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Abstract 

This paper presents a model for improving off-design performance predictions for 
molten salt-driven Rankine power cycles, such as in concentrating solar power tower 
applications. The model predicts cycle off-design performance under various boundary 
conditions, including molten salt inlet temperature, mass flow rate, and ambient tem-
perature. The model is validated using industry performance data and benchmarked 
with results from the literature. A complete concentrating solar power plant, inclusive of 
solar heliostat field and receiver, is then considered, by implementing the Rankine cycle 
off-design performance results into the National Renewable Energy Laboratory’s System 
Advisor Model software, which includes a tool that determines optimal power produc-
tion schedules. The work improves upon the current System Advisor Model by updating 
off-design performance characteristics. A case study demonstrates the impact of cycle 
off-design behavior on annual performance for a stand-alone concentrating solar power 
system and a concentrating solar power-photovoltaic hybrid system. In addition, we 
demonstrate how cycle off-design performance influences optimal operator dispatch de-
cisions and, thereby, overall system design and economics. We conclude that off-design 
cycle performance impacts “optimal” sub-system sizing, especially for a concentrating 
solar power-photovoltaic hybrid configuration in which concentrating solar power must 
dispatch in conjunction with photovoltaic generation. 
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Figure 1: Molten salt power tower plant configuration. The system consists of a heliostat field, molten 
salt receiver, direct TES sub-system, a steam Rankine power generation cycle, and a heat rejection 
sub-system (Graphic © NREL/Al Hicks). 

1. Background 

Concentrating solar power (CSP) with thermal energy storage (TES) utilizes the solar 
thermal spectrum to generate, store, and dispatch heat to create on-demand electricity. 
Specifically, CSP power tower technology, depicted in Figure 1, consists of a field of 

5 heliostats that reflect sunlight to a central receiver where the flux concentration can 
be greater than 1,000 suns. Current utility-scale power tower systems employ liquid 
molten salt (60 % NaNO3 + 40 % KNO3), operating between 290 ◦C and 565 ◦C, to 
transport thermal energy away from the receiver. The heated molten salt can either 
be immediately used to generate electricity via a Rankine power cycle, for example, or 

10 be stored in an insulated tank for use at a later time. When electricity generation is 
desired, high temperature molten salt flows through a series of heat exchangers where 
water is transformed into superheated steam that expands through a turbine, driving an 
electric generator. Examples of operational power tower CSP plants with TES include 
Gemasolar in Spain, Crescent Dunes in the United States, Noor III in Morocco, and 

15 Shouhang Dunhuang in China [1]. (Table 8 in the appendix provides a complete list of 
units, acronyms, model names, and notation.) 
CSP systems with TES can dispatch renewable electricity to the grid when demand 

is the greatest. Due to TES, these systems have design flexibility that enables the 
decoupling of power output (power cycle rating) and energy capacity (hours of storage), 

20 but results in challenges when modeling system-level operations and annual performance. 
Specifically, CSP system generation is limited by its power cycle ramp rates due to 
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Figure 2: Molten salt-driven Rankine cycle with reheat, three turbine stages, and seven feedwater heaters, 
a sub-system in current commercial-scale CSP tower systems. 

thermal gradients. Like traditional power systems, CSP Rankine cycle response time 
is a function of turbine temperature, which depends on the cooling rate and time since 
last operational. One of the greatest losses in the conversion of solar-to-electric energy 

25 results from the power cycle inefficiency at design and part-load conditions. Therefore, 
inability to accurately capture cycle efficiency leads to poor assessment of the value that 
a CSP system provides to the grid. 
Figure 2 depicts a schematic of a prototypical power cycle in a CSP plant that employs 

a subcritical reheat regenerative Rankine cycle with seven feedwater heaters and a molten 
30 salt-to-steam heat exchanger train. Superheated steam leaving the salt-to-steam train 
expands through a high-pressure turbine (HPT), is reheated, and expands through the 
intermediate pressure turbine (IPT) and low pressure turbine (LPT), after which it is 
condensed into feedwater, and is pumped back to the salt-to-steam train. To improve 
efficiency, a small amount of steam is extracted at discrete locations during the turbine 

35 expansion to pre-heat the feedwater before the molten salt heat input. The individual 
components that constitute a Rankine cycle are sized to produce the highest efficiency 
when operating at design conditions, or design-point efficiency. 
Balancing electricity supply to meet demand becomes an ever-increasing challenge as 

penetration levels of intermittent renewable energy, such as wind and solar, increase. To 
40 achieve high renewable-energy grid penetration requires either: (i) over-generation and, 
consequently, curtailment, (ii) integration of highly flexible generators, or (iii) adoption 
of energy storage technologies [2]. The objectives of our work are to: (i) understand 
molten salt-driven Rankine cycle performance for the two primary control strategies, (ii) 
evaluate optimal operational interactions between the Rankine cycle and solar collection 

45 under varying off-design performance assumptions, and (iii) explore and quantify off-
design cycle performance impact on CSP power tower system design. 
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1.1. Rankine cycle part-load operation 
CSP with TES systems are capable of producing electrical energy at a rate that is 

only loosely coupled with the solar energy collection process. Several factors can influ-
50 ence the selected power generation level, including TES state of charge, anticipated solar 
collection, power cycle startup and ramping specifications, and external factors such as 
current electricity market price. Furthermore, power cycle performance is altered as 
operating conditions deviate from their design-point values. Cycle thermodynamic effi-
ciency, for example, is significantly reduced under part-load mass flow and/or reduced 

55 hot-side temperature conditions, or during elevated ambient temperatures. When con-
ditions simultaneously depart from design, cycle performance cannot be expressed as a 
sum of independent effects; rather, detailed first-principles thermodynamics models are 
required to predict cycle performance, which is particularly important for CSP, where 
off-design operation can represent a significant fraction of operating hours. 

60 In molten salt-driven Rankine cycles, one means by which electric power output 
can be reduced is by decreasing the salt mass flow rate, thereby reducing cycle heat 
input and the rate of steam generation in the salt-to-steam heat exchanger train. When 
steam mass flow rate is reduced and the turbine maintains fixed shaft speed, the turbine 
inlet pressure tends to decrease (resulting in a reduction of available energy in the steam 

65 turbines). Two options are available for managing boiler pressure under these conditions: 
the cycle’s pumps can either (i) produce feedwater at the reduced pressure, or (ii) produce 
full-pressure feedwater in conjunction with a throttling valve at the turbine inlet. These 
two methods are referred to as sliding and constant pressure operations, respectively. 
The advantage of the constant pressure operation is that the boiler does not expe-

70 rience pressure changes during part-load operation, which can reduce transient stresses 
during load changes; however, work is lost due the throttling process in the turbine con-
trol valves. Under sliding pressure operation, boiler pressure varies depending on cycle 
load; consequently, turbine control valves remain fully open, regardless of part-load op-
eration, which mitigates irreversibilities from throttling. As the cycle power is reduced 

75 from design to part-load operations, the pressure rise requirements for the feedwater 
pumps are reduced and, consequently, pump work is decreased. Sliding pressure opera-
tion typically results in higher cycle thermal efficiencies at part-load than the constant 
pressure operation due to the reduced pump work and valve throttling irreversibilities. 
The main disadvantage of sliding pressure is a longer response time to load changes be-

80 cause the transients associated with boiler pressure are slower than the actuation of the 
control valves [3]. 

