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Abstract

This paper presents a model for improving off-design performance predictions for
molten salt-driven Rankine power cycles, such as in concentrating solar power tower
applications. The model predicts cycle off-design performance under various boundary
conditions, including molten salt inlet temperature, mass flow rate, and ambient tem-
perature. The model is validated using industry performance data and benchmarked
with results from the literature. A complete concentrating solar power plant, inclusive of
solar heliostat field and receiver, is then considered, by implementing the Rankine cycle
off-design performance results into the National Renewable Energy Laboratory’s System
Advisor Model software, which includes a tool that determines optimal power produc-
tion schedules. The work improves upon the current System Advisor Model by updating
off-design performance characteristics. A case study demonstrates the impact of cycle
off-design behavior on annual performance for a stand-alone concentrating solar power
system and a concentrating solar power-photovoltaic hybrid system. In addition, we
demonstrate how cycle off-design performance influences optimal operator dispatch de-
cisions and, thereby, overall system design and economics. We conclude that off-design
cycle performance impacts “optimal” sub-system sizing, especially for a concentrating
solar power-photovoltaic hybrid configuration in which concentrating solar power must
dispatch in conjunction with photovoltaic generation.
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Figure 1: Molten salt power tower plant configuration. The system consists of a heliostat field, molten
salt receiver, direct TES sub-system, a steam Rankine power generation cycle, and a heat rejection
sub-system (Graphic ©) NREL/AI Hicks).

1. Background

Concentrating solar power (CSP) with thermal energy storage (TES) utilizes the solar
thermal spectrum to generate, store, and dispatch heat to create on-demand electricity.
Specifically, CSP power tower technology, depicted in Figure [T} consists of a field of

s heliostats that reflect sunlight to a central receiver where the flux concentration can
be greater than 1,000 suns. Current utility-scale power tower systems employ liquid
molten salt (60 % NaNOj + 40 % KNOs3), operating between 290 °C and 565 °C, to
transport thermal energy away from the receiver. The heated molten salt can either
be immediately used to generate electricity via a Rankine power cycle, for example, or

10 be stored in an insulated tank for use at a later time. When electricity generation is
desired, high temperature molten salt flows through a series of heat exchangers where
water is transformed into superheated steam that expands through a turbine, driving an
electric generator. Examples of operational power tower CSP plants with TES include
Gemasolar in Spain, Crescent Dunes in the United States, Noor IIT in Morocco, and

15 Shouhang Dunhuang in China [I]. (Table [§|in the appendix provides a complete list of
units, acronyms, model names, and notation.)

CSP systems with TES can dispatch renewable electricity to the grid when demand
is the greatest. Due to TES, these systems have design flexibility that enables the
decoupling of power output (power cycle rating) and energy capacity (hours of storage),

2 but results in challenges when modeling system-level operations and annual performance.
Specifically, CSP system generation is limited by its power cycle ramp rates due to
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Figure 2: Molten salt-driven Rankine cycle with reheat, three turbine stages, and seven feedwater heaters,
a sub-system in current commercial-scale CSP tower systems.

thermal gradients. Like traditional power systems, CSP Rankine cycle response time
is a function of turbine temperature, which depends on the cooling rate and time since
last operational. One of the greatest losses in the conversion of solar-to-electric energy
s results from the power cycle inefficiency at design and part-load conditions. Therefore,
inability to accurately capture cycle efficiency leads to poor assessment of the value that
a CSP system provides to the grid.
Figure[2]depicts a schematic of a prototypical power cycle in a CSP plant that employs
a subcritical reheat regenerative Rankine cycle with seven feedwater heaters and a molten
w0 salt-to-steam heat exchanger train. Superheated steam leaving the salt-to-steam train
expands through a high-pressure turbine (HPT), is reheated, and expands through the
intermediate pressure turbine (IPT) and low pressure turbine (LPT), after which it is
condensed into feedwater, and is pumped back to the salt-to-steam train. To improve
efficiency, a small amount of steam is extracted at discrete locations during the turbine
35 expansion to pre-heat the feedwater before the molten salt heat input. The individual
components that constitute a Rankine cycle are sized to produce the highest efficiency
when operating at design conditions, or design-point efficiency.
Balancing electricity supply to meet demand becomes an ever-increasing challenge as
penetration levels of intermittent renewable energy, such as wind and solar, increase. To
w0 achieve high renewable-energy grid penetration requires either: (i) over-generation and,
consequently, curtailment, (ii) integration of highly flexible generators, or (iii) adoption
of energy storage technologies [2]. The objectives of our work are to: (i) understand
molten salt-driven Rankine cycle performance for the two primary control strategies, (ii)
evaluate optimal operational interactions between the Rankine cycle and solar collection
»s under varying off-design performance assumptions, and (iii) explore and quantify off-
design cycle performance impact on CSP power tower system design.
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1.1. Rankine cycle part-load operation
CSP with TES systems are capable of producing electrical energy at a rate that is
only loosely coupled with the solar energy collection process. Several factors can influ-
so ence the selected power generation level, including TES state of charge, anticipated solar
collection, power cycle startup and ramping specifications, and external factors such as
current electricity market price. Furthermore, power cycle performance is altered as
operating conditions deviate from their design-point values. Cycle thermodynamic effi-
ciency, for example, is significantly reduced under part-load mass flow and/or reduced
ss  hot-side temperature conditions, or during elevated ambient temperatures. When con-
ditions simultaneously depart from design, cycle performance cannot be expressed as a
sum of independent effects; rather, detailed first-principles thermodynamics models are
required to predict cycle performance, which is particularly important for CSP, where
off-design operation can represent a significant fraction of operating hours.

60 In molten salt-driven Rankine cycles, one means by which electric power output
can be reduced is by decreasing the salt mass flow rate, thereby reducing cycle heat
input and the rate of steam generation in the salt-to-steam heat exchanger train. When
steam mass flow rate is reduced and the turbine maintains fixed shaft speed, the turbine
inlet pressure tends to decrease (resulting in a reduction of available energy in the steam

s turbines). Two options are available for managing boiler pressure under these conditions:
the cycle’s pumps can either (i) produce feedwater at the reduced pressure, or (ii) produce
full-pressure feedwater in conjunction with a throttling valve at the turbine inlet. These
two methods are referred to as sliding and constant pressure operations, respectively.

The advantage of the constant pressure operation is that the boiler does not expe-

7 rience pressure changes during part-load operation, which can reduce transient stresses
during load changes; however, work is lost due the throttling process in the turbine con-
trol valves. Under sliding pressure operation, boiler pressure varies depending on cycle
load; consequently, turbine control valves remain fully open, regardless of part-load op-
eration, which mitigates irreversibilities from throttling. As the cycle power is reduced

75 from design to part-load operations, the pressure rise requirements for the feedwater
pumps are reduced and, consequently, pump work is decreased. Sliding pressure opera-
tion typically results in higher cycle thermal efficiencies at part-load than the constant
pressure operation due to the reduced pump work and valve throttling irreversibilities.
The main disadvantage of sliding pressure is a longer response time to load changes be-

s cause the transients associated with boiler pressure are slower than the actuation of the
control valves [3].

1.2. Related work
Overall cycle performance is primarily a function of individual component perfor-
mance and cycle classification (sub-critical, supercritical, reheat, or regenerative). One
s of the largest uncertainties in predicting the part-load performance of steam turbines
is properly evaluating the change in isentropic efficiency of the device. The standard
methodology to model steam turbine off-design performance, in the absence of specific
manufacturer test data, is the Spencer-Cotton-Cannon (SCC) method [4]. [Spencer et al.l
which is a conservative approach in that actual turbine performance is approximately 2 %
o higher than calculated values predict [3].
The SCC method, in combination with Stodola’s ellipse method [B] [6], has been
used to model steam turbine performance with limited knowledge about turbine design
4
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specifics. For example, Woudstra et al.| [7] analyze the thermodynamic performance of a

combined cycle utilizing Cycle-Temp, a power cycle modeling computer program which

s evaluates steam turbine performance. |Chacartegui et al|[§] model and validate the per-
formance of a 565 MW fossil fuel steam power plant to predict off-design performance of
large steam turbines. For CSP applications, Marugén-Cruz et al.|[9] conduct a parametric
analysis of a direct steam generation linear Fresnel CSP plant. The authors implement
turbine sliding pressure control and off-design cycle performance. [10]

10 model a double-flash geothermal power plant hybridized with a CSP field through the
use of IPSEpro, employing Stodola’s ellipse method to capture off-design behavior of
the steam turbines. [11] use nonlinear optimization to determine an
operational strategy for an integrated solar combined cycle and evaluate efficiency cor-
rections for the steam turbine during part-load operations under varying solar resource

105 and electricity prices. Based on literature, the SCC and Stodola’s ellipse methods are
implemented to model off-design turbine performance.

