0 0.0
11 1.0 1.0 0.0
12 0.0 1.0 0.0
13 0.0 0.0 1.0
14 1.0 0.0 1.0
15 1.0 1.0 1.0
16 0.0 1.0 1.0

Table 4.2: Node Locations for the MacNeal-Harder Patch Test

The exact solution for stress for this test is by (4.4),

Crx = Cry = Qz = 10 3, Txy = Tyz = Txz = 400, (4.4)

Our numerical results matched the expected solution within machine precision, again
increasing our confidence in the correctness of NimbleSM.
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Fig. 4.5: Paraview Rendering of MacNeal-Harder Patch Test.

Fig. 5.1: Mesh of Beam with Rectangular Elements

Fig. 5.2: Mesh of Beam with Parallelogram Elements

5. Beam Tests. The second set of tests applied to NimbleSM were beams under
tension. Beam tests are useful because of their simplicity and their variability. We tested
three identical beams that are 6.0m in length, 0.2m in width, and O.lm in height. In this test,
the beams have a fixed end and an end that is displaced. The ends are opposite each other
and perpendicular to the x axis. This displacement is shown in Figure 5.4. Each of the three
beams have six differently shaped elements. The first consists of rectangular elements, the
second of parallelogram elements, and the third of trapezoidal elements. The nodes of the
irregular elements have been moved 0.2 m away from their position in the rectangular beam.
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Fig. 5.3: Mesh of Beam with Trapezoid Elements
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Fig. 5.4: Normal Beam Displacement

Each beam has 28 nodes. These solid meshes are shown in Figure 5.1, Figure 5.2, and Figure
5.3. Although simple, beams of this type could be used to test constant strains, linearly
varying strains, constant curvatures, and linearly varying curvatures, which are principal
element deformation modes. In this study, we examined constant strains. Changing the
element shapes creates a more thorough test [5].

The expected results for the beam tests are also linear relationships between the node
coordinates and node displacements. Again, we tested all three of the beams with .Olm,
.006m, and .00lm end displacements. Although the points will be located differently, the
lines for all three beams should be identical [5].

The results of this test were as expected. The linear relationship between the node
coordinates and displacements are shown in Figure 5.5, Figure 5.6, and Figure 5.7. They
each have their own point placement, but all show the same lines. The errors were within
machine precision.
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6. Lessons Learned. During these tests we encountered multiple challenges that re-
sulted in incorrect solutions. It is important to recognize that even if a finite element code
is working properly, other problems in the workflow can create difficulties. Luckily, we
rechecked our work to find that the errors were a result of earlier steps in our procedure.
The two main errors encountered were due to an incorrect mesh and incorrect boundary
conditions.

Our error in the mesh was easily caught. While meshing the patch test, one of the
elements was not formed despite the nodes being in the correct position. This gave us strange
results, but it did not take long to figure out the problem, due to the odd appearance of
the mesh. In this case, the Cubit mesh generator was failing to create the desired elements
for the prescribed node locations. This difficulty was overcome by modifying our Cubit
workflow.

The error with boundary conditions was much more significant. While running the beam
tests, we applied boundary conditions to the two ends of the beam. Boundary conditions
were applied in the X direction, but not in the Y and Z directions, which resulted in
unconstrained rigid-body modes that affected the ability of NimbleSM to converge to the
expected results. The errors in these results are listed in table 6.1. Because of these results,
we had to question the integrity of NimbleSM, but after significant searching, we found the
problem in the boundary conditions. NimbleSM produced the expected results after the
boundary-condition error was corrected.

Because there are many steps to creating and running these tests, there is a lot of room
for error outside of the software. While the main purpose of the tests is to test the code
on its own, the tests also provide information on how to prepare the problems. With this
knowledge, possibility for error in any context is decreased.

Coordinate(m) Bar 1 Bar 2 Bar 3
1.0 1.34% 1.07% 1.05 %
1.2 1.26% 1.29%
2.0 0.56% 0.98% 0.61%
2.2 0.66% 0.76%
3.0 0.00% 0.22% 0.32%
3.2 0.01% 0.01%
4.0 1.12% 0.79% 0.91%
4.2 1.61% 0.87%
5.0 6.71% 5.05% 5.18%
5.2 5.53% 5.38%

Table 6.1: The Initial Use of Incorrect Boundary Conditions Resulted in Significant Solution Errors for the
Rectangular Beam with O.Olm end Displacement.