1.2. Related work 
Overall cycle performance is primarily a function of individual component perfor-

mance and cycle classification (sub-critical, supercritical, reheat, or regenerative). One 
85 of the largest uncertainties in predicting the part-load performance of steam turbines 
is properly evaluating the change in isentropic efficiency of the device. The standard 
methodology to model steam turbine off-design performance, in the absence of specific 
manufacturer test data, is the Spencer-Cotton-Cannon (SCC) method [4]. Spencer et al., 
which is a conservative approach in that actual turbine performance is approximately 2 % 

90 higher than calculated values predict [3]. 
The SCC method, in combination with Stodola’s ellipse method [5, 6], has been 

used to model steam turbine performance with limited knowledge about turbine design 
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specifics. For example, Woudstra et al. [7] analyze the thermodynamic performance of a 
combined cycle utilizing Cycle-Temp, a power cycle modeling computer program which 

95 evaluates steam turbine performance. Chacartegui et al. [8] model and validate the per-
formance of a 565 MW fossil fuel steam power plant to predict off-design performance of 
large steam turbines. For CSP applications, Marugán-Cruz et al. [9] conduct a parametric 
analysis of a direct steam generation linear Fresnel CSP plant. The authors implement 
turbine sliding pressure control and off-design cycle performance. McTigue et al. [10] 

100 model a double-flash geothermal power plant hybridized with a CSP field through the 
use of IPSEpro, employing Stodola’s ellipse method to capture off-design behavior of 
the steam turbines. Brodrick et al. [11] use nonlinear optimization to determine an 
operational strategy for an integrated solar combined cycle and evaluate efficiency cor-
rections for the steam turbine during part-load operations under varying solar resource 

105 and electricity prices. Based on literature, the SCC and Stodola’s ellipse methods are 
implemented to model off-design turbine performance. 
Researchers have developed models to determine optimal scheduling of system oper-

ations with and without off-design performance. Castronuovo and Lopes [12] propose an 
optimization model discretized at hourly fidelity to determine the optimum daily oper-

110 ational decisions for a wind farm with pumped hydro storage. However, no off-design 
performance is considered within the optimization model. Bischi et al. [13] develop a 
mixed-integer linear program to make short-term decisions for the operations of a com-
bined cooling, heat and power energy system. The authors convert nonlinear off-design 
performance curves to piece-wise linear approximations and compare solution quality for 

115 varying piece-wise intervals. However, this work lacks a comparison between operational 
decisions using different performance curves. Zhou et al. [14] investigate the impacts of 
component off-design performance on the optimal design of combined cooling, heating, 
and power systems. The authors develop two optimization models that determine the 
design and operation of a combined cooling, heating, and power system: (i) assuming 

120 constant efficiency and (ii) considering equipment off-design performance. Their results 
indicate, for the given case study, that assuming constant efficiency provides a solution 
within 5% of a model that considers off-design performance. However, the system design 
is composed of discrete decisions regarding the number of a single type of equipment to 
acquire, which limits the design space. 

125 Based on the literature, there exist methodologies to model Rankine cycle off-design 
performance; however, the impact of off-design performance on dispatch scheduling and 
design configuration of a CSP system is not well known. The primary contribution of our 
work lies in investigating and understanding the Rankine cycle off-design performance 
impact on optimized dispatch decisions and the propagation of those decisions into a 

130 CSP system’s design, annual performance, and economics. 

1.3. Overview of Paper 
We develop and validate a Rankine cycle model with which to evaluate off-design 

performance and implement this model into existing simulation software – System Advi-
sor Model (SAM)[15], which assesses renewable energy system performance and financial 

135 feasibility (see Figure 3). Section 2 describes in greater detail both SAM and the devel-
opment of our Rankine cycle off-design performance model within Engineering Equation 
Solver. In addition, Section 2 includes a comparison of our Rankine cycle model’s re-
sults against those derived from data obtained from a (confidential) industry partner and 
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from another model presented in literature. Section 3 describes the integration of our 
140 validated performance Rankine cycle model into SAM, provides a short description of 

our dispatch optimization methodology, and outlines a case study, which examines the 
impact of cycle off-design performance on optimal dispatch and its influence on system 
design, performance, and economics. Section 4 presents a comparison between our Rank-
ine cycle model’s off-design performance and SAM’s default cycle. In addition, Section 

145 4 discusses the impact of cycle off-design performance on optimal operations, annual 
metrics, and CSP system design. Section 5 concludes this paper with a summary of our 
findings. 

2. Rankine Cycle Off-design Performance Models 

One standard approach for evaluating the performance of thermal-energy-to-electricity 
150 conversion of a power tower CSP system utilizes SAM’s Rankine cycle model, which 

we term (R) [16], and employs user-defined, high-level parameters and predefined look-
up tables to model off-design cycle performance efficiently (described in greater detail 
later). (R) achieves a significant improvement over previous methods by (i) allowing 
SAM users to quickly evaluate power tower CSP system designs utilizing a Rankine cy-

155 cle for thermal-energy-to-electric conversion, (ii) providing users convenient options for 
modeling different turbine inlet pressure control methods and condenser types, and (iii) 
enabling complex system control that can utilize dispatch optimization to maximize sys-
tem revenue over an immediate time horizon [17]. Figure 3 depicts the information flow 
in the molten salt power tower model within SAM. 

Figure 3: Information flow in the molten salt power tower model within SAM. The mixed-integer linear 
program (MILP) provides the hourly solution profile to the CSP controller, which sets target production 
levels and operational states for subsequent time horizons (figure modified from [17]). 
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160 SAM’s Rankine performance model (R) employs a minimal set of user-defined cy-
cle parameters to predict off-design cycle performance for an annual simulation, which 
includes options for turbine inlet pressure control, that is, fixed or sliding, and cycle con-
denser types, that is, evaporative, air-cooled, or hybrid. (R) utilizes a multiple-variable 
regression method to predict the cycle’s electrical output for a given molten salt inlet 

165 temperature, molten salt mass flow rate, and condenser pressure. Molten salt inlet tem-
perature and mass flow rate impact heat available to the cycle, while condenser pressure 
affects the available energy in the low pressure turbine’s last stage. 
An existing mixed-integer linear program interfaces with (R) to provide an optimal 

operating strategy by maximizing revenue over an immediate time horizon, subject to: 
170 (i) solar availability, (ii) electricity time-varying prices, (iii) operating costs, (iv) energy 

balances, (v) ramp rates, (vi) logical rules governing operations, and (vii) operational 
consistency between time periods [17, 18, 19]. When coupled with (R), this program can 
evaluate operational and design trade-offs for CSP and CSP-PV hybrid systems under 
various location and electricity market scenarios (see §3). 

175 (R) estimates Rankine cycle performance given a cycle configuration and ambient con-
ditions, but may be improved in several respects. Specifically, the relationship between 
heat input and electrical power output can overestimate cycle efficiency at part-load 
conditions (shown in §4.1). In commonly simulated plant configurations, the cycle often 
operates at or near design heat input. However, cycle part-load conditions occur more 

180 frequently when SAM is employed in conjunction with the dispatch optimization model 
[18], which can incorporate hybridization of CSP systems with photovoltaics [19]. 

2.1. Rankine Cycle Model Development 

We develop a Rankine cycle model capable of off-design performance calculations us-
ing Engineering Equation Solver (EES) [20], referred to as (E), whose cycle configuration 

185 matches that of (R), as given in Figure 2, which depicts the modeled system containing 
steam reheat after expansion through the HPT and turbine extraction steam to one open 
and six closed feedwater heaters. In order to model the entry cycle at a fidelity capable 
of capturing off-design performance, each component design characteristic must be gath-
ered either through literature, industry knowledge, or a design-point heat balance. To 

190 develop (E), we use a heat balance of a Rankine cycle rated at 125 MWe gross output 
provided by our industry partners. The heat balance contains pressures, temperatures, 
and mass flow rates before and after each component within the cycle at 100 % load 
condition and design ambient conditions. 