Researchers have developed models to determine optimal scheduling of system oper-
ations with and without off-design performance. [Castronuovo and Lopes| [I12] propose an
optimization model discretized at hourly fidelity to determine the optimum daily oper-

1m0 ational decisions for a wind farm with pumped hydro storage. However, no off-design
performance is considered within the optimization model. [13] develop a
mixed-integer linear program to make short-term decisions for the operations of a com-
bined cooling, heat and power energy system. The authors convert nonlinear off-design
performance curves to piece-wise linear approximations and compare solution quality for

us  varying piece-wise intervals. However, this work lacks a comparison between operational
decisions using different performance curves. [14] investigate the impacts of
component off-design performance on the optimal design of combined cooling, heating,
and power systems. The authors develop two optimization models that determine the
design and operation of a combined cooling, heating, and power system: (i) assuming

1o constant efficiency and (ii) considering equipment off-design performance. Their results
indicate, for the given case study, that assuming constant efficiency provides a solution
within 5% of a model that considers off-design performance. However, the system design
is composed of discrete decisions regarding the number of a single type of equipment to
acquire, which limits the design space.

125 Based on the literature, there exist methodologies to model Rankine cycle off-design
performance; however, the impact of off-design performance on dispatch scheduling and
design configuration of a CSP system is not well known. The primary contribution of our
work lies in investigating and understanding the Rankine cycle off-design performance
impact on optimized dispatch decisions and the propagation of those decisions into a

10 CSP system’s design, annual performance, and economics.

1.8. Owerview of Paper
We develop and validate a Rankine cycle model with which to evaluate off-design
performance and implement this model into existing simulation software — System Advi-
sor Model (SAM)[I5], which assesses renewable energy system performance and financial
s feasibility (see Figure [3)). Section [2 describes in greater detail both SAM and the devel-
opment of our Rankine cycle off-design performance model within Engineering Equation
Solver. In addition, Section [2] includes a comparison of our Rankine cycle model’s re-
sults against those derived from data obtained from a (confidential) industry partner and

5
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from another model presented in literature. Section [3] describes the integration of our

o validated performance Rankine cycle model into SAM, provides a short description of
our dispatch optimization methodology, and outlines a case study, which examines the
impact of cycle off-design performance on optimal dispatch and its influence on system
design, performance, and economics. Section [d] presents a comparison between our Rank-
ine cycle model’s off-design performance and SAM’s default cycle. In addition, Section

us [4] discusses the impact of cycle off-design performance on optimal operations, annual
metrics, and CSP system design. Section [p| concludes this paper with a summary of our
findings.

2. Rankine Cycle Off-design Performance Models

One standard approach for evaluating the performance of thermal-energy-to-electricity
10 conversion of a power tower CSP system utilizes SAM’s Rankine cycle model, which
we term (R) [16], and employs user-defined, high-level parameters and predefined look-
up tables to model off-design cycle performance efficiently (described in greater detail
later). (R) achieves a significant improvement over previous methods by (i) allowing
SAM users to quickly evaluate power tower CSP system designs utilizing a Rankine cy-
155 cle for thermal-energy-to-electric conversion, (ii) providing users convenient options for
modeling different turbine inlet pressure control methods and condenser types, and (iii)
enabling complex system control that can utilize dispatch optimization to maximize sys-
tem revenue over an immediate time horizon [I7]. Figure 3| depicts the information flow

in the molten salt power tower model within SAM.
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Figure 3: Information flow in the molten salt power tower model within SAM. The mixed-integer linear
program (MILP) provides the hourly solution profile to the CSP controller, which sets target production
levels and operational states for subsequent time horizons (figure modified from [17]).
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160 SAM’s Rankine performance model (R) employs a minimal set of user-defined cy-
cle parameters to predict off-design cycle performance for an annual simulation, which
includes options for turbine inlet pressure control, that is, fixed or sliding, and cycle con-
denser types, that is, evaporative, air-cooled, or hybrid. (R) utilizes a multiple-variable
regression method to predict the cycle’s electrical output for a given molten salt inlet

15 temperature, molten salt mass flow rate, and condenser pressure. Molten salt inlet tem-
perature and mass flow rate impact heat available to the cycle, while condenser pressure
affects the available energy in the low pressure turbine’s last stage.

An existing mixed-integer linear program interfaces with (R) to provide an optimal
operating strategy by maximizing revenue over an immediate time horizon, subject to:

o (i) solar availability, (ii) electricity time-varying prices, (iii) operating costs, (iv) energy
balances, (v) ramp rates, (vi) logical rules governing operations, and (vii) operational
consistency between time periods [17, [I8] [19]. When coupled with (R), this program can
evaluate operational and design trade-offs for CSP and CSP-PV hybrid systems under
various location and electricity market scenarios (see §3).

175 (R) estimates Rankine cycle performance given a cycle configuration and ambient con-
ditions, but may be improved in several respects. Specifically, the relationship between
heat input and electrical power output can overestimate cycle efficiency at part-load
conditions (shown in . In commonly simulated plant configurations, the cycle often
operates at or near design heat input. However, cycle part-load conditions occur more

180 frequently when SAM is employed in conjunction with the dispatch optimization model
[18], which can incorporate hybridization of CSP systems with photovoltaics [19].

2.1. Rankine Cycle Model Development

We develop a Rankine cycle model capable of off-design performance calculations us-

ing Engineering Equation Solver (EES) [20], referred to as (E), whose cycle configuration

15 matches that of (R), as given in Figure [2] which depicts the modeled system containing

steam reheat after expansion through the HPT and turbine extraction steam to one open

and six closed feedwater heaters. In order to model the entry cycle at a fidelity capable

of capturing off-design performance, each component design characteristic must be gath-

ered either through literature, industry knowledge, or a design-point heat balance. To

w0 develop (E), we use a heat balance of a Rankine cycle rated at 125 MW, gross output

provided by our industry partners. The heat balance contains pressures, temperatures,

and mass flow rates before and after each component within the cycle at 100 % load
condition and design ambient conditions.

2.1.1. Steam Turbines

105 Steam turbines convert fluid momentum into rotational energy, but this process is
imperfect and thermodynamically irreversible and leads to exergetic (available energy)
losses. The extent of these losses depends on the physical design of the turbomachinery
and the fluid interaction with turbine blades, valves, housings, seals, and other turbine
components. These effects can vary non-uniformly with operating conditions, including

20 throttle steam temperature and pressure, rate of steam generation, and boiler satura-
tion temperature. Given this complexity, predicting turbine thermodynamic efficiency
is challenging even though it is one of the most significant aspects in capturing overall
cycle performance under off-design conditions.

7
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The SCC model was developed to predict turbine efficiency in a generalized manner,

25 allowing for different turbine designs, operating conditions, and operating ranges by ex-

pressing performance according to normalized or nondimensionalized terms. The method

specifies baseline efficiencies for various turbine sections and correction functions to ac-

count for volumetric flow rate, governing stage design, pressure ratio, initial conditions,

partial throttle flow, and an optional mean-of-loops (a heat rate curve as a weighted

20 average of the cycle performance over control valve actuations) [4]. In addition, the SCC

method provides procedures for calculating packing leakages and turbine-generator losses
associated with exhaust steam velocity, mechanical friction, and generator load.