7. Conclusion. NimbleSM functioned correctly as a Lagrangian finite element code
with these patch tests. This increases our confidence in the correctness of the code and
provides a set of tests that can be used in the NimbleSM test suite. Patch tests, like those
defined by MacNeal and Harder [5], are a cornerstone of verification testing for FEM codes.
Further, the process of creating and executing the verification tests provided an opportunity
to become familiar with the workflow of a FEM analysis for solid mechanics.
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Abstract. Whenever a new chemical product is created it brings with it a risk of potential harm to hu-
man health that must be extensively tested. Conventional methods of pre-clinical toxicology testing involve
expensive and ethically-questionable experiments typically performed on animals. Recent approaches posed
by the consortium Toxicology in the 213t Century involve a series of high-throughput screening processes of
a chemical compound that looks for possible toxic effects caused by interrupting biological pathways. We
can model the data collected from these tests using machine learning methods to try to accurately predict
whether an unknown compound is toxic to human health. Our approach trains a model based on data de-
rived solely from chemical structure. Comparing two unsupervised machine learning algorithms, struc2vec
and node2vec, we create representations of molecules by concatenating the low-dimensional feature embed-
dings formed by each molecule's atomic structure. Using these representations, we utilized ensemble decision
trees to classify molecular toxicity in a set of compounds. Results achieved from this model indicate that
this method could be a starting point for future work.

1. Introduction. Human interaction with chemical substance is unavoidable. Whether
it is pesticides, food additives, medications, environmental chemicals, or more, it is impera-
tive to understand which biomolecular substances exhibit toxic effects to humans. Conven-
tional pre-clinical testing for these effects is typically expensive and time consuming, and
usually rely on using animals. This brings forward many issues; it provides no guarantee
to human safety during clinical tests, alongside ethical concerns. "Toxicology in the 21st
Century", or Tox21, is a US federal research collaboration that provides a new-age method
of toxicity testing, developed by conducting tests in human cells or cell lines in vitro. Anal-
ysis of cell response through individual toxicity pathway assays can be performed with the
assistance of robotics to provide both time- and cost-efficient testing, while bypassing the
need for animal experimentation [1].

Part of this development includes production of computational models that can accu-
rately determine presence of toxins. Many computational models suffer from insufficient
accuracy, so in 2014 a challenge was issued to the community to produce the best model for
predicting compound's interference in biochemical pathways using only data pertaining to
chemical structure. The best fit model could be then used by government agencies for deter-
mining compounds that cause toxic effects to human health. The Tox21 challenge dataset
consisted of activity data from 12 independent assays for approximately 10,000 molecules,
and resulted in a series of fairly-accurate classification models [6].

In this paper, we compare using either node neighborhood locality or global structural
identity for classification of toxins present in molecular compounds. Node neighborhood
locality here refers to the homophilic communities of nodes within networks. node2vec [4] is
an unsupervised algorithmic framework that uses node and edge input of a graph to learn
continuous feature representations of nodes. Projecting the network into a low-dimensional
space, it works to preserve network neighborhoods of nodes. Structural identity of nodes
refers to the relationship between both a node and the overarching network structure, as
well as between a node and the identities of other nodes. struc2vec [11] is an unsupervised
learning approach for building latent representations using only network structure to char-
acterize the structural identity of individual nodes. By using molecular bond structure as
input, struc2vec obtains high-dimensional feature representations of each molecule that can
be used in supervised Machine Learning classification methods, and predicting the toxicity
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of new compounds. Another potential approach in line with the above methods is to utilize
graph2vec [9], an unsupervised learning algorithm that looks at graphical substructures to
create distributed representations of graphs. This paper focus' on frameworks that apply
solely to atomic structure of individual molecules, therefore we do not consider graph2vec,
although it could be utilized in future analysis.

We used ensemble decision trees to model and classify the embeddings created by
node2vec and struc2vec. Due to a high volume of inactive compounds, this classification
method was not as competitive as the methods used in related works, but did provide a
quantification of the usefulness of a latent space representation using molecular structure
alone.