2.1.1. Steam Turbines 
195 Steam turbines convert fluid momentum into rotational energy, but this process is 

imperfect and thermodynamically irreversible and leads to exergetic (available energy) 
losses. The extent of these losses depends on the physical design of the turbomachinery 
and the fluid interaction with turbine blades, valves, housings, seals, and other turbine 
components. These effects can vary non-uniformly with operating conditions, including 

200 throttle steam temperature and pressure, rate of steam generation, and boiler satura-
tion temperature. Given this complexity, predicting turbine thermodynamic efficiency 
is challenging even though it is one of the most significant aspects in capturing overall 
cycle performance under off-design conditions. 
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The SCC model was developed to predict turbine efficiency in a generalized manner, 
205 allowing for different turbine designs, operating conditions, and operating ranges by ex-

pressing performance according to normalized or nondimensionalized terms. The method 
specifies baseline efficiencies for various turbine sections and correction functions to ac-
count for volumetric flow rate, governing stage design, pressure ratio, initial conditions, 
partial throttle flow, and an optional mean-of-loops (a heat rate curve as a weighted 

210 average of the cycle performance over control valve actuations) [4]. In addition, the SCC 
method provides procedures for calculating packing leakages and turbine-generator losses 
associated with exhaust steam velocity, mechanical friction, and generator load. 
For the development of (E), we model the HPT and the combined sections of the 

IPT and LPT using the SCC method described for a 3,600-rpm noncondensing one-row 
215 governing stage and a 3,600-rpm condensing without governing stage, respectively. We 

estimate values for a majority of the independent variables, that is, pressure ratios across 
stages, and steam flow rates at design, needed for the SCC method correction functions, 
using our industry partner’s provided design-point heat balance. For the independent 
variables that cannot be estimated using heat balance information, we assume values 

220 based on engineering approximations and literature [3]. We assume that the HPT gov-
erning stage has four control valves and a pitch diameter of 38 inches (96.5 centimeters), a 
common configuration, along with an LPT last-stage annulus area of 55.6 square feet, i.e., 
5.165 square meters, (afforded by a degree of freedom) because this area corresponds to 
performance closest to that predicted by our industry data when using the SCC method 

225 tabulated values of exhaust losses. 
For part-load conditions, the HPT efficiency is primarily a function of the ratio be-

tween inlet flow rate at part load and the nominal design value. As this ratio decreases, 
the governing stage and overall HPT efficiencies decrease. On the other hand, the LPT 
efficiency is primarily a function of the annulus velocity of the last stage. We capture 

230 this effect using the SCC method through the calculation of exhaust losses, whose curves 
are a function of annulus velocity and are turbine-manufacturer-specific. However, the 
SCC method provides some representative relationships between annulus velocity and 
exhaust losses for various last-stage annulus areas. 
During part-load conditions, extraction pressures, enthalpies, and mass flow rates vary 

235 as a function of throttle mass flow rate. To estimate extraction pressures and pressure 
after governing stage during part-load conditions, we implement Stodola’s ellipse law [5], 
presented in Equation (1). qp 2

/Pi)ṁ ρi,dPi,d 1 − (Po 
√ = q , (1) 

ṁ d ρiPi 2
1 − (Po,d/Pi,d) 

where ṁ is the mass flow rate through the turbine stage, P is pressure, ρ is density, the 
subscript i refers to stage inlet, the subscript o refers to stage outlet, and the subscript 

240 d refers to the design condition. 
The SCC method provides turbine performance of the HPT and the combined sections 

of the IPT and LPT, which allows prediction of the outlet thermodynamic state of these 
two sections. Extraction enthalpies can be determined from an enthalpy-entropy (or 
Mollier) chart as the intersection of the extraction pressure and the turbine expansion 

245 curves, the former of which is provided by the Stodola’s ellipse law and the latter of 
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which is approximated as follows: (i) for the HPT, as linear from the bowl condition 
(located between control valves and the first stage) to the turbine exit condition, and (ii) 
for the IPT and LPT, traditionally using a Keuffel and Esser curve number 1864-31 [4]; 
we develop a second-order polynomial using the heat balance information provided by 
our industry partners. The coefficient values of this polynomial function are proprietary 
information, but the general form is shown in Equation (2). 

s(h) = a0 + a1h + a2h
2 (2) 

where s is entropy and h is enthalpy. For partial mass flow rates, expansion curves are 
offset relative to the design curves, intersecting the calculated end point [4]. An offset 
expansion curve is determined by offsetting the design curve by Δs, which is defined as 
the difference between turbine exit entropy at partial mass flow rate, s (determined by 
LPT exit pressure and enthalpy) and design entropy, s0 , given by Equation (2), using the 
turbine exit enthalpy (Equation (3)): 

Δs = s(Pe, he) − s 0(he) = s(Pe, he) − (a0 + a1he + a2h
2) (3)e 

where Pe is the LPT exit pressure and he is the LPT exit enthalpy. Equation (3) can be 
rewritten for extraction points, where entropy and enthalpy are unknown; see Equation 
(4) 

se(he) = Δs + a0 + a1he + a2he 
2 (4) 

where se and he are the entropy and enthalpy, respectively, at IPT and LPT extraction 
points whose thermodynamic state can be fixed via Equation (4) in combination with 
an EES built-in entropy function using extraction enthalpy and pressure (the latter of 
which is determined by Stodola’s ellipse law). 
We estimate the turbine extraction mass flow by assuming a constant mass coefficient √ 

(ṁ/ ρP ) for all partial flow rates, shown in Equation (5). 
√ 

ṁ e ρePe 
= p , (5) 

ṁ e,d ρe,dPe,d 

where the subscript e refers to the conditions at turbine extraction. 

2.1.2. Air-Cooled Condenser 
Performance of the air- or water-cooled condenser dictates the relationship between 

condenser pressure, heat rejection, and ambient temperature. The condenser outlet is 
the lowest-energy state-point in the steam cycle, effectively setting a limit on the amount 
of available energy that the LPT can extract from the steam flow. Condenser pressure 
is a function of heat rejection load and ambient temperature, both of which routinely 
vary during off-design operation. Air-cooled condenser performance is manufacturer-
specific and can be challenging to generalize. We employ air-cooled condenser data 
provided by our industry partner that expresses condenser pressure as a function of heat 
rejection load and ambient temperature. Because of the proprietary nature of the data, 
we normalize it using minimum condenser pressure, design heat rejection, and design 
ambient temperature (converted to Kelvin), shown in Figure 4 and explicitly denoted by 
markers. 
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XX 

Figure 4: Normalized condenser pressure as a function of normalized heat rejection and normalized 
ambient temperature. Markers denote industry-provided data, while dashed lines depict the results 
from the fitted bi-variate polynomial (evaluated at the corresponding normalized ambient temperature 
and varying normalized heat rejection). 

From this data, we develop a second-order bi-variate polynomial in terms of nor-
ˆ ˆmalized ambient temperature, Tamb, and normalized heat rejection, Q, to determine 

normalized condenser pressure, shown in Equation (6): 

2 2�� ⎧⎨ ⎩ 
⎫⎬ ⎭ ˜ ˆ ˆPc Tamb, Q = max aij T̂

i Q̂j 
amb , 1.0 , (6) 

i=0 j=0 

˜where Pc is the normalized condenser pressure predicted by the bi-variate polynomial 
and aij is the coefficient for the (i, j) exponent pair (see Table 1). 

Table 1: Fitted regression model coefficients for the corresponding (i, j) exponent pairs. 

j
aij 0 1 2 
0 147.966 71.235 27.554 

i 1 -329.022 -159.268 -62.249 
2 183.460 89.502 35.571 

When the bi-variate model predicts a normalized condenser pressure less than 1.0, for 
example, when T̂amb = 0.912 and Q̂ ≤ 0.7 in Figure 4, the predicted value is set to 1.0 by 
the maximum function. By setting the predicted value to 1.0, condenser pressure is set 
to the minimum pressure for the condenser. With respect to the industry-provided data, 

290 our bi-variate polynomial has a root mean squared error of 0.0126, a mean absolute 
10 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



error of 0.010, an R-squared value of 99.986 %, and an adjusted R-squared value of 
ˆ99.982 %. Our bi-variate model is valid for conditions under which Tamb ≥ 0.8925; for 

ambient temperatures below this condition, we assume that the air-cooled condenser 
performance does not change. We implement our bi-variate model into (E) to provide 

295 the relationship between ambient temperature, heat rejection, and condenser pressure. 
To approximate condenser parasitic fan power, we assume a design approach tem-

perature (ΔTh,d) of 3 ◦C, a design initial temperature difference (ITDd) of 16 ◦C, and 
constant specific heat of air (cair) evaluated at the design ambient temperature [21]. 
From these assumptions, we calculate design air mass flow rate (ṁ air,d) to achieve the 

300 heat rejection load at design conditions (Q̇ 
rej,d) using Equation (7). 