For the development of (E), we model the HPT and the combined sections of the
IPT and LPT using the SCC method described for a 3,600-rpm noncondensing one-row

a5 governing stage and a 3,600-rpm condensing without governing stage, respectively. We
estimate values for a majority of the independent variables, that is, pressure ratios across
stages, and steam flow rates at design, needed for the SCC method correction functions,
using our industry partner’s provided design-point heat balance. For the independent
variables that cannot be estimated using heat balance information, we assume values

20 based on engineering approximations and literature [3]. We assume that the HPT gov-
erning stage has four control valves and a pitch diameter of 38 inches (96.5 centimeters), a
common configuration, along with an LPT last-stage annulus area of 55.6 square feet, i.e.,
5.165 square meters, (afforded by a degree of freedom) because this area corresponds to
performance closest to that predicted by our industry data when using the SCC method

»s  tabulated values of exhaust losses.

For part-load conditions, the HPT efficiency is primarily a function of the ratio be-
tween inlet flow rate at part load and the nominal design value. As this ratio decreases,
the governing stage and overall HPT efficiencies decrease. On the other hand, the LPT
efficiency is primarily a function of the annulus velocity of the last stage. We capture

230 this effect using the SCC method through the calculation of exhaust losses, whose curves
are a function of annulus velocity and are turbine-manufacturer-specific. However, the
SCC method provides some representative relationships between annulus velocity and
exhaust losses for various last-stage annulus areas.

During part-load conditions, extraction pressures, enthalpies, and mass flow rates vary

255 as a function of throttle mass flow rate. To estimate extraction pressures and pressure
after governing stage during part-load conditions, we implement Stodola’s ellipse law [5],

presented in Equation .
. / 2
ﬁ \ ;;ivDPi;D _ L- (PO/Pl) (1)
o \pibi 2’
- (Po,D/Pi,D)

where 77 is the mass flow rate through the turbine stage, P is pressure, p is density, the
subscript ¢ refers to stage inlet, the subscript o refers to stage outlet, and the subscript
a0 D refers to the design condition.

The SCC method provides turbine performance of the HPT and the combined sections
of the IPT and LPT, which allows prediction of the outlet thermodynamic state of these
two sections. Extraction enthalpies can be determined from an enthalpy-entropy (or
Mollier) chart as the intersection of the extraction pressure and the turbine expansion

us curves, the former of which is provided by the Stodola’s ellipse law and the latter of

8
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which is approximated as follows: (i) for the HPT, as linear from the bowl condition
(located between control valves and the first stage) to the turbine exit condition, and (ii)
for the IPT and LPT, traditionally using a Keuffel and Esser curve number 1864-31 [4];
we develop a second-order polynomial using the heat balance information provided by

0 our industry partners. The coefficient values of this polynomial function are proprietary
information, but the general form is shown in Equation .

s(h) = ag + a1h + axh? (2)

where s is entropy and h is enthalpy. For partial mass flow rates, expansion curves are
offset relative to the design curves, intersecting the calculated end point [4]. An offset
expansion curve is determined by offsetting the design curve by As, which is defined as

255 the difference between turbine exit entropy at partial mass flow rate, s (determined by
LPT exit pressure and enthalpy) and design entropy, s’, given by Equation (2)), using the
turbine exit enthalpy (Equation (3)):

As = 5(P., he) — 5'(he) = 5(Pe, he) — (ag + arhe + ash?) (3)

where P, is the LPT exit pressure and h, is the LPT exit enthalpy. Equation can be
rewritten for extraction points, where entropy and enthalpy are unknown; see Equation

260 "

Se(he) = As+ap+ arhe + aghz (4)

where s, and h. are the entropy and enthalpy, respectively, at IPT and LPT extraction
points whose thermodynamic state can be fixed via Equation in combination with
an EES built-in entropy function using extraction enthalpy and pressure (the latter of
which is determined by Stodola’s ellipse law).

265 We estimate the turbine extraction mass flow by assuming a constant mass coefficient
(1h/+/pP) for all partial flow rates, shown in Equation (f)).

me _ VpePe

— = (5)
Me,p e,DLe,D ’
where the subscript e refers to the conditions\at turbine extraction.

2.1.2. Air-Cooled Condenser
Performance of the air- or water-cooled condenser dictates the relationship between
o0 condenser pressure, heat rejection, and ambient temperature. The condenser outlet is
the lowest-energy state-point in the steam cycle, effectively setting a limit on the amount
of available energy that the LPT can extract from the steam flow. Condenser pressure
is a function of heat rejection load and ambient temperature, both of which routinely
vary during off-design operation. Air-cooled condenser performance is manufacturer-
a5 specific and can be challenging to generalize. We employ air-cooled condenser data
provided by our industry partner that expresses condenser pressure as a function of heat
rejection load and ambient temperature. Because of the proprietary nature of the data,
we normalize it using minimum condenser pressure, design heat rejection, and design
ambient temperature (converted to Kelvin), shown in Figure |4/ and explicitly denoted by
20 markers.

9
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Figure 4: Normalized condenser pressure as a function of normalized heat rejection and normalized
ambient temperature. Markers denote industry-provided data, while dashed lines depict the results
from the fitted bi-variate polynomial (evaluated at the corresponding normalized ambient temperature
and varying normalized heat rejection).

From this data, we develop a second-order bi-variate polynomial in terms of nor-
malized ambient temperature, Tgy,,p, and normalized heat rejection, @, to determine
normalized condenser pressure, shown in Equation @:

3 ((amb, Q) = max

where P, is the normalized condenser preskgure predicted by the bj-variate polynomial
25 and a;; is the coefficient for the (7,j) exponent pair (see Table .

Table 1: Fitted regression model coefficients for the corresponding (¢, j) exponent pairs.
J

0 1 2

0 | 147.966 71.235 27.554

1 1] -329.022 | -159.268 | -62.249
2 | 183.460 89.502 35.571

aij

When the bi-variate model predicts a normalized condenser pressure less than 1.0, for

example, when Tomp = 0.912 and Q <0.71in Figure the predicted value is set to 1.0 by

the maximum function. By setting the predicted value to 1.0, condenser pressure is set

to the minimum pressure for the condenser. With respect to the industry-provided data,

200 our bi-variate polynomial has a root mean squared error of 0.0126, a mean absolute
10
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error of 0.010, an R-squared value of 99.986 %, and an adjusted R-squared value of
99.982 %. Our bi-variate model is valid for conditions under which Tamb > 0.8925; for
ambient temperatures below this condition, we assume that the air-cooled condenser
performance does not change. We implement our bi-variate model into (E) to provide
205 the relationship between ambient temperature, heat rejection, and condenser pressure.
To approximate condenser parasitic fan power, we assume a design approach tem-
perature (AT ) of 3 °C, a design initial temperature difference (ITDy) of 16 °C, and
constant specific heat of air (cq) evaluated at the design ambient temperature [21].
From these assumptions, we calculate design air mass flow rate (g p) to achieve the
a0 heat rejection load at design conditions (Qreij) using Equation @

" o Qrej,D
P CirITDy — ATy, 1)
Next, we assume constant fan isentropic and mechanical efficiencies of 80 % and 94 %,
respectively. In addition, we assume a pressure ratio across the fans to be constant at

1.0028 (P,/P;) [21]. Assuming constant specific heat and ideal gas, temperature change
for an isentropic process is defined by Equation .

T, =T, (%) e (8)

(7)

3

w05 where T; is fan inlet temperature (assumed to be ambient air temperature). With the
approximate isentropic fan outlet air temperature known, fan outlet enthalpy can be
calculated using the definition of isentropic efficiency for a fan. Fan power is estimated
using Equation @D

Wfan _ Mair (ho h”L) (9)
Nfan,m
where 1¢qn,m is the fan mechanical efficiency.

310 For part-load operation, we assume that the air-cooled condenser can only operate at
discrete levels (nacepr), which could be the result of fan speed limitations (i.e., two- or
three-speed fans) and/or the removal of condenser “bays” through system valving. For
our purposes, we model these discrete levels by multiplying air mass flow rate at design
conditions (1) by & part-load fraction of the air-cooled condenser (face,pr)-

315 We determine this part-load fraction by using Algorithm [T} which approximates con-
denser fan mass flow rate by assuming a constant approach temperature equal to design
conditions. This algorithm decreases the condenser air flow rate when the predicted
condenser pressure is greater than minimum pressure. The air mass flow rate returned
by this algorithm impacts the condenser parasitic fan power, which influences net cycle

320 efﬁciency.