The main contributions of this work is an evaluation of two node-level embeddings in
the context of a compound classification problem using only molecular structure as input.
We also compare a classifier using these embeddings with state-of-the-art classifiers for
toxicology of compounds.

2. Related Work. Unsupervised learning approaches to build representational molec-
ular models has been a subject of interest in both Machine Learning communities as well as
biomolecular communities. Modeling the presence of toxins within compounds directly af-
fects human safety on a large scale, therefore the Tox21 dataset has been leveraged multiple
times as a benchmark for predictability.

The Grand Challenge winners of the 2014 Tox21 challenge produced DeepTox [8], which
computes chemical features to describe the chemical compounds, then feeds these features
into a Deep Neural Network (DNN) accompanied with complementary Machine Learning
models to best predict toxicity of new compounds. DeepTox produced a final averaged AUC
score of 0.846.

In 2017 mol2vec [7], a method of creating vector representations from molecular sub-
structures using unsupervised learning was proposed. By making use of Morgan Finger-
prints, which contain substructure information about a molecule, mol2vec uses a Natural
Language Processing inspired method of treating compound substructures as words and
complete compounds as sentences. In doing so, a modified word2vec unsupervised learning
approach is used to obtain high-dimensional embeddings of substructures, clustering chem-
ically related substructures in latent space. This feature representation learning produces
dense vector embeddings as compound features that they tested through several supervised
learning classification algorithms. Overall, best results were produced by using a Random
Forest (RF) method, which produced an AUC score of 0.83 ± 0.05 for the 12 bioassays.

In this paper we use node2vec [4], which is an algorithmic framework for an unsupervised
method of learning continuous feature representations for individual nodes within graphs. It
preserves node neighborhood locality, and has flexible parameterization that can influence
how representations are built and what they represent. node2vec samples a neighborhood
using a biased random walk, which based on the hyperparameters will search according
to a breadth-first search algorithm or a depth-first search algorithm. For finding node
neighborhood locality, a breadth-first search is used in conjunction with stochastic gradient
descent similar to many natural language processing algorithms to generate an embedding.

Our approach compares the embeddings created by node2vec to the structural em-
beddings of struc2vec [11], which generates learned representations of molecular graphs to
capture atomic structural identity. Designed with intent to form latent representations
based solely on structural graph composition, struc2vec uses only presence of edges within
the graph and no information regarding node or edge attributes. Ideally the representa-
tions place nodes in high-dimensional coordinate space such that distance between nodes is
correlated to structural similarity. The approach utilizes Dynamic Time Warping (DTW)
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to impose a hierarchy for measuring structural similarity, before constructing a multilayer
weighed graph that represents the structural similarity of every node at increasing hop
distance away. struc2vec also uses biased random walks to traverse this graph and build
representations using natural language processing techniques.

3. Datasets. The complete dataset that was used in testing comprised of the training
dataset provided by the National Center for Advancing Translational Sciences (NCATS) for
the 2014 Tox 21 challenge. It contains the results from high-throughput screening assay
measurements of 12 toxic effects. Seven effects were part of the Nuclear Receptor (NR)
pathways, while 5 were part of the Stress Response (SR) pathways. NRs are a superfamily
of transcription factors that cause many human diseases and play a key role in regulation
of biologic processes [10]. SR pathways work to resist the effects of stress and restore cell
and tissue homeostasis. Both NR and SR pathway effects are important to understand and
pinpoint due to their direct implications on human health. Activation of NR effects can
disrupt the human endocrine system, while activation of SR effects can cause liver failure
and cancer [8].

The NR signaling panel is comprised of seven datasets, or bioassays, which are an An-
drogen receptor (NR-AR), Androgen Receptor Ligand Binding Domain (NR-AR-LBD), Aryl
Hydrocarbon Receptor (NR-AhR), Estrogen Receptor (NR-ER), Estrogen Receptor Ligand
Binding Domain (NR-ER-LBD), Aromatase (NR-Aromatase), and Peroxisome Proliferator-
Activated Receptor gamma (NR-PPAR-gamma). The SR signaling panel is comprised of
five bioassays, including Antioxidant Responsive Element (SR-ARE), ATP-ase family AAA
Domain containing 5 (SR-ATAD5), Heat Shock Factor responsive element (SR-HSE), Mito-
chondrial Membrane Potential (SR-MMP), and p53 (SR-p53). Table 3.1 contains informa-
tion about the number of molecules in each bioassay, along with the ratio of active to total
molecules.