Q̇ 
rej,d 

ṁ air,d = (7) 
cair(ITDd − ΔTh,d) 

Next, we assume constant fan isentropic and mechanical efficiencies of 80 % and 94 %, 
respectively. In addition, we assume a pressure ratio across the fans to be constant at 
1.0028 (Po/Pi) [21]. Assuming constant specific heat and ideal gas, temperature change 
for an isentropic process is defined by Equation (8). � 

Po 
�R/cair 

To,s = Ti (8)
Pi 

305 where Ti is fan inlet temperature (assumed to be ambient air temperature). With the 
approximate isentropic fan outlet air temperature known, fan outlet enthalpy can be 
calculated using the definition of isentropic efficiency for a fan. Fan power is estimated 
using Equation (9). 

ṁ air (ho − hi)
Ẇfan = (9)

ηfan,m 

where ηfan,m is the fan mechanical efficiency. 
310 For part-load operation, we assume that the air-cooled condenser can only operate at 

discrete levels (nacc,pl), which could be the result of fan speed limitations (i.e., two- or 
three-speed fans) and/or the removal of condenser “bays” through system valving. For 
our purposes, we model these discrete levels by multiplying air mass flow rate at design 
conditions (ṁ air,d) by a part-load fraction of the air-cooled condenser (facc,pl). 

315 We determine this part-load fraction by using Algorithm 1, which approximates con-
denser fan mass flow rate by assuming a constant approach temperature equal to design 
conditions. This algorithm decreases the condenser air flow rate when the predicted 
condenser pressure is greater than minimum pressure. The air mass flow rate returned 
by this algorithm impacts the condenser parasitic fan power, which influences net cycle 

320 efficiency. 

2.1.3. Feedwater Heaters and Pumps 
To model the six closed feedwater heaters (shown in Figure 2), we assume that the de-

sign drain cooler temperature difference remains constant during off-design operation and 
neglect any heat losses to the surroundings. With these assumptions, the outlet condition 

325 of the extraction drain is known and feedwater outlet temperature can be determined 
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Algorithm 1 Air-Cooled Condenser Part-load Air Mass Flow Rate 

1: function ACC PL Air(ṁ air,d, ΔTh,d, Pc,min, Tdb, nacc,pl, Q̇ 
rej ) 

2: cair := Cp(Air, T = Tdb) . Specific heat function call 
3: for i = 1, ..., nacc,pl do . Turn off fan bays 
4: facc,pl := 1 − (i − 1)/nacc,pl . Part-load fraction 
5: ṁ air := ṁ air,d · facc,pl . Mass flow rate through condenser 
6: ΔTair := Q̇ 

rej /(ṁ air,d · cair) . Estimate air temperature increase 
7: Tc := Tdb +ΔTh,d +ΔTair . Estimate condenser temperature 
8: Pc := Psat(Steam IAPWS, T = Tc) . Estimate saturation pressure 
9: if Pc > Pc,min then 
10: Break 
11: end if 
12: end for 
13: return ṁ air . Return air mass flow rate 
14: end function 

using an energy balance equation. Under normal operating conditions, feedwater heater 
performance has a small impact on overall cycle efficiency; however, removing a feedwater 
heater from service can impact cycle efficiency greatly [3]. 
Pressure drop through feedwater heaters is handled by Equation (10) [22]: 

2ΔP = kṁ , (10) 

330 where ΔP is the difference between inlet and outlet pressures, k is a proportionality con-
stant, and ṁ is the mass flow rate through the heat exchanger. For off-design conditions, 
we assume that the heat exchanger pressure drop varies with the square of mass flow 
rate. 
To model the feedwater and boiler re-circulation pumps, we assume a design isentropic 

335 efficiency of 70 %. We adjust pump efficiency as a function of the ratio between part 
load and design mass flow rates using Equation (11) [22]. � �2

ηp ṁ ṁ 
= β + 2 (1 − β) − (1 − β) , (11)

ηp,d ṁ d ṁ d 

where ηp is the pump isentropic efficiency, β is a shape factor parameter, ṁ is the mass 
flow rate, and the subscript d refers to design conditions. For (E), we assume that the 
shape factor parameter β is equal to zero. 

340 2.1.4. Molten Salt-to-Steam Heat Exchangers 
Figure 2 depicts the molten salt-to-steam heat exchanger train in the upper left. 

Commercial-scale projects have multiple, parallel trains to reduce the size of an individual 
heat exchanger, typically in the form of a counterflow shell-and-tube. The molten salt 
enters the salt-to-steam train at about 565 ›, where the flow is split into two, one 

345 directed to the superheater and the other directed to the reheater. This division of flow 
can either be constant or vary with cycle load. We utilize the former assuming the flow 
is split 50/50; the latter can be governed by the heat exchanger’s thermal loads and an 
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Table 2: Design overall heat transfer coefficients (UAd) and flow arrangements for the salt-to-steam heat 
exchangers within the steam generation system. 

Heat Exchanger UAd [kW/K] Flow Arrangement 
Preheater 

Boiler 
Superheater 
Reheater 

2,672 
5,270 
1,405 
667 

Shell and Tube (One Shell Pass) 
Phase Change 
Counterflow 
Counterflow 

equal exit temperature condition. After exiting the superheater and reheater, the two 
molten salt flows merge and progress through the boiler and preheater, where flow exits 

350 the steam generator at approximately 290 ›. At design conditions, the target turbine 
inlet temperature of both the HPT and IPT sections is 540 ◦C. 
To model the salt-to-steam heat exchanger train, we utilize the effectiveness-NTU 

method to predict water and salt outlet temperatures at partial flow conditions [23]. 
Table 2 contains the design overall heat transfer coefficients (UAd) and flow arrangements 

355 we implement to model the steam generation system. Heat loss to the surroundings is 
neglected for all heat exchangers in the salt-to-steam train. For partial flow conditions, 
we adjust the design overall heat transfer coefficients using Equation (12) [24]. ! ! 

0.8 0.80.8 0.8UA ṁ ṁ c ṁ h,d + ṁ c,dh = , (12)0.8 m0.8 0.8 m0.8UAd ṁ ˙ ṁ + ˙h,d c,d h c 

where UA is the overall heat transfer coefficient, ṁ is mass flow rate, the subscripts h and 
c refer to the hot and cold side of the heat exchanger, respectively, and the subscript d 

360 refers to the nominal design value. We model pressure drop through the heat exchangers 
in the salt-to-steam train using Equation (10). 
Using the effectiveness-NTU method, we solve for the exit temperatures of the molten 

salt and water for the preheater, superheater, and reheater. In addition to a shell-and-
tube salt-to-steam heat exchanger, the boiler system consists of a steam drum and a 

365 re-circulation pump; this configuration ensures saturated vapor at the steam drum outlet 
for all partial flow conditions that we investigate. For the boiler system, we calculate the 
steam flow rate for the given feedwater inlet and outlet conditions, salt flow rate, and 
salt inlet temperature. 

2.1.5. Sliding and Constant Pressure Operation 
370 For both sliding and constant pressure operation, Equation (1) estimates “desired” 

steam pressure after the HPT governing stage, starting with the condenser pressure and 
working backwards through each turbine with respect to inlet pressure. For sliding pres-
sure operation, boiler pressure is estimated using an assumed constant 4 % pressure drop 
across the HPT stop-and-control valves and the pressure drop through the superheater. 

375 As load decreases, boiler pressure decreases, which results in a decrease in molten salt 
preheater outlet temperature. If the boiler pressure continues to slide, the molten salt 
outlet temperature can start to crystallize (at 238 ◦C [25]). To address this, the boiler 
pressure is allowed to decrease to a point, after which it is held constant. We assume 
this point occurs at 80 bar, which is about 60 % power output. 
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380 For constant pressure operation, the boiler remains at a pressure of 125 bar and the 
steam is throttled to the “desired” steam pressure at the HPT governing stage outlet. 
Henceforth, we denote off-design performance cycle models (R) and (E) pertaining to 
sliding and constant boiler pressure operation, using superscripts s and c, respectively. 