2.1.3. Feedwater Heaters and Pumps
To model the six closed feedwater heaters (shown in Figure , we assume that the de-
sign drain cooler temperature difference remains constant during off-design operation and
neglect any heat losses to the surroundings. With these assumptions, the outlet condition
s of the extraction drain is known and feedwater outlet temperature can be determined
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Algorithm 1 Air-Cooled Condenser Part-load Air Mass Flow Rate

1: function ACC_PL_AIR("qir.n, ATh.n, Pe.min, Tab, Mace,prs @rej)

2 Cair := Cp(Alr, T = Ty) > Specific heat function call
3 for i =1,...,nacc,p. do > Turn off fan bays
4 face,pr =1 — (i — 1) /Nace pL > Part-load fraction
5: Mair = Mair,p * facc,pL > Mass flow rate through condenser
6 ATy = Qrej [ (Meairp * Cair) > Estimate air temperature increase
7 T, :=Tg + ATy p + AT, > Estimate condenser temperature
8 P, := P,y (Steam TAPWS, T = T,) > Estimate saturation pressure
9: if P, > P, pin then
10: Break
11: end if
12: end for
13: return 1mg;, > Return air mass flow rate

14: end function

using an energy balance equation. Under normal operating conditions, feedwater heater
performance has a small impact on overall cycle efficiency; however, removing a feedwater
heater from service can impact cycle efficiency greatly [3].

Pressure drop through feedwater heaters is handled by Equation [22):

AP = kin?, (10)

30 where AP is the difference between inlet and outlet pressures, k is a proportionality con-
stant, and 7 is the mass flow rate through the heat exchanger. For off-design conditions,
we assume that the heat exchanger pressure drop varies with the square of mass flow
rate.

To model the feedwater and boiler re-circulation pumps, we assume a design isentropic

15 efficiency of 70 %. We adjust pump efficiency as a function of the ratio between part
load and design mass flow rates using Equation 22].

. Lo\ 2
Mp 3 m m
—— =04+2(1-8)—-(1-p () 11
- (-ma-—a-p (=) . (11)
where 7, is the pump isentropic efficiency, 3 is a shape factor parameter, 1 is the mass
flow rate, and the subscript D refers to design conditions. For (E), we assume that the
shape factor parameter 3 is equal to zero.

uo  2.1.4. Molten Salt-to-Steam Heat FExchangers
Figure [2] depicts the molten salt-to-steam heat exchanger train in the upper left.
Commercial-scale projects have multiple, parallel trains to reduce the size of an individual
heat exchanger, typically in the form of a counterflow shell-and-tube. The molten salt
enters the salt-to-steam train at about 565 °C, where the flow is split into two, one
us  directed to the superheater and the other directed to the reheater. This division of flow
can either be constant or vary with cycle load. We utilize the former assuming the flow
is split 50/50; the latter can be governed by the heat exchanger’s thermal loads and an
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Table 2: Design overall heat transfer coefficients (UAp) and flow arrangements for the salt-to-steam heat
exchangers within the steam generation system.

Heat Exchanger | UA, [kW/K] | Flow Arrangement
Preheater 2,672 Shell and Tube (One Shell Pass)
Boiler 5,270 Phase Change
Superheater 1,405 Counterflow
Reheater 667 Counterflow

equal exit temperature condition. After exiting the superheater and reheater, the two
molten salt flows merge and progress through the boiler and preheater, where flow exits

0 the steam generator at approximately 290 °C. At design conditions, the target turbine
inlet temperature of both the HPT and IPT sections is 540 °C.

To model the salt-to-steam heat exchanger train, we utilize the effectiveness-NTU
method to predict water and salt outlet temperatures at partial flow conditions [23].
Tablecontains the design overall heat transfer coefficients (UA) and flow arrangements

5 we implement to model the steam generation system. Heat loss to the surroundings is
neglected for all heat exchangers in the salt-to-steam train. For partial flow conditions,
we adjust the design overall heat transfer coeflicients using Equation [24].

UA gt s 4 -
UA, ~ dSils | mgs D
where UA is the overall heat transfer coefficient, i is mass flow rate, the subscripts ~ and
c refer to the hot and cold side of the heat exchanger, respectively, and the subscript D
w0 refers to the nominal design value. We model pressure drop through the heat exchangers
in the salt-to-steam train using Equation .

Using the effectiveness-NTU method, we solve for the exit temperatures of the molten
salt and water for the preheater, superheater, and reheater. In addition to a shell-and-
tube salt-to-steam heat exchanger, the boiler system consists of a steam drum and a

s re-circulation pump; this configuration ensures saturated vapor at the steam drum outlet
for all partial flow conditions that we investigate. For the boiler system, we calculate the
steam flow rate for the given feedwater inlet and outlet conditions, salt flow rate, and
salt inlet temperature.

2.1.5. Sliding and Constant Pressure Operation

370 For both sliding and constant pressure operation, Equation estimates “desired”
steam pressure after the HPT governing stage, starting with the condenser pressure and
working backwards through each turbine with respect to inlet pressure. For sliding pres-
sure operation, boiler pressure is estimated using an assumed constant 4 % pressure drop
across the HPT stop-and-control valves and the pressure drop through the superheater.

s As load decreases, boiler pressure decreases, which results in a decrease in molten salt
preheater outlet temperature. If the boiler pressure continues to slide, the molten salt
outlet temperature can start to crystallize (at 238 °C [25]). To address this, the boiler
pressure is allowed to decrease to a point, after which it is held constant. We assume
this point occurs at 80 bar, which is about 60 % power output.
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380 For constant pressure operation, the boiler remains at a pressure of 125 bar and the
steam is throttled to the “desired” steam pressure at the HPT governing stage outlet.
Henceforth, we denote off-design performance cycle models (R) and (E) pertaining to
sliding and constant boiler pressure operation, using superscripts s and c, respectively.

2.2. Validation and Error Analysis of model (E)

385 To validate (E), we compare relative heat rate, HR, (for sliding pressure operation)
predicted by (E®) against data provided by our industry partner, hereafter referred to
as (D), for varying load fractions and normalized ambient temperatures (see Figure [5)).
Relative heat rate is defined as the ratio of heat rate at an off-design condition and design
heat rate, which is equivalent to the ratio design gross cycle efficiency and off-design gross

s cycle efficiency (shown in Equation ); partial load fraction is defined as the ratio of
cycle gross electric output at an off-design condition and the gross design electric output
(shown in Equation ([14))).

==  HRp Mg,p
R = = . 13
HR, Tlg,pL ( )
W, PL
fo = Yo, (14)
T W

In other words, a relative heat rate of 1.1 at a load fraction of 0.5 corresponds to the
cycle requiring 10 % more heat per unit of power compared to design-point conditions,
55 when producing 50 % of design output. Our analysis calculates relative heat rate using
gross cycle efficiencies to effect results agnostic to the heat rejection system parasitic
power requirements.
Figure [5[ presents relative heat rate data (D) shown as symbols; predictions from
(E®) for relative heat rate are represented by lines of the corresponding color. (E®)
w0 adequately predicts cycle performance for the range of load fraction and the various
normalized ambient temperatures provided in the data. Figure [5|shows that, as ambient
temperature decreases, relative heat rate at full load conditions (i.e., partial load fraction
equal to 1) decreases, resulting in an increase in cycle efficiencies. Likewise, at ambient
temperatures below design conditions, the part-load adverse effects, represented by the
w5 derivative of the curve, decrease, resulting in more favorable operation conditions at
partial load fractions. However, (E®) systematically underpredicts relative heat rate at
partial load fractions above 0.5 and overpredicts at low partial load fractions.
Figure [6] depicts the relative heat rate error, defined as (D) less (E*) (shown in Equa-
tion ), as a function of partial load fraction for various normalized ambient temper-
a0 atures. The largest error is -0.0212 and occurs at low normalized ambient temperature
(0.912) and low partial load fraction (0.3), which corresponds to a relative error of 2.08 %.
With respect to (D), (E®) predicts relative heat rate with a root mean squared error of
8.59 x 102 and a mean absolute error of 7.30 x 10~3. The error occurring at Tt = 1.0
and fp, = 0.9 appears to be the result of an outlier in the provided dataset (D) depicted
a5 in Figure 5} In summary, (E®) produces a small degree of error compared to (D) and
appears to adequately represent off-design performance for a molten salt-driven Rankine
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Figure 5: Relative heat rate (for sliding pressure operation) as a function of partial load fraction and var-
ious normalized ambient temperatures. Industry data (D) is represented by symbols and the prediction
of the (E®) model is represented by lines of the corresponding color.

cycle operating with sliding boiler pressure and using an air-cooled condenser for heat
rejection.