Table 3.1: Tox21 Training Data Points per Assay

Inhibitor Total Active Ratio of Active/Total
NR-AR 9349 380 0.04
NR-AR-LBD 8589 301 0.04
NR-AhR 8159 948 0.12
NR-ER 7688 937 0.12
NR-ER-LBD 8742 444 0.05
NR-Aromatase 7217 360 0.05
NR-PPAR-gamma 8172 219 0.03
SR-ARE 7161 1098 0.15
SR-ATAD5 9081 337 0.04
SR-HSE 8138 423 0.05
SR-MMP 7311 1141 0.16
SR-p53 8623 535 0.06

4. Approach. The available dataset consisted of SMILES (Simplified Molecular-Input
Line-Entry System) strings alongside a MOL chemical table file and bioassay results. The
provided MOL file contained all molecular information regarding atom and bond structure
for which we parsed into individual files containing the bond structure of each molecule. In
Figure 4.1 we illustrate how the bond list could be extracted from the structure and used
as a graph edgelist, which was run as input through struc2vec and node2vec to produce a
2-dimensional embedding containing latent space coordinates for each atom. To create our
dataset we input all molecule bond information into both struc2vec and node2vec, using 16-
dimension embeddings to create dense compound features derived from the atoms of every
molecule. A single run of struc2vec and node2vec on every molecule was used to compile
the subdatasets corresponding to each bioassay.
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Fig. 4.1: Latent space representation of a molecular compound. SMILES string and 2-D representation (top
left), molecular edgelist used as input to struc2vec and node2vec (top right), 2-D embedding in struc2vec

(bottom left), and 2-D embedding in node2vec (bottom right).

Looking at training data for a particular assay, we can compile the set of molecules M
for which we have data regarding the activation of the compound. This data is a binary
classifier that is 0 if the molecule is inactive, and 1 if active. All molecules in M have latent
space embeddings generated by struc2vec and node2vec with 16 dimensions. To compile
molecular embeddings into a single input vector X for each assay we performed truncation
and ordering.

Truncation provided a way to limit the amount of padding added to each molecule
while maintaining as much embedding data as possible. Figure 4.2 contains a histogram for
the number of atoms per molecule, with each assay overlaid. Since 98% of molecules are
composed of 50 atoms or less, we truncate the maximum number of atoms in X to be 50 as
opposed to the true maximum of 136. Ordering the atoms by element proved to be useful
to avoid features being limited to the ordering set by the SMILES string. Atoms in X were
rearranged with elements of highest occurrence in the dataset ordered first.

For each input matrix X used as input in our binary classifier, we started with a set of
molecules M for which toxicity testing for the assay was provided. Within M , there exists
a given molecule moli, such that each row of mot, embedding will give the latent space
coordinates of a specific atom. Because not all compounds in a particular bioassay's dataset
have equal number of atoms, we used 0-padding to ensure matrices would be of equal size.
An example of the padded struc2vec molecular embedding of moli is shown in Table 4.1,
where n represents the number of atoms within mo/i, and N represents the maximum atoms
in the set of molecules. If truncation is applied, N will be equal to 50 atoms.
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Table 4.1: Example of Molecular Latent Space Representation with 0-Padding

atom diml ... dim16
1 val ... val
2 val ... val
•..

•.. . •..
n val ... val

n + 1 0 ... 0
•..