2.2. Validation and Error Analysis of model (E) 

385 To validate (E), we compare relative heat rate, HR, (for sliding pressure operation) 
predicted by (Es) against data provided by our industry partner, hereafter referred to 
as (D), for varying load fractions and normalized ambient temperatures (see Figure 5). 
Relative heat rate is defined as the ratio of heat rate at an off-design condition and design 
heat rate, which is equivalent to the ratio design gross cycle efficiency and off-design gross 

390 cycle efficiency (shown in Equation (13)); partial load fraction is defined as the ratio of 
cycle gross electric output at an off-design condition and the gross design electric output 
(shown in Equation (14)). 

HRpl ηg,d
HR = = (13)

HRd ηg,pl 

Ẇ 
g,pl

fpl = (14)
Ẇ 

g,d 

In other words, a relative heat rate of 1.1 at a load fraction of 0.5 corresponds to the 
cycle requiring 10 % more heat per unit of power compared to design-point conditions, 

395 when producing 50 % of design output. Our analysis calculates relative heat rate using 
gross cycle efficiencies to effect results agnostic to the heat rejection system parasitic 
power requirements. 
Figure 5 presents relative heat rate data (D) shown as symbols; predictions from 

(Es) for relative heat rate are represented by lines of the corresponding color. (Es) 
400 adequately predicts cycle performance for the range of load fraction and the various 

normalized ambient temperatures provided in the data. Figure 5 shows that, as ambient 
temperature decreases, relative heat rate at full load conditions (i.e., partial load fraction 
equal to 1) decreases, resulting in an increase in cycle efficiencies. Likewise, at ambient 
temperatures below design conditions, the part-load adverse effects, represented by the 

405 derivative of the curve, decrease, resulting in more favorable operation conditions at 
partial load fractions. However, (Es) systematically underpredicts relative heat rate at 
partial load fractions above 0.5 and overpredicts at low partial load fractions. 
Figure 6 depicts the relative heat rate error, defined as (D) less (Es) (shown in Equa-

tion (15)), as a function of partial load fraction for various normalized ambient temper-
410 atures. The largest error is -0.0212 and occurs at low normalized ambient temperature 

(0.912) and low partial load fraction (0.3), which corresponds to a relative error of 2.08 %. 
With respect to (D), (Es) predicts relative heat rate with a root mean squared error of 
8.59 × 10−3 and a mean absolute error of 7.30 × 10−3 . The error occurring at T̂amb = 1.0 
and fpl = 0.9 appears to be the result of an outlier in the provided dataset (D) depicted 

415 in Figure 5. In summary, (Es) produces a small degree of error compared to (D) and 
appears to adequately represent off-design performance for a molten salt-driven Rankine 
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Figure 5: Relative heat rate (for sliding pressure operation) as a function of partial load fraction and var-
ious normalized ambient temperatures. Industry data (D) is represented by symbols and the prediction 
of the (Es) model is represented by lines of the corresponding color. 

cycle operating with sliding boiler pressure and using an air-cooled condenser for heat 
rejection. 

Relative Heat Rate Error = HR(D) − HR(Es) (15) 

Lacking cycle performance data for constant pressure operation from our industry 
420 partners, to validate the cycle performance predictions for (Ec), we compare its rela-

tive heat rate curve to that given by an open-source script that implements the SCC 
method in MATLAB® [26], shown in Figure 7. Utilizing the design heat balance, we 
provide Cicala’s [26] model with the appropriate SCC method assumptions for our cycle 
configuration, that is, turbine type, pitch diameter, and LPT last-stage annulus area. 

425 For condenser pressure, we provide Cicala’s model with predictions given by (Ec) of 
condenser saturation temperatures for design and minimum throttle flow conditions, for 
which Cicala’s model assumes a linear relationship under partial load. 
Figure 7 demonstrates that the heat rate predicted by (Ec) is in close agreement with 

that predicted by Cicala’s model. However, the prediction given by (Ec) deviates from 
430 those of Cicala’s model conservatively at low partial load fractions. The two models’ 

relative heat rate predictions are within 1 % of each other at our assumed lowest partial 
load fraction (30 % load). Based on this comparison, the estimate given by (Ec) for 
relative heat rate closely matches the results given by Cicala’s model. 
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Figure 6: Relative heat rate error, defined as (D) less (Es), as a function of partial load fraction for 
various normalized ambient temperatures. 

2.3. Significance of Partial Load Efficiency 

435 We demonstrate the significance of steam turbine and generator efficiency assump-
tions by comparing cycle relative heat rate curves under various assumptions and with 
different methods. Using (Ec), we predict relative heat rate curves using: (i) the SCC 
method for both the turbine and generator efficiencies, (ii) constant turbine efficiency 
and using the SCC method for generator efficiency (losses), and (iii) constant turbine and 

440 generator efficiencies. For the constant efficiency cases, we calculate the HPT, IPT/LPT, 
and generator efficiencies for (Ec) using the SCC method, under fixed design flow and 
ambient temperature conditions, as 85.7 %, 89.7 %, and 98.3 %, respectively. 
Figure 8 depicts the relative heat rate curves under various assumptions used to pre-

dict turbine and generator efficiencies at partial load. As expected, there is a significant 
445 deviation between relative heat rate curves using the SCC method and constant efficiency 

assumptions. The implications of this deviation could result in an under estimation of 
molten salt consumption as the Rankine cycle ramps to full load, which would result in 
less electricity generation, and correspondingly, less plant revenue. 

3. Integration of (E) into SAM and Case Study 

450 The User Defined Power Cycle option integrates the calculated cycle performance of 
(E) into SAM. For user-defined cycles, SAM employs a design-of-experiments technique 
to capture the main and interaction effects of molten salt mass flow rate, molten salt tem-
perature, and ambient temperature on cycle thermal input, cycle gross electrical output, 
electrical power consumption for cooling, and cooling water flow rate. Implementation of 
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Figure 7: Comparison of Cicala’s model and (Ec) predicted relative heat rates as a function of partial 
load fraction for constant boiler pressure operation at design ambient temperature. 

Table 3: Low, design, and high parameter values used to generate cycle performance maps of (E) for 
SAM. 

Parameter Units Low Design High 
Molten Salt Temperature 

Normalized Molten Salt Mass Flow Rate 
Ambient Temperature 

◦C 
-

◦C 

550 
0.30 
15 

565 
1.00 
43 

580 
1.05 
55 

455 a user-defined cycle is described in detail within SAM’s help documentation [27]. Table 
3 presents low, design, and high parameter values used to generate cycle performance 
maps of (E) for SAM. Additionally, we assume that the air-cooled condenser system of 
(E) consumes 4.0 % gross power at design conditions. 

3.1. Annual Simulations Utilizing Dispatch Optimization 

460 To investigate the impact of off-design cycle performance on system economics, we 
employ work that integrates SAM’s simulation core with dispatch optimization. Our 
software framework, shown in Figure 9, enables us to utilize dispatch optimization to 
evaluate the performance and economics of CSP-only, CSP-PV (photovoltaic) hybrids, 
and CSP-PV with battery storage designs. Our dispatch optimization model determines 

465 the operating schedule of each sub-system in the design to maximize revenue over the time 
horizon. Our annual simulation and dispatch optimization is capable of evaluating system 
performance at hourly and sub-hourly time fidelity. Wagner et al. [17] and Hamilton et al. 
[19] provide a detailed description of the software framework and a complete formulation 
of the dispatch optimization model. 

470 Within our dispatch optimization model, we penalize system operations using esti-
mated maintenance costs incurred from said operations. For the power cycle, the dispatch 
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Figure 8: Cycle relative heat rate as a function of partial load fraction at design ambient temperature, 
under various assumptions used to predict turbine and generator efficiencies. 

optimization model penalizes operating power output, changing power output between 
time periods (ramping), and starting the cycle from an off state. Due to the limited solar 
resource and depending on the design, CSP systems are unable to operate at full load 

475 through the night. Therefore, the tradeoff lies in (i) operating at partial load through 
the night at the cost of lower cycle efficiency and increased hours of operation, or (ii) 
operating at full load until thermal energy storage is depleted, shutting the cycle down, 
and starting up when solar resource is available. Power cycle part-load efficiency impacts 
this decision by dictating the solar-to-electric conversion, which directly influences the 

480 return on investment of the system. 