Relative Heat Rate Error = HR(p) — HR(g-) (15)

Lacking cycle performance data for constant pressure operation from our industry

w20 partners, to validate the cycle performance predictions for (E¢), we compare its rela-

tive heat rate curve to that given by an open-source script that implements the SCC

method in MATLAB® [26], shown in Figure Utilizing the design heat balance, we

provide Cicala’s [26] model with the appropriate SCC method assumptions for our cycle

configuration, that is, turbine type, pitch diameter, and LPT last-stage annulus area.

w5 For condenser pressure, we provide Cicala’s model with predictions given by (E€) of

condenser saturation temperatures for design and minimum throttle flow conditions, for
which Cicala’s model assumes a linear relationship under partial load.

Figure [7| demonstrates that the heat rate predicted by (E€) is in close agreement with

that predicted by Cicala’s model. However, the prediction given by (E¢) deviates from

a0 those of Cicala’s model conservatively at low partial load fractions. The two models’

relative heat rate predictions are within 1 % of each other at our assumed lowest partial

load fraction (30 % load). Based on this comparison, the estimate given by (E®) for
relative heat rate closely matches the results given by Cicala’s model.
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Figure 6: Relative heat rate error, defined as (D) less (E®), as a function of partial load fraction for
various normalized ambient temperatures.

2.8. Significance of Partial Load Efficiency

435 We demonstrate the significance of steam turbine and generator efficiency assump-
tions by comparing cycle relative heat rate curves under various assumptions and with
different methods. Using (E€), we predict relative heat rate curves using: (i) the SCC
method for both the turbine and generator efficiencies, (ii) constant turbine efficiency
and using the SCC method for generator efficiency (losses), and (iii) constant turbine and

wo  generator efficiencies. For the constant efficiency cases, we calculate the HPT, IPT/LPT,
and generator efficiencies for (E¢) using the SCC method, under fixed design flow and
ambient temperature conditions, as 85.7 %, 89.7 %, and 98.3 %, respectively.

Figure [§ depicts the relative heat rate curves under various assumptions used to pre-

dict turbine and generator efficiencies at partial load. As expected, there is a significant

ws  deviation between relative heat rate curves using the SCC method and constant efficiency

assumptions. The implications of this deviation could result in an under estimation of

molten salt consumption as the Rankine cycle ramps to full load, which would result in
less electricity generation, and correspondingly, less plant revenue.

3. Integration of (E) into SAM and Case Study

450 The User Defined Power Cycle option integrates the calculated cycle performance of
(E) into SAM. For user-defined cycles, SAM employs a design-of-experiments technique
to capture the main and interaction effects of molten salt mass flow rate, molten salt tem-
perature, and ambient temperature on cycle thermal input, cycle gross electrical output,
electrical power consumption for cooling, and cooling water flow rate. Implementation of
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Figure 7: Comparison of Cicala’s model and (E€) predicted relative heat rates as a function of partial
load fraction for constant boiler pressure operation at design ambient temperature.

Table 3: Low, design, and high parameter values used to generate cycle performance maps of (E) for

SAM.
Parameter ‘ Units ‘ Low ‘ Design ‘ High
Molten Salt Temperature | °C 550 565 580
Normalized Molten Salt Mass Flow Rate - 0.30 1.00 1.05
Ambient Temperature | °C 15 43 55

s a user-defined cycle is described in detail within SAM’s help documentation [27]. Table
presents low, design, and high parameter values used to generate cycle performance
maps of (E) for SAM. Additionally, we assume that the air-cooled condenser system of
(E) consumes 4.0 % gross power at design conditions.

3.1. Annual Simulations Utilizing Dispatch Optimization

460 To investigate the impact of off-design cycle performance on system economics, we
employ work that integrates SAM’s simulation core with dispatch optimization. Our
software framework, shown in Figure [ enables us to utilize dispatch optimization to
evaluate the performance and economics of CSP-only, CSP-PV (photovoltaic) hybrids,
and CSP-PV with battery storage designs. Our dispatch optimization model determines

w5 the operating schedule of each sub-system in the design to maximize revenue over the time
horizon. Our annual simulation and dispatch optimization is capable of evaluating system
performance at hourly and sub-hourly time fidelity. Wagner et al.| [I7] and [Hamilton et al.
[19] provide a detailed description of the software framework and a complete formulation
of the dispatch optimization model.

470 Within our dispatch optimization model, we penalize system operations using esti-
mated maintenance costs incurred from said operations. For the power cycle, the dispatch
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Figure 8: Cycle relative heat rate as a function of partial load fraction at design ambient temperature,
under various assumptions used to predict turbine and generator efficiencies.

optimization model penalizes operating power output, changing power output between
time periods (ramping), and starting the cycle from an off state. Due to the limited solar
resource and depending on the design, CSP systems are unable to operate at full load
a5 through the night. Therefore, the tradeoff lies in (i) operating at partial load through
the night at the cost of lower cycle efficiency and increased hours of operation, or (ii)
operating at full load until thermal energy storage is depleted, shutting the cycle down,
and starting up when solar resource is available. Power cycle part-load efficiency impacts
this decision by dictating the solar-to-electric conversion, which directly influences the
w0 return on investment of the system.

3.2. Case Study

This case study examines the impact of cycle off-design performance on optimal dis-
patch and its influence on system design, performance, and economics. We choose Rice,
California, referred to hereafter as “Rice,” and use the plant’s location and typical me-

s teorological year weather data at hourly time fidelity. This abandoned township has
been explored as a potential location for a CSP system [I8] because of suitable solar
resource levels, proximity to grid transmission and interconnection points, and accessi-
bility, among other factors. However, at the time of this writing, the authors are not
aware of any active CSP project development at Rice.

490 To be consistent with the geographic location of Rice, we choose the Southern Cali-
fornia Edison 2015 pricing schedule as the electricity market against which to dispatch
power. This electricity market has hourly prices differentiated by weekday, weekend, and
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Figure 9: Flow diagram of the software architecture implemented around the hybrid dispatch optimiza-
tion model.

Table 4: Low and high system design parameter values and the corresponding sampling interval used to
generate a uniform mesh of system designs.

Design Parameter ‘ Units ‘ Low ‘ High ‘ Interval
Solar Multiple - 0.50 | 3.50 0.25
Hours of Thermal Storage Hours 4 16 2
PV Field Capacity MWy 0 225 25
DC-to-AC Ratio | MW,/ MW, | 1.0 1.3 0.1

season, with the highest-value time periods occurring between the hours of 2 and 8 p.m.
on weekdays during the months of June through September.

205 For the CSP system design, we utilize a 163 MW, gross output air-cooled Rankine
cycle with a design ambient temperature of 43 °C, a gross cycle efficiency of 41.2 %, and
the ability to operate between 30 and 105 % of partial load fraction, the latter of which
is based on turbine vendor specifications for acceptable operating limits. To understand
the impact of cycle performance on system design, we construct case studies by using

s a full-factorial design of experiments with the parameters listed in Table [4] between the
low and high ranges at specified intervals; this results in 3,640 instances. Each design
case is evaluated under the following assumptions: (i) the combined power output is
grid-limited to 165 MW,, (ii) the PV sub-system possesses single-axis tracking with zero
tilt, and (iii) the system contains no electric battery storage. Given the solar resource

ss at Rice and the solar multiple, SolarPILOT [28] generates the CSP heliostat field layout
and receiver design parameters, such as tower height, receiver height and diameter.