•.. . •..
N 0 ... 0

From here we flattened each molecule by row to produce a single vector size 1X(16*N).
For molecule moli, this is represented as follows.

moli = valdl, . • • vold16, valdl, • • • vald16, 0, • .. 01

By flattening the embedding data of every molecule we can then combine all mol, for

1 < i< to produce our input feature matrix XA, and the corresponding label vector
YA, which contains the classifier for every molecule in bioassay set A, such that Ai E {0,1}.

moll
mol2

A1
A2

XA =
moti YA = Ai

A1M1
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Creating XA for each bioassay yields a pre-processed molecular embedding produced
by struc2vec or node2vec and a corresponding vector of classification labels. Each XA
was used as an input to an ensemble decision trees algorithm in order to perform the
binary classification task of predicting the toxicity YA to be either active or inactive. Data
were separated into 80/20 training/test stratified random split. For classification we used
AVATAR: Adaptive Visualization Aid for Touring and Recovery [5]. Avatar provides a set
of tools for classifying large datasets using ensembles of C4.5 decision trees created from the
dataset [3].

5. Results. The output probabilities determined by classifying each test set in AVATAR
are quantitatively measured using the area under the Receiver-Operator Characteristics
curve (ROC-AUC) performance metric. This metric was preferred because in the case of
bioassays, overall accuracy is not a telling metric due to a low ratio of active molecules
within the test set. The ROC-AUC score of a binary classifier is the probability that the
model will rank a chosen positive instance higher than a negative instance [2]. This value
represents the expected performance of the model, where a score of 0.5 signifies the model
performing no better than random choice. Using variations in the above approach for em-
beddings created by both struc2vec and node2vec, resulting averaged AUC scores of 10 tests
are shown in Table 5.1, denoting O to imply elements were ordered by occurrence, and T
implying that the molecules were truncated to 50 atoms.

Best classification came from using the full node2vec embedding with atoms ordered
by occurrence. We believe that further ordering of elements by molecular features would
improve the overall score, leading to further exploration into this approach. The ROC curve
of bioassay NR-AR-LBD is shown in Figure 5.1, which achieved the highest area under the
curve of any assay.
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Fig. 5.1: ROC Curves for NR-AR-LBD Inhibitor
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Table 5.2 compares our results to the two leading papers to classify the Tox21 dataset:
DeepTox [8] and mol2vec [7]. Preliminary results show that using structural information at
the atomistic level may not be enough to be competitive in this dataset. We plan to study
molecular level approaches with embedding of the molecules.
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Table 5.1: ROC AUC scores comparing embedding mechanisms using struc2vec (stv), node2vec (ntv) with
truncation (T) and/or atomic ordering (0)

Inhibitor s2v + T s2v + O n2v + 0 + T n2v + O
NR-AR 0.663 0.62 0.708 0.77
NR-AhR 0.628 0.602 0.653 0.658
NR-AR-LBD 0.723 0.683 0.773 0.77
NR-ER 0.603 0.587 0.605 0.605
NR-ER-LBD 0.673 0.633 0.602 0.726
NR-Aromatase 0.665 0.695 0.759 0.758
NR-PPAR-gamma 0.641 0.587 0.577 0.539
SR-ARE 0.587 0.593 0.567 0.573
SR-ATAD5 0.627 0.619 0.65 0.646
SR-HSE 0.562 0.572 0.539 0.533
SR-MMP 0.582 0.63 0.671 0.721
SR-p53 0.61 0.654 0.62 0.653
Average 0.63 0.623 0.644 0.663

Table 5.2: ROC AUC scores compared to leading algorithms

Inhibitor DeepTox (DNN) mol2vec (RF) n2v + 0 (RF)
NR-AR 0.849 0.89 0.775
NR-AhR 0.376 0.79 0.63
NR-AR-LBD 0.88 0.87 0.777
NR-ER 0.666 0.73 0.63
NR-ER-LBD 0.653 0.82 0.597
NR-Aromatase 0.752 0.85 0.716
NR-PPAR-gamma 0.637 0.81 0.551
SR-ARE 0.792 0.82 0.643
SR-ATAD5 0.797 0.85 0.581
SR-HSE 0.735 0.78 0.551
SR-MMP 0.849 0.9 0.674
SR-p53 0.696 0.84 0.606