3.2. Case Study 

This case study examines the impact of cycle off-design performance on optimal dis-
patch and its influence on system design, performance, and economics. We choose Rice, 
California, referred to hereafter as “Rice,” and use the plant’s location and typical me-

485 teorological year weather data at hourly time fidelity. This abandoned township has 
been explored as a potential location for a CSP system [18] because of suitable solar 
resource levels, proximity to grid transmission and interconnection points, and accessi-
bility, among other factors. However, at the time of this writing, the authors are not 
aware of any active CSP project development at Rice. 

490 To be consistent with the geographic location of Rice, we choose the Southern Cali-
fornia Edison 2015 pricing schedule as the electricity market against which to dispatch 
power. This electricity market has hourly prices differentiated by weekday, weekend, and 
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Figure 9: Flow diagram of the software architecture implemented around the hybrid dispatch optimiza-
tion model. 

Table 4: Low and high system design parameter values and the corresponding sampling interval used to 
generate a uniform mesh of system designs. 

Design Parameter Units Low High Interval 
Solar Multiple 

Hours of Thermal Storage 
PV Field Capacity 
DC-to-AC Ratio 

-
Hours 
MWdc 

MWdc/MWac 

0.50 
4 
0 
1.0 

3.50 
16 
225 
1.3 

0.25 
2 
25 
0.1 

season, with the highest-value time periods occurring between the hours of 2 and 8 p.m. 
on weekdays during the months of June through September. 

495 For the CSP system design, we utilize a 163 MWe gross output air-cooled Rankine 
cycle with a design ambient temperature of 43 ◦C, a gross cycle efficiency of 41.2 %, and 
the ability to operate between 30 and 105 % of partial load fraction, the latter of which 
is based on turbine vendor specifications for acceptable operating limits. To understand 
the impact of cycle performance on system design, we construct case studies by using 

500 a full-factorial design of experiments with the parameters listed in Table 4 between the 
low and high ranges at specified intervals; this results in 3,640 instances. Each design 
case is evaluated under the following assumptions: (i) the combined power output is 
grid-limited to 165 MWe, (ii) the PV sub-system possesses single-axis tracking with zero 
tilt, and (iii) the system contains no electric battery storage. Given the solar resource 

505 at Rice and the solar multiple, SolarPILOT [28] generates the CSP heliostat field layout 
and receiver design parameters, such as tower height, receiver height and diameter. 
In addition to off-design performance cycle models (R) and (E), we include a constant 

efficiency model to which we refer as (C). We assume that (C) operates at design-point 
efficiency for all combinations of partial loads and ambient temperature conditions. We 

510 compare the behavior of (R) and (E) to that of the baseline case with no cycle efficiency 
degradation, given by (C). 
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(a) Sliding boiler pressure operation (b) Constant boiler pressure operation 

Figure 10: Comparison of the predicted relative heat rate curves for (R) and (E) as a function of partial 
load fraction, using (a) sliding: (Rs) and (Es), and (b) constant: (Rc) and (Ec) boiler pressure operation 
for high, design, and low condenser pressures. 

4. Results 

The dispatch optimization model is written in the AMPL modeling language version 
20210630 [29] and solved using CPLEX version 12.8 [30]. Hardware architecture to 

515 generate solutions consists of a SuperServer 1028GR-TR server with an Intel Xeon E5-
2620 v4s at 2.1 GHz, running Ubuntu 16.04 with 128 GB of RAM, 1×250 GB SSD, and 
3×500 GB SSDs hard drives. 

4.1. Cycle Performance Comparison Between (R) and (E) 

Figure 10 depicts a comparison of the relative heat rate curves of (R) and (E) as a 
520 function of partial load fraction, using sliding (Figure 10a) and constant (Figure 10b) 

boiler pressure operation for high, design, and low condenser pressures. We evaluate the 
relative heat rate relationships of (R) and (E) using design molten salt inlet temperature, 
values of normalized molten salt mass flow rates between 0.3 and 1.05, and constant 
condenser pressures of 0.2, 0.08, and 0.036 bar, corresponding to high, design, and low 

525 condenser pressure, respectively. For (R), we employ the look-up performance tables, 
used by SAM for sliding and constant pressure operation, to evaluate its relative heat 
rate curves for the given condenser pressures [21]. 
Figure 10a shows that (Rs) and (Es) are in close agreement with each other in both 

magnitude and rate-of-change at high and design condenser pressures. The differences 
530 between the relative heat rates of (Rs) and (Es) diverge for the low condenser pressures 

which, at a partial load fraction of about 0.3, renders the relative heat rate of (Rs) 0.12 
greater than that of (Es). In addition, as partial load fraction increases to 1, the relative 
heat rate curve of (Es) at low condenser pressure converges to design values, wheres that 
of (Rs) continues to decrease to a value below 1. The described behavior observed from 

535 our model, (Es), is due to choked flow limits at the LPT exit, resulting in a decrease 
in enthalpy drop across the LPT and an increase in exhaust losses; see Spencer et al. 
[4] for more details. At design condenser pressure, (Rs) provides a more conservative 
relative heat rate curve compared to (Es). However, the relative heat rate of (Rs) at low 
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condenser pressure either overpredicts cycle performance, when partial load fraction is 
540 greater than 0.75, or underpredicts cycle performance compared to (Es). 

Figure 10b shows that (Rc) and (Ec) are in agreement at full-load condition; that is, 
partial load fraction equals 1 at high and design condenser pressures. However, (Rc) and 
(Ec) diverge significantly as partial load fraction is reduced and at low condenser pres-
sures. (Rc) estimates a better (lower) relative heat rate curve compared to (Rs). Sliding 

545 operation results in higher cycle efficiencies compared to constant operation, as expected 
based on the descriptions of the two operating strategies in Section 1. Therefore, we 
conclude that the (Rc) relative heat rate curve estimates are an unrealistically optimistic 
representation of cycle performance at part-load operations. While sliding and constant 
boiler pressure operation are both available within SAM, the default is constant pressure, 

550 consistent with that in (Rc). 

4.2. Impact on Annual Performance for a CSP-only System 

We first simulate annual performance for a CSP-only system (that is, without hy-
bridized photovoltaics) using each of the five power cycle models previously discussed 
– (C), (Rs), (Es), (Rc), and (Ec). The simulations consider all possible design configu-

555 rations, and optimize dispatch according to the characteristics of each cycle. Next, we 
select for further analysis the CSP-only design corresponding to the lowest power pur-
chase agreement (PPA) price. In this case, the design includes a solar multiple of 2.5 
and 10 hours of TES. 
Power purchase agreement price is a financial metric that accounts for both the 

560 amount of energy the system produces and the time at which production occurs, through 
the use of time-of-delivery factors. This metric represents the price at which a project 
can sell electricity to achieve the project’s internal rate of return at the end of the de-
sired horizon, and is calculated using SAM’s financial models [15] with a default target 
internal rate of return of 11 % occurring in year 20 of the project with a 1 % PPA price 

565 escalation per year [31, 32]. 
Figure 11 depicts the annual percentage of time the power cycle spends in a thermal 

input range for a CSP-only system using the five off-design performance cycle models. 
From Figure 11, (Rs), (Es), and (Ec) primarily operate at either a full-load or at an “off” 
state, which accounts for 35-45 % and 20-30 % of annual operation, respectively. (Rc) 

570 dispatches in a fashion similar to (C), that is, it spends more time in the low power state 
(90, 120] than in the “off” state. (C) and (Rc) spend only about 8 % of the year in an 
“off” state, which is 3-4 times less than the other cycle models. The reverse is true for 
the low power state, in which (Rc) and (C) operate about three to six times more often 
in the low power state compared to the other cycle models. 

575 Table 5 presents annual performance metrics for the five different off-design cycle 
models of the CSP-only system with a solar multiple of 2.5 and 10 hours of TES, and 
contains the following annual performance metrics: capacity factor, number of cycle 
starts, cycle ramp index, reliability (10 %, 25 %, and 50 %), and simulation time. We 
describe each of these in turn. The value “Δ” represents the percentage change between 

580 (E) and (R) utilizing the same boiler pressure operation (sliding or constant); see Equation 
(16). 