In addition to off-design performance cycle models (R) and (E), we include a constant
efficiency model to which we refer as (C). We assume that (C) operates at design-point
efficiency for all combinations of partial loads and ambient temperature conditions. We

si0  compare the behavior of (R) and (E) to that of the baseline case with no cycle efficiency
degradation, given by (C).
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Figure 10: Comparison of the predicted relative heat rate curves for (R) and (E) as a function of partial
load fraction, using (a) sliding: (R®) and (E®), and (b) constant: (R¢) and (E€) boiler pressure operation
for high, design, and low condenser pressures.

4. Results

The dispatch optimization model is written in the AMPL modeling language version

20210630 [29] and solved using CPLEX version 12.8 [30]. Hardware architecture to

sis  generate solutions consists of a SuperServer 1028GR-TR server with an Intel Xeon E5-

2620 v4s at 2.1 GHz, running Ubuntu 16.04 with 128 GB of RAM, 1x250 GB SSD, and
3%x500 GB SSDs hard drives.

4.1. Cycle Performance Comparison Between (R) and (E)

Figure 10| depicts a comparison of the relative heat rate curves of (R) and (E) as a

s0 function of partial load fraction, using sliding (Figure and constant (Figure

boiler pressure operation for high, design, and low condenser pressures. We evaluate the

relative heat rate relationships of (R) and (E) using design molten salt inlet temperature,

values of normalized molten salt mass flow rates between 0.3 and 1.05, and constant

condenser pressures of 0.2, 0.08, and 0.036 bar, corresponding to high, design, and low

s condenser pressure, respectively. For (R), we employ the look-up performance tables,

used by SAM for sliding and constant pressure operation, to evaluate its relative heat
rate curves for the given condenser pressures [21].

Figure shows that (R®) and (E®) are in close agreement with each other in both

magnitude and rate-of-change at high and design condenser pressures. The differences

s between the relative heat rates of (R®) and (E®) diverge for the low condenser pressures

which, at a partial load fraction of about 0.3, renders the relative heat rate of (R®) 0.12

greater than that of (E®). In addition, as partial load fraction increases to 1, the relative

heat rate curve of (E®) at low condenser pressure converges to design values, wheres that

of (R®) continues to decrease to a value below 1. The described behavior observed from

s3 our model, (E®), is due to choked flow limits at the LPT exit, resulting in a decrease

in enthalpy drop across the LPT and an increase in exhaust losses; see [Spencer et al.

[4] for more details. At design condenser pressure, (R®) provides a more conservative

relative heat rate curve compared to (E®). However, the relative heat rate of (R®) at low
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condenser pressure either overpredicts cycle performance, when partial load fraction is
s greater than 0.75, or underpredicts cycle performance compared to (E®).

Figure shows that (R¢) and (E®) are in agreement at full-load condition; that is,
partial load fraction equals 1 at high and design condenser pressures. However, (R®) and
(E°) diverge significantly as partial load fraction is reduced and at low condenser pres-
sures. (R¢) estimates a better (lower) relative heat rate curve compared to (R®). Sliding

sss  operation results in higher cycle efficiencies compared to constant operation, as expected
based on the descriptions of the two operating strategies in Section Therefore, we
conclude that the (R®) relative heat rate curve estimates are an unrealistically optimistic
representation of cycle performance at part-load operations. While sliding and constant
boiler pressure operation are both available within SAM, the default is constant pressure,
0 consistent with that in (R).

4.2. Impact on Annual Performance for a CSP-only System

We first simulate annual performance for a CSP-only system (that is, without hy-
bridized photovoltaics) using each of the five power cycle models previously discussed
- (Q), (R*), (E®), (R), and (E€). The simulations consider all possible design configu-

sss  rations, and optimize dispatch according to the characteristics of each cycle. Next, we
select for further analysis the CSP-only design corresponding to the lowest power pur-
chase agreement (PPA) price. In this case, the design includes a solar multiple of 2.5
and 10 hours of TES.

Power purchase agreement price is a financial metric that accounts for both the

so amount of energy the system produces and the time at which production occurs, through
the use of time-of-delivery factors. This metric represents the price at which a project
can sell electricity to achieve the project’s internal rate of return at the end of the de-
sired horizon, and is calculated using SAM’s financial models [I5] with a default target
internal rate of return of 11 % occurring in year 20 of the project with a 1 % PPA price

ses  escalation per year [31], 32].

Figure [11] depicts the annual percentage of time the power cycle spends in a thermal
input range for a CSP-only system using the five off-design performance cycle models.
From Figure[L1] (R*), (E), and (E®) primarily operate at either a full-load or at an “off”
state, which accounts for 35-45 % and 20-30 % of annual operation, respectively. (R¢)

s dispatches in a fashion similar to (C), that is, it spends more time in the low power state
(90,120] than in the “off” state. (C) and (R®) spend only about 8 % of the year in an
“oft” state, which is 3-4 times less than the other cycle models. The reverse is true for
the low power state, in which (R¢) and (C) operate about three to six times more often
in the low power state compared to the other cycle models.

575 Table [5] presents annual performance metrics for the five different off-design cycle
models of the CSP-only system with a solar multiple of 2.5 and 10 hours of TES, and
contains the following annual performance metrics: capacity factor, number of cycle
starts, cycle ramp index, reliability (10 %, 25 %, and 50 %), and simulation time. We
describe each of these in turn. The value “A” represents the percentage change between

so0  (E) and (R) utilizing the same boiler pressure operation (sliding or constant); see Equation

(L6)-

(%) - (R*")

(Re/<)
21
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Figure 11: Annual percentage of time the power cycle spends in a thermal input range for a CSP-only
system using the five off-design performance cycle models. The [0,30] range only contains values of 0
MW, thermal input, corresponding to the cycle being in an “off” state. [solar multiple (SM), hours of
storage (HoS), photovoltaic field capacity (PV Cap), DC-to-AC ratio (DC/AC)]

Table 5: Comparison between annual performance metrics using the various off-design cycle models for a
CSP-only system comprised of a solar multiple of 2.5 and 10 hours of TES. Annual performance metrics
shown are: capacity factor, number of cycle starts, cycle ramp index, reliability (10 %, 25 %, and 50 %),
and simulation time. The value “A” represents the percentage change between (E) and (R) utilizing the
same boiler pressure operation (sliding or constant).

Capacity Cycle Cycle Reliability Simulation
Cycle Factor Starts | Ramp | 10 % | 25 % | 50 % Time
Model (%] [l (%] (7] (7] (%] [min ]
() 55.80 57 68.5 94.85 | 90.93 | 83.25 8.53
(R®) 56.33 139 97.6 96.48 | 93.47 | 88.61 14.27
(E%) 58.15 88 91.3 97.02 | 93.68 | 84.32 13.47
A [%) +3.23 -36.69 -6.45 +0.56 | +0.22 | -4.84 -5.61
(R%) 56.93 46 90.8 95.53 | 91.91 | 81.92 9.35
(E9) 57.72 204 92.1 97.28 | 93.85 | 89.15 17.50
A [%] +1.39 +343.48 | +1.43 | +1.83 | +2.11 | +8.83 +87.17

Capacity factor is the ratio of annual energy generation and the maximum possible
energy generation, which is calculated using a grid transmission limit of 165 MW, as the
maximum system output; see Equation . Due to a constant solar field design and

ss  solar resource, the five cases result in the same solar energy collection. Therefore, the
capacity factor in Table [5| provides a direct comparison of solar-to-electric conversion.
Table [5| shows that both (R) and (E) result in a higher capacity factor than (C) because
(R) and (E) yield higher cycle efficiencies than does (C) at ambient temperatures below
design conditions. CSP power cycles are typically designed for the 95 % highest ambient
s0 temperatures of the location to ensure that they can meet their rated power during high
ambient temperature conditions. As a result, their full-load performance increases during
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lower-than-design ambient temperatures. For sliding pressure operation, (Ef) results
in a higher capacity factor than (R®) due to the performance of (E®) at low ambient
temperature compared to that of (R®), shown in Figure For constant pressure

sos operation, the difference between the capacity factors of (R°) and (E¢) is smaller and is
a result of more frequent operationfor (R®) at low power output to avoid cycle start-ups,
shown in Figure