6. Conclusion. Performing toxicology testing on chemical compounds both in circula-
tion as well as newly released is necessary for the overall well-being of living creatures. The
high-throughput screenings performed robotically that produced the Tox21 dataset provide
a new age method to toxicology risk assessment that is more efficient and ethical than previ-
ous methods. Our approach focused on the core structure of a molecule, using struc2vec [11]
and node2vec [4] to build a high-dimensional feature embeddings for each molecule based on
structure of the global network or of the homophilic community. Classification of molecular
toxicity was performed by utilizing ensemble decision trees. The results demonstrate that
it is not enough to use just the atomic structure as part of the embeddings. We plan to
evaluate molecular (graph) embeddings as opposed to node embeddings.
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SUPPLEMENTING THE DAMERAU-LEVENSHTEIN MINIMUM EDIT
DISTANCE ALGORITHM WITH PHONETIC MATCHING

LOKRAJ SRINIVASAN* AND EDWARD J. WALSHf

Abstract. Spell checking is a common feature of most word-based applications. Popular examples
include Google search spell check and Microsoft Word autocorrect. Most spell checkers use well developed
mathematical concepts like the Levenshtein edit distance and statistics to find possible corrections. This
research explores the addition of phonetics into the Damerau-Levenshtein distance algorithm and its effect
upon the algorithm's accuracy. Two spell-checking algorithms are compared, and their accuracies examined.
Testing of the phonetic implementation and the Damerau-Levenshtein Distance algorithm reveals that use
of phonetics provides improved accuracy.

1. Introduction. With the progression of time and advancements in technology, peo-
ple have grown to increasingly rely upon spell check when using their devices and machines.
They often let auto correct catch any spelling errors. Even with Google searches, a safety
net is cast underneath the request with an auto corrected version of the user input.

The secret to most spell checkers lies within natural language processing. An algorithm
analyzes a user's misspellings to deduce the correct spelling. Some spell-checking algo-
rithms integrate Vladimir Levenshtein's concept of the Levenshtein distance to create sev-
eral correctly-spelled candidates. Over the years, these algorithms have grown to include a
variety of other procedures and principles to boost the chances of finding the correct spelling.

Spell checkers often have a list of correctly-spelled words that the computer will compare
against. Often, there's additional information coupled alongside this list to increase the
probability of finding a more accurate group of candidate corrections. This paper provides
the approach of one of the algorithms taken to spell check and describes the use of phonetic
matching to improve accuracy

2. Background. The Levenshtein distance refers to the number of single character
edits (deletion, insertion, and substitution) that must be made to one sequence of charac-
ters to transform it into another. This is more colloquially known as the minimum edit
distance. Frederick J. Damerau modified this string manipulation algorithm by adding the
transposition of adjacent characters. According to Damerau, the combination of these four
edit processes account for more than 80% of all human spelling errors[1]. With this new
process, Damerau reduced the number of character edits required to correct a word

The implementation of the Leventhstein Minimum edit distance is known as the Wagner-
Fischer algorithm. The algorithm computes the minimum number of edits to transform one
string to another. The first step is to break down each string into a sequence of substrings.
For example, "dolphin" is broken down into these substrings: d, do, dol, dolp, dolph, dol-
phi, and dolphin. "dolfun" is broken down into these substrings: d, do, dol, dolf, dolfu,
and dolfun. Figure 1 depicts the minimum edit distances of all combinations of substring-
transformations for "dolfun" to "dolphin." It takes 2 edits to convert "dolf' to "dolph." The
algorithm uses previous smaller-substring computations to derive the number of edits for
larger substring transformations. Converting "dolf" to "dolphi" requires 3 edits (2 edits to
convert dolf to dolph plus one insertion). The cell in the bottom right-hand corner of figure
1 is the minimum number of edits to convert "dolfun" to "dolphin."
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Figure 1. Figure 1: A matrix depicting the Levenshtein distance matrix between the

correctly spelled word "Dolphin" and the improperly spelled word "Dolfun." Each cell con-
tains the minimum number of edits that must be made to get the substring in the first
column to become the top row. The 3rd box on the primary diagonal is a 0 since 0 edits
are required to transform "Do" into "Do." Transforming "Doff" into "Dolph" takes 2 edits
(1 substitution and 1 insertion).

3. Phonetics.

3.1. Phonetic integration into the Damerau-Levenshtein Algorithm. To im-
prove the Damerau-Levenshtein algorithm's accuracy, phonetic matching was integrated.
Experiments were conducted to test its feasibility and effect. Many spellcheckers use pop-
ular libraries like Metaphone and Soundex as the sole form of correction; this requires the
user to get the structure of the word mostly correct. Combining the minimum edit distance
calculation and the Metaphone library increases the probability of success in finding accu-
rate suggestions.