(Es/c) − (Rs/c)
Δ = ∗ 100 (16)

(Rs/c) 
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Figure 11: Annual percentage of time the power cycle spends in a thermal input range for a CSP-only 
system using the five off-design performance cycle models. The [0, 30] range only contains values of 0 
MWt thermal input, corresponding to the cycle being in an “off” state. [solar multiple (SM), hours of 
storage (HoS), photovoltaic field capacity (PV Cap), DC-to-AC ratio (DC/AC)] 

Table 5: Comparison between annual performance metrics using the various off-design cycle models for a 
CSP-only system comprised of a solar multiple of 2.5 and 10 hours of TES. Annual performance metrics 
shown are: capacity factor, number of cycle starts, cycle ramp index, reliability (10 %, 25 %, and 50 %), 
and simulation time. The value “Δ” represents the percentage change between (E) and (R) utilizing the 
same boiler pressure operation (sliding or constant). 

Capacity Cycle Cycle Reliability Simulation 
Cycle Factor Starts Ramp 10 % 25 % 50 % Time 
Model [%] [-] [%] [%] [%] [%] [min.] 

(C) 55.80 57 68.5 94.85 90.93 83.25 8.53 
(Rs) 56.33 139 97.6 96.48 93.47 88.61 14.27 
(Es) 58.15 88 91.3 97.02 93.68 84.32 13.47 
Δ [%] +3.23 -36.69 -6.45 +0.56 +0.22 -4.84 -5.61 
(Rc) 56.93 46 90.8 95.53 91.91 81.92 9.35 
(Ec) 57.72 204 92.1 97.28 93.85 89.15 17.50 
Δ [%] +1.39 +343.48 +1.43 +1.83 +2.11 +8.83 +87.17 

Capacity factor is the ratio of annual energy generation and the maximum possible 
energy generation, which is calculated using a grid transmission limit of 165 MWe as the 
maximum system output; see Equation (17). Due to a constant solar field design and 

585 solar resource, the five cases result in the same solar energy collection. Therefore, the 
capacity factor in Table 5 provides a direct comparison of solar-to-electric conversion. 
Table 5 shows that both (R) and (E) result in a higher capacity factor than (C) because 
(R) and (E) yield higher cycle efficiencies than does (C) at ambient temperatures below 
design conditions. CSP power cycles are typically designed for the 95 % highest ambient 

590 temperatures of the location to ensure that they can meet their rated power during high 
ambient temperature conditions. As a result, their full-load performance increases during 
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lower-than-design ambient temperatures. For sliding pressure operation, (Es) results 
in a higher capacity factor than (Rs) due to the performance of (Es) at low ambient 
temperature compared to that of (Rs), shown in Figure 10a. For constant pressure 

595 operation, the difference between the capacity factors of (Rc) and (Ec) is smaller and is 
a result of more frequent operationfor (Rc) at low power output to avoid cycle start-ups, 
shown in Figure 11. 

Net Annual Energy [MW h/yr]
Capacity Factor = (17)

System Transmission Limit [MW ] × 8, 760 [hr/yr] 

Cycle starts represents the number of start-up operations the power cycle undergoes 
throughout the year, regardless of whether the start up is “cold,” “warm,” or “hot” 

600 (where most of the cycle starts would be considered “hot” or “warm”). The Cycle ramp 
index corresponds to the average percentage of rated power ramp per day, for example, 
100 % represents a cycle that goes from a no generation state, to full power, and back to 
no generation every day; see Equation (18). For sliding pressure operation, (Es) results 
in a 37 % reduction in cycle starts compared to (Rs). This behavior is due to the lower 

605 relative heat rate of (Es) compared to that of (Rs) at low condenser pressure and low 
partial load fraction (shown in Figure 10a). (Rc) results in the lowest number of cycle 
starts, while (Ec) results in the highest, which is 343 % more than (Rc). This difference 
is due to under-accounting in (Rc) of performance degradation at lower power output 
(shown in Figure 10b), which results in behavior similar to that of (C), that is, a low 

610 number of cycle starts. Sliding pressure operation results in higher partial load cycle 
efficiency compared to constant pressure. As a result, (Es) operates more frequently at 
low load than does (Ec), which reduces the number of cycle starts by about a factor of 
two. P8,760 |Ẇ 

t − Ẇ 
t−1|t=1Cycle Ramp Index = · 100 (18)

Ẇ cycle 2 · 
Reliability at x % is defined as the system’s capacity factor for the x % highest-valued 

615 time periods; see Equation (19). For example, during the year’s 10 % highest-valued hours 
(876 hours), (C) generates 94.85 % of the maximum possible energy, that is, the product 
of the grid transmission limit of 165 MWe and the number of high-valued time periods. 
Reliability at several different thresholds yields insight on how the system configuration 
is able to provide power during high-value time periods. (Rs) and (Es) result in similar 

620 10 % and 25 % reliabilities, but differ in 50 % reliability because (Es) avoids cycle starts 
by operating at partial load more often than does (Rs); this behavior is a result of the 
lower partial load heat rate in (Es) compared to (Rs). Table 5 shows that (Ec) results 
in higher 10 %, 25 %, and 50 % reliabilities compared to (Rc), because: (i) the cycle 
performance of (Ec) is slightly higher than that of (Rc) at full-load operation; and (ii) 

625 (Rc) operates at low load more often than does (Ec) to avoid cycle starts, but at the cost 
of forgoing high-valued time periods. P 

Ẇ net 
t∈ ̂  t

Reliability at x % = Tx (19) 
Ẇ max|T̂  

x| 
Simulation time is the wall clock time between when the simulation starts and ends, 

and includes the time to design the heliostat field and simulate the power cycle using 
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dispatch optimization and updating the simulation schedule every day [17]. Table 5 
630 provides simulation times for all the cycle models, and shows that the computational 

expense required for (C) and (Rc) is about 70 % less than for the others because of the 
more pronounced trade-offs between cycle start-up and low load operation in the dispatch 
optimization runs. 

4.3. Impact on Annual Performance for a CSP-PV Hybrid System 

635 To investigate cycle dispatch behavior for a CSP-PV hybrid system, we select a hybrid 
design that corresponds to the lowest PPA price across all cycle models, that is, a CSP 
system with a solar multiple of 1.25, 8 hours of TES, and a 225 MWdc PV system with a 
1.3 DC-to-AC ratio. However, the hybrid system configuration corresponding to “lowest 
PPA” design varies depending on the cycle model implemented (see §4.4). 

640 The histogram in Figure 12 depicts the annual percentage of time that the power cycle 
spends in a thermal input range for a CSP-PV hybrid system using the five off-design 
performance cycle models, and shows that the system exhibits a large decrease in full 
power operation as a result of the solar multiple being half that of the CSP-only design 
(compare with Figure 11). Over the year, the power cycle is in an “off” state a majority 

645 of the time (approximately 40 to 63 %). As a result, the power cycle operates at full 
load for 10 to 18 % of the year, compared to the 35 to 46 % seen in the CSP-only case. 
Like the CSP-only case, (C) and (Rc) favor low power output over cycle shutdown and 
start-up because they are overly optimistic regarding part-load efficiency performance. 

Figure 12: Annual percentage of time the power cycle spends in a thermal input range for a CSP-PV 
hybrid system using the five off-design performance cycle models. The [0, 30] range only contains values 
of 0 MWt thermal input, corresponding to the cycle being in an “off” state. [solar multiple (SM), hours 
of storage (HoS), photovoltaic field capacity (PV Cap), DC-to-AC ratio (DC/AC)] 

Table 6 presents annual performance metrics for the five different off-design cycle 
performance models of the CSP-PV hybrid system with lowest PPA price design. In 
addition to the annual performance metrics presented in Table 5 for the CSP-only system, 
Table 6 contains the percentage of CSP and PV curtailment. 
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Table 6: Comparison between annual performance metrics using the various off-design cycle models for a 
CSP-PV hybrid system comprised of a solar multiple of 1.25, 8 hours of TES, and 225 MWdc PV system 
with a DC-to-AC ratio of 1.3. Annual performance metrics shown are: capacity factor, number of cycle 
starts, cycle ramp index, percentage of CSP curtailment, percentage of PV curtailment, reliability (10 %, 
25 %, and 50 %), and simulation time. We also report “Δ,” which represents the percentage change 
between (E) and (R) utilizing the same boiler pressure operation (sliding or constant). 