Net Annual Energy [MWh/yr]
System Transmission Limit [MW] x 8,760 [hr/yr]

Cycle starts represents the number of start-up operations the power cycle undergoes

throughout the year, regardless of whether the start up is “cold,” “warm,” or “hot”

oo (where most of the cycle starts would be considered “hot” or “warm”). The Cycle ramp

index corresponds to the average percentage of rated power ramp per day, for example,

100 % represents a cycle that goes from a no generation state, to full power, and back to

no generation every day; see Equation . For sliding pressure operation, (E®) results

in a 37 % reduction in cycle starts compared to (R?®). This behavior is due to the lower

s relative heat rate of (E®) compared to that of (R®) at low condenser pressure and low

partial load fraction (shown in Figure [10a). (R®) results in the lowest number of cycle

starts, while (E€) results in the highest, which is 343 % more than (R°). This difference

is due to under-accounting in (R¢) of performance degradation at lower power output

(shown in Figure 7 which results in behavior similar to that of (C), that is, a low

e0  number of cycle starts. Sliding pressure operation results in higher partial load cycle

efficiency compared to constant pressure. As a result, (E®) operates more frequently at

low load than does (E€), which reduces the number of cycle starts by about a factor of
two.

Capacity Factor = (17)

2 Wy — Wi
2. chcle

Reliability at x % is defined as the system’s capacity factor for the x % highest-valued

615 time periods; see Equation . For example, during the year’s 10 % highest-valued hours

(876 hours), (C) generates 94.85 % of the maximum possible energy, that is, the product

of the grid transmission limit of 165 MW, and the number of high-valued time periods.

Reliability at several different thresholds yields insight on how the system configuration

is able to provide power during high-value time periods. (R®) and (E®) result in similar

s0 10 % and 25 % reliabilities, but differ in 50 % reliability because (E®) avoids cycle starts

by operating at partial load more often than does (R?); this behavior is a result of the

lower partial load heat rate in (E®) compared to (R®). Table [5| shows that (E€) results

in higher 10 %, 25 %, and 50 % reliabilities compared to (R¢), because: (i) the cycle

performance of (E€) is slightly higher than that of (R¢) at full-load operation; and (ii)

o (R) operates at low load more often than does (E®) to avoid cycle starts, but at the cost
of forgoing high-valued time periods.

N Wnet
Reliability at % = =47 (19)
max |7; |

Stmulation time is the wall clock time between when the simulation starts and ends,
and includes the time to design the heliostat field and simulate the power cycle using
23
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dispatch optimization and updating the simulation schedule every day [I7]. Table

60 provides simulation times for all the cycle models, and shows that the computational
expense required for (C) and (R¢) is about 70 % less than for the others because of the
more pronounced trade-offs between cycle start-up and low load operation in the dispatch
optimization runs.

4.8. Impact on Annual Performance for a CSP-PV Hybrid System

635 To investigate cycle dispatch behavior for a CSP-PV hybrid system, we select a hybrid
design that corresponds to the lowest PPA price across all cycle models, that is, a CSP
system with a solar multiple of 1.25, 8 hours of TES, and a 225 MW PV system with a
1.3 DC-to-AC ratio. However, the hybrid system configuration corresponding to “lowest
PPA” design varies depending on the cycle model implemented (see .

640 The histogram in Figure[I2]depicts the annual percentage of time that the power cycle
spends in a thermal input range for a CSP-PV hybrid system using the five off-design
performance cycle models, and shows that the system exhibits a large decrease in full
power operation as a result of the solar multiple being half that of the CSP-only design
(compare with Figure . Over the year, the power cycle is in an “off” state a majority

ws of the time (approximately 40 to 63 %). As a result, the power cycle operates at full
load for 10 to 18 % of the year, compared to the 35 to 46 % seen in the CSP-only case.
Like the CSP-only case, (C) and (R¢) favor low power output over cycle shutdown and
start-up because they are overly optimistic regarding part-load efficiency performance.

SM: 1.25[-], HoS: 8.0[hr], PV Cap: 225.0[MWdc], DC/AC: 1.3[-]

mm (C)

60 CSP-PV Hybrid System (RS)
e (E°)

50 == (R)
mm (E9)

£
=]

w
(=]

N
(=]

=
o

Annual Percentage of Operating Time [%]
o

Power Cycle Thermal Input [MW;]

Figure 12: Annual percentage of time the power cycle spends in a thermal input range for a CSP-PV
hybrid system using the five off-design performance cycle models. The [0, 30] range only contains values
of 0 MW, thermal input, corresponding to the cycle being in an “off” state. [solar multiple (SM), hours
of storage (HoS), photovoltaic field capacity (PV Cap), DC-to-AC ratio (DC/AC)]

Table [6] presents annual performance metrics for the five different off-design cycle
eo performance models of the CSP-PV hybrid system with lowest PPA price design. In
addition to the annual performance metrics presented in Table[5]for the CSP-only system,
Table [] contains the percentage of CSP and PV curtailment.
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Table 6: Comparison between annual performance metrics using the various off-design cycle models for a
CSP-PV hybrid system comprised of a solar multiple of 1.25, 8 hours of TES, and 225 MWy PV system
with a DC-to-AC ratio of 1.3. Annual performance metrics shown are: capacity factor, number of cycle
starts, cycle ramp index, percentage of CSP curtailment, percentage of PV curtailment, reliability (10 %,
25 %, and 50 %), and simulation time. We also report “A,” which represents the percentage change
between (E) and (R) utilizing the same boiler pressure operation (sliding or constant).

Capacity Cycle Cycle Curtailment Reliabilit; Simulation
Cyecle Factor Starts Ramp CSsP PV 10% 25% 50% Time
Model (%] [-] (%] (%] [%] [%] (%] [%] [min.]
© 61.07 289 84.86 0.69 3.73 97.25 91.07 90.07 13.19
(R®) 62.46 337 98.25 1.30 1.52 97.79 94.24 92.17 16.86
(E®) 63.20 330 98.76 1.21 1.77 98.15 94.51 92.16 17.47
A [%] Fi.18 ~2.08 F0.52 -6.92 F16.45 F0.37 F0.29 20.01 +3.62
(R%) 61.91 288 98.57 0.68 3.34 97.26 92.19 90.89 14.24
(E€) 62.89 340 99.08 2.04 1.24 98.01 94.59 92.07 16.92
A (%] F1.58 F18.06 F0.52 $200.00 -62.87 F0.77 | +2.60 F1.30 F18.82

Table [6] shows that cycle models (C) and (R¢) perform similarly across all metrics;

likewise, there are small differences between cycle models (R®), (E®), and (E¢). (C) and

o5 (R°) result in fewer cycle starts than the other models because their cycles operate at

part-load more frequently due to the improper degradation of performance at partial

load outweighing the cost of a start-up event. Across all cycle models, hybridization of

PV with CSP results in at least a 170 % increase in the number of starts compared to the

CSP-only design. The (C) and (R¢) models exhibit more PV curtailment, about 3.5 %

wo of the annual PV generation, than CSP curtailment, about 0.7 % of the annual CSP

generation; this is because (C) and (R¢) more frequently operate at the minimum turn

down limit during days when the grid constraint is tight, resulting in PV curtailment

and fewer cycle starts. With the other cycle models, this trade-off yields in a cycle

shutdown during the solar hours, forcing thermal energy storage to reach capacity before

os  the solar day ends, i.e., CSP curtailment. Table [f]shows that (C) and (R®) possess lower
reliabilities and simulation times compared to the other models.