The phonetic implementation first uses the Damerau-Levenshtein minimum edit distance to
generate several strings by using a sequence of single-character edits (insertions, deletions,
transpositions, and substitutions). Next, the Metaphone library finds matching sounds
within the list of correctly spelled words—for example "Foto" and "Photo." Vowels are re-
moved from the user input string and from all candidate corrections; this allows a match
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to be found when the user accidentally alters the number of vowels or their respective
placements (examples: "CalendeC — "CalendaC , "liesure — "leisure , "potatoe — "pota-
toes"). Comparisons, with a list of correctly spelled words, are used to generate suggestions.

The phonetics aspect of this algorithm serves to eliminate potential words that could be
considered a false correction. It relies on the user's attempt at properly sounding and
spelling the word out. Once the single character edits are generated, the Metaphone library
filters out the ones that do not sound similar to any correctly-spelled word. This eliminates
obscure suggestions.

3.2. The Fuzzy Logic Underlying Phonetic Matching. The underlying assump-
tion and foundational idea as to why this phonetic algorithm works, when coupled with
the Damerau-Levenshtein distance, comes from Fuzzy String Matching. The minimum edit
distance is a comparison of two strings and a numerical quantification as to how similar
they are. Fuzzy logic was put forth by Dr. Lotfi Zadeh[7] and states that there are several
degrees of 'truth' and there is no simple true or false when it comes to deducing something or
deciding. Fuzzy logic is based off of Jan Lukasiewicz's work with "many-value& logic. The
same holds true and is applied to string matching with the minimum edit distance. There
are several string matches that can arise solely from the Damerau-Levenshtein distance; the
phonetic implementation can eliminate improbable truths. For instance, the string "rime"
has a minimum edit distance of 3 for both "Rhyme and "Seize." The Damerau-Levenshtein
algorithm provides no contextual information to deduce which of the two suggestions is cor-
rect. The phonetic library can eliminate "seize because rime and seize sound nothing alike.
Fuzzy logic enables the Damerau-Levenshtein algorithm to find multiple different possible
string corrections, but the addition of phonics aids in reducing the number of corrections.

4. Efficacy Testing.

4.1. Comparison Testing. A list of misspelled words was sent to an application
that uses the Damerau-Levenshtein distance and to an application that uses the phonetic
algorithm. The outputs of both applications are compared to determine the effectiveness of
the phonetic algorithm.

4.2. Testing the Damerau-Levenshtein Algorithm. A common spell checking li-
brary is the Apache Common's Lucene Spell Checker. This spell checker works by using
index-based spell checking — which is a method of tracking the frequency of words. Us-
ing a text file such as a book, dictionary, or other document, the spell checker tracks how
many times each word appears in the file and maps the word to a number (the frequency).
The Lucene Spell Checker uses the Damerau-Levenshtein minimum edit distance to find
potential corrections and then checks to see if that corrected word appears frequently. The
higher the rate of appearance in the file, the more probable that word is the right correction.

A text file containing a list of misspelled words, a text file containing a list of correctly
spelled words, and the Lucene Spell Checker were used to test the Damerau-Levenshtein
algorithm.

4.3. Testing the Phonetic Algorithm. An application, that utilizes the phonetic
algorithm, finds corrected-suggestions. The same text file of misspelled words was used as
input.
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4.4. Misspelled Words for Testing. The list used in testing was taken from Wikipedia.
That group of words was compiled and aggregated from other documented lists of "the top
100, 200, or 400 most commonly misspelled words in all variants of the English language" [6].
The 187-word list is representative of a variety of spelling errors. Some of these mistakes
include but are not limited to:

- Non-word Errors: When the user accidentally hits another key or two to create a word
that has no meaning or does not exist within the intended language. Example: "Hurry"
being misspelled to "Hurryu."

- Real-word Errors: When the user misspells their intended word and unintentionally spells
another word correctly such that a spell-checking algorithm will find nothing wrong with
the spelling. Example: "Buckle& and "Bucked."