Capacity Cycle Cycle Curtailment Reliability Simulation 
Cycle Factor Starts Ramp CSP PV 10% 25% 50% Time 
Model [%] [-] [%] [%] [%] [%] [%] [%] [min.] 

(C) 61.07 289 84.86 0.69 3.73 97.25 91.07 90.07 13.19 
(Rs) 62.46 337 98.25 1.30 1.52 97.79 94.24 92.17 16.86 
(Es) 63.20 330 98.76 1.21 1.77 98.15 94.51 92.16 17.47 
Δ [%] +1.18 -2.08 +0.52 -6.92 +16.45 +0.37 +0.29 -0.01 +3.62 
(Rc) 61.91 288 98.57 0.68 3.34 97.26 92.19 90.89 14.24 
(Ec) 62.89 340 99.08 2.04 1.24 98.01 94.59 92.07 16.92 
Δ [%] +1.58 +18.06 +0.52 +200.00 -62.87 +0.77 +2.60 +1.30 +18.82 

Table 6 shows that cycle models (C) and (Rc) perform similarly across all metrics; 
likewise, there are small differences between cycle models (Rs), (Es), and (Ec). (C) and 

655 (Rc) result in fewer cycle starts than the other models because their cycles operate at 
part-load more frequently due to the improper degradation of performance at partial 
load outweighing the cost of a start-up event. Across all cycle models, hybridization of 
PV with CSP results in at least a 170 % increase in the number of starts compared to the 
CSP-only design. The (C) and (Rc) models exhibit more PV curtailment, about 3.5 % 

660 of the annual PV generation, than CSP curtailment, about 0.7 % of the annual CSP 
generation; this is because (C) and (Rc) more frequently operate at the minimum turn 
down limit during days when the grid constraint is tight, resulting in PV curtailment 
and fewer cycle starts. With the other cycle models, this trade-off yields in a cycle 
shutdown during the solar hours, forcing thermal energy storage to reach capacity before 

665 the solar day ends, i.e., CSP curtailment. Table 6 shows that (C) and (Rc) possess lower 
reliabilities and simulation times compared to the other models. 

4.4. Implications on System Design 

To investigate the effect that off-design cycle performance has on system design, we 
determine the system design corresponding to the lowest PPA price for each level of 

670 PV system DC capacity, shown in Table 7, which presents the solar multiple and hours 
of storage corresponding to the lowest PPA price design for two groups of off-design 
performance cycle models, categorized by agreement in the design characteristics of solar 
multiple and hours of storage. The first group consists of (C) and (Rc), while the second 
group consists of (Rs), (Es), and (Ec). Table 7 shows that system design parameter 

675 DC-to-AC ratio has more variation between the cycle models. 
Table 7 demonstrates that the two groups result in the same solar multiple and hours 

of storage for a PV system DC capacity of 0, 25, 125, 175, and 200 MWdc, leading us to 
conclude that off-design performance has less impact on the lowest PPA design’s solar 
multiple and hours of storage combination when the capacity of the PV system is smaller. 

680 The discrepancy between the resulting lowest PPA design configurations for off-design 
cycle models leads to different “optimal” system designs. 
We investigate, for the designs in Table 7 corresponding to the lowest-PPA-priced 

systems, their resulting annual simulation metrics as a function of: (i) PV system DC 
capacity, and (ii) the particular cycle performance model. Figure 13 depicts normalized 

685 PPA, capacity factor, annual cycle starts, and top 25 % reliability for the five power 
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Table 7: Solar multiples, hours of storage, and DC-to-AC ratios corresponding to the lowest PPA price 
for each DC capacity of the PV system. Model group 1 includes models {(C), (Rc)}; Model group 2 
includes {(Rs), (Es), (Ec)}. 

PV Cap. Solar Multiple Hours of Storage DC-to-AC Ratio 
MWDC Group 1 Group 2 Group 1 Group 2 (C) (Rc) (Rs) (Es) (Ec) 

0 2.50 2.50 10 10 N/A 
25 2.50 2.50 10 10 1.3 1.1 1.2 1.1 1.0 
50 2.50 2.50 10 12 1.1 1.2 1.3 1.2 1.2 
75 2.25 2.50 10 12 1.1 1.2 1.2 1.2 1.1 

100 2.25 2.50 12 12 1.2 1.0 1.1 1.2 1.2 
125 2.25 2.25 12 12 1.2 1.2 1.2 1.3 1.2 
150 2.00 2.25 12 12 1.2 1.2 1.3 1.3 1.3 
175 2.00 2.00 12 12 1.3 1.3 1.3 1.3 1.2 
200 2.00 2.00 12 12 1.3 1.3 1.3 1.2 1.3 
225 0.75 1.25 6 8 1.3 1.2 1.3 1.3 1.3 

Figure 13: Normalized PPA, capacity factor, annual cycle starts, and top 25% reliability for the five 
power cycle models at varying DC capacity of the PV system. Design for each data point corresponds 
to lowest PPA price system. 

cycle models. PPA prices are calculated using SAM’s default costs (Version 2018.11.11) 
and are normalized using the lowest PPA price for the CSP-only case, which corresponds 
to $107.21 /MWhe using the (Es) cycle model. For reference, the average commercial 
prices of electricity in California and Nevada are about $154 /MWhe and $77 /MWhe, 

690 respectively [33]. 
Figure 13 shows that PPA prices decrease as DC capacity of the PV system increases, 

with about a 17 % decrease from 0 MWdc to 225 MWdc. At any given PV system 
capacity, the variability in PPA price across the five off-design cycle models is small, with 
a maximum range of 3.5 % occurring under a 0 MWdc PV system condition. System 

695 capacity factor depends greatly on design variable values. At a PV system DC capacity of 
225 MWdc, there is a drop in capacity factor due to the large reduction in solar multiple 
and hours of storage (Table 7). This result occurs because the PV system capacity 
is approaching the grid transmission capacity, resulting in the CSP system being shut 
down during PV generation to reduce curtailment. Correspondingly, for all the off-

700 design cycle models, there is a steep increase in the number of starts as the PV system’s 
DC capacity approaches 225 MWdc because the grid transmission capacity constraint 
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requires the cycle to shut down during high-PV-generation time periods to mitigate PV 
system curtailment. Of the four metrics shown in Figure 13, annual cycle starts has the 
greatest variability between the different power cycle models. Reliability for the 25 % 

705 highest-valued time periods is relatively constant for the five power cycle models, except 
for (C) and (Rc) at high PV system DC capacity. 

5. Conclusions 

We present a methodology to model a Rankine cycle with the fidelity to estimate off-
design performance. We implement said methodology into Engineering Equation Solver 

710 and validate the results against data provided by our industry partners and a model 
from literature that implements similar methodology. Then, we integrate the validated 
model results into SAM utilizing the “user-defined” cycle option which enables us to 
investigate the impact of off-design cycle performance on cycle operation, overall CSP 
plant performance, and minimum PPA price system design. The primary contribution of 

715 our work lies in investigating and understanding the Rankine cycle off-design performance 
impact on optimized dispatch decisions and the propagation of those decisions into a CSP 
system’s design, annual performance, and economics. 
The results indicate that previous modeling of Rankine cycle off-design performance 

is either too optimistic (constant boiler pressure) or conservative (sliding boiler pressure). 
720 The former causes unrealistic operation of the power cycle, such as an increased frequency 

of partial load operation to avoid cycle starts, which can lead to sub-optimal system 
designs. The latter results in lower solar-to-electric conversion, which negatively impacts 
plant finances and PPA price. Future work will update SAM’s default Rankine cycle 
models using estimates from (E) of off-design performance and will investigate power 

725 cycle transients at increasing time fidelity. 

6. Appendix 

Table 8: Units, acronyms, model names and notation. 

Units 
◦C Degrees celsius