4.4. Implications on System Design

To investigate the effect that off-design cycle performance has on system design, we

determine the system design corresponding to the lowest PPA price for each level of
s PV system DC capacity, shown in Table [7] which presents the solar multiple and hours

of storage corresponding to the lowest PPA price design for two groups of off-design

performance cycle models, categorized by agreement in the design characteristics of solar

multiple and hours of storage. The first group consists of (C) and (R€), while the second

group consists of (R®), (E®*), and (E®). Table [7| shows that system design parameter
o5 DC-to-AC ratio has more variation between the cycle models.

Table [7] demonstrates that the two groups result in the same solar multiple and hours
of storage for a PV system DC capacity of 0, 25, 125, 175, and 200 MWy, leading us to
conclude that off-design performance has less impact on the lowest PPA design’s solar
multiple and hours of storage combination when the capacity of the PV system is smaller.

s The discrepancy between the resulting lowest PPA design configurations for off-design
cycle models leads to different “optimal” system designs.

We investigate, for the designs in Table [7] corresponding to the lowest-PPA-priced
systems, their resulting annual simulation metrics as a function of: (i) PV system DC
capacity, and (ii) the particular cycle performance model. Figure [13| depicts normalized

s PPA, capacity factor, annual cycle starts, and top 25 % reliability for the five power
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Table 7: Solar multiples, hours of storage, and DC-to-AC ratios corresponding to the lowest PPA price
for each DC capacity of the PV system. Model group 1 includes models {(C), (R¢)}; Model group 2
includes {(R?®), (E®), (E°)}.

Solar Multiple [ Hours of Storage DC-to-AC Ratio

Group 2 Group 1 Group 2 © T R JIL R T E) T ESH

10 10 N/A
10 10 1.3 1.1 1.2 1.1 1.0
50 10 il 1.2 1.3 1.2 1.2
75 10 1.1 1.2 1.2 1.2 1.1
100 1.2 1.0 1.1 1.2 1.2
125 1.2 1.2 1.2 1.3 1.2
150 1.2 1.2 1.3 1.3 1.3
175 1.3 1.3 1.3 1.3 1.2
200 1.3 1.3 1.3 1.2 1.3
225 1.3 1.2 1.3 1.3 1.3
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Figure 13: Normalized PPA, capacity factor, annual cycle starts, and top 25% reliability for the five
power cycle models at varying DC capacity of the PV system. Design for each data point corresponds
to lowest PPA price system.

cycle models. PPA prices are calculated using SAM’s default costs (Version 2018.11.11)

and are normalized using the lowest PPA price for the CSP-only case, which corresponds

to $107.21 /MWh, using the (E®) cycle model. For reference, the average commercial

prices of electricity in California and Nevada are about $154 /MWh, and $77 /MWh,,
oo respectively [33].

Figure[13|shows that PPA prices decrease as DC capacity of the PV system increases,
with about a 17 % decrease from 0 MWy, to 225 MW,.. At any given PV system
capacity, the variability in PPA price across the five off-design cycle models is small, with
a maximum range of 3.5 % occurring under a 0 MW, PV system condition. System

ss capacity factor depends greatly on design variable values. At a PV system DC capacity of
225 MWy, there is a drop in capacity factor due to the large reduction in solar multiple
and hours of storage (Table [7). This result occurs because the PV system capacity
is approaching the grid transmission capacity, resulting in the CSP system being shut
down during PV generation to reduce curtailment. Correspondingly, for all the off-
w0 design cycle models, there is a steep increase in the number of starts as the PV system’s
DC capacity approaches 225 MWy because the grid transmission capacity constraint
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requires the cycle to shut down during high-PV-generation time periods to mitigate PV
system curtailment. Of the four metrics shown in Figure annual cycle starts has the
greatest variability between the different power cycle models. Reliability for the 25 %

s highest-valued time periods is relatively constant for the five power cycle models, except
for (C) and (R€) at high PV system DC capacity.

5. Conclusions

We present a methodology to model a Rankine cycle with the fidelity to estimate off-
design performance. We implement said methodology into Engineering Equation Solver
7no and validate the results against data provided by our industry partners and a model
from literature that implements similar methodology. Then, we integrate the validated
model results into SAM utilizing the “user-defined” cycle option which enables us to
investigate the impact of off-design cycle performance on cycle operation, overall CSP
plant performance, and minimum PPA price system design. The primary contribution of
ns our work lies in investigating and understanding the Rankine cycle off-design performance
impact on optimized dispatch decisions and the propagation of those decisions into a CSP
system’s design, annual performance, and economics.
The results indicate that previous modeling of Rankine cycle off-design performance
is either too optimistic (constant boiler pressure) or conservative (sliding boiler pressure).
=0 The former causes unrealistic operation of the power cycle, such as an increased frequency
of partial load operation to avoid cycle starts, which can lead to sub-optimal system
designs. The latter results in lower solar-to-electric conversion, which negatively impacts
plant finances and PPA price. Future work will update SAM’s default Rankine cycle
models using estimates from (E) of off-design performance and will investigate power
s cycle transients at increasing time fidelity.

6. Appendix
Table 8: Units, acronyms, model names and notation.
Units
°C Degrees celsius
hr Hour
K Kelvin
kg Kilograms
kJ Kilojoules
kPa Kilopascals
kW Kilowatts
MW Megawatts
MW, Megawatts electric
MW, Megawatts thermal
MWh Megawatt hours
S Seconds
Acronyms
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CSP Concentrated solar power

EES Engineering Equation Solver

HPT High-pressure turbine

TAPWS International Association for the Properties of Water and Steam

IPT Intermediate-pressure turbine

LPT Low-pressure turbine

MILP Mixed integer linear program

NTU Number of transfer units

PPA Power purchase agreement

PV Photovoltaics

SAM System Advisory Model

SccC Spencer-Cotton-Cannon Method

SM Solar multiple

TES Thermal energy storage

Models

(©) Constant efficiency model

(D) Data provided by our industry partner

(E) Rankine cycle model capable of off-design performance calculations using EES

(E%) Off-design performance cycle model (E) pertaining to constant boiler pressure operation
(E®%) Off-design performance cycle model (E) pertaining to sliding boiler pressure operation
(R) SAM’s Rankine performance model

(R%) Off-design performance cycle model (R) pertaining to constant boiler pressure operation
(R%) Off-design performance cycle model (R) pertaining to sliding boiler pressure operation

Notation: Entire Parameters

ag,a1,ae  Coefficients for the constant, linear and quadratic terms, respectively,
on the expansion curve [kJ/kg-K], [1/K], [kg/kJ—Iﬂ
1) [-]

Coefficient for the (i, j) exponent pair (see Table
Specific heat [kJ/kg-K]

Fraction [-]

Specific enthalpy [kJ/kg]

Heat rate -]

Relative heat rate |-]

Initial temperature difference [K]
Proportionality constant [1/kg-m]
Mass flow rate [kg/s]

Number of [-]

Pressure [kPa]

Normalized condenser pressure [-]
Normalized heat rejection [-]

Rate of heat transfer kW]

Ideal gas constant for air [kJ/kg-K]
Specific entropy [kJ/kg-K]
Temperature [°C]

N ® m@.@%ﬁ:’ﬁﬁ g.wqm‘m?\nsg
g =l & ’
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Normalized temperature [-]

Subset of time periods which contains the z % of the highest-valued period [-]
Power kW]

Ticvele Cycle power [kW]

g.a\‘p ~»

15} Shape factor parameter -]

A Difference (between two quantities) []
n Efficiency [-]

o Density [kg/m3]

UA Overall heat transfer coefficient kW /m?2-K]
Notation: Subscripts and Superscripts
AC Alternating current

acc Air-cooled condenser

air Air

amb Ambient

c Cold fluid of the heat exchanger
D Design condition

db Dry bulb

DC Direct current

e Extraction (turbine)

fan Fan

g Gross electric

h Hot fluid of the heat exchanger
i Stage inlet

m Mechanical

max Maximum

min Minimum

net Net

0 Stage outlet

P Pump

PL Part-load

rej Rejection

S Isentropic

sat Saturated

t Thermal

Notation: Functions

Cp() EES’s specific heat function

Peot(+) EES’s saturation pressure function

s(+), §'(-) LPT expansion curve of entropy as a second-order polynomial of enthalpy
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