- Phonetic Errors: When the user misspells their intended word due to issues with a miscon-
strued sounding of the word in their minds. Example: "Proof' being misspelled to "Prufe."

It is expected that the Damerau-Levenshtein algorithm and the phonetic algorithm can
both handle non-word and phonetic errors well. The phonetic implementation should fare
better with phonetic errors due to its use of sound matching. Both, however, are expected
to suffer when it comes to real-word errors since these words are already spelled correctly.

5. Results. The phonetic algorithm passed 185/187 of the tests and the
Damerau-Levenshtein algorithm passed 184/187 of the tests.

The phonetic based spell checker seems to suffer from lack of knowledge in differentiating
between homophones and true intention. "Fourth" and "Forth" are essentially equivalent
to this implementation and there's no real way of figuring out what applies best without
the use of contextual evidence.

It performs best with errors that arise from spelling but generally correct-sounding at-
tempts. An interesting example demonstrating this concept can be found with misspelling
"Proof' as "Prufe." The Metaphone library, which registers similar sounds, enables the al-
gorithm to accurately deduce that the intended word is "Proof." For generic misspellings,
in which the user generally sounds the word out correctly, the phonetic addition in the
implementation improves the accuracy of the spell checker.

The Lucene Spell checker is reputable and well-tested implementation of the Damerau-
Levenshtein algorithm; it fares well in testing common misspellings of words. The degree of
severity of a misspelling is quite subjective but still relatively uniform across most users and
implementations. When the misspelling becomes quite erroneous, the spell checker struggles
to find the right match.

Because the phonetic algorithm allowed only one edit, the algorithm fails when two or
more edits are required. An instance of this comes from the correctly spelled word "Hy-
giene' and "Hiygeine." From the pure point of view of editing, there is a decent amount of
work that must be done to correct the spelling of Hiygeine. Most spellchecker algorithms
fail when too many edits are required.

There is a more global and long-term benefit of a non-phonetic algorithm in that it's ap-
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plicable to different languages. One could theoretically pass in a Spanish dictionary into
the non-phonetic version of Damerau-Levenshtein algorithm and have it correct words in
Spanish. The phonetic implementation is solely restricted to English.

The phonetic version of the Damerau-Levenshtein distance algorithm holds an advantage
over the non-phonetic version due to simplicity and efficiency. Once the Levenshtein distance
is used to create potential edits, the Metaphone library filters through potential candidates
to find similar-sounding matches. This is the reason "Prufe" was successfully transformed
to "Proof' on the phonetic implementation but not in the non-phonetic. The phonetic
checking greatly aids the user by using their attempts at sounding out the word and so it
does have a substantial impact on improving the accuracy and efficiency of spell checking
when no contextual information is present.

However, the phonetic matching algorithm does lack a certain specificity when words are ho-
mophones. A non-phonetic algorithm has a higher chance of deducing the intended spelling.

6. Conclusions. There are multiple different spell-checking mechanisms available for
use in open source libraries, large scale search engines, and in text editors. Several employ
an implementation of the Damerau-Levenshtein distance to find the correct word. While
proven accurate, this paper shows the methodology can be improved by coupling phonetic-
based libraries with the standard minimum edit distance algorithm. The results of testing
highlight how the phonetic checking helps to mitigate concerns with poor spelling by capi-
talizing on the users' attempts to spell out the word. Often, the consonants appear correctly
in the string, but the vowels are the ones which are misplaced, switched, or missing and so
the algorithm ignores vowels. As a result, words that sound like correctly spelled words such
as "Prufe," can be easily corrected Implementations do exist that solely rely on the results
of the Metaphone or Soundex library; this impedes the accuracy of their results. By pairing
the Damerau-Levenshtein distance with the Metaphone library, the best of both worlds is
attained, and the results are more accurate for it.

Further steps to improve spellchecking might include providing contextual information to
the spell checker to enable probability calculations. Such an approach might may resolve
issues differentiating between homophones as the algorithm can analyze surrounding words
to determine what is the most fitting word to utilize. With additional data, the algorithm
can adopt some form of Bayesian inference or statistical machine learning to find the correct
spelling suggestions.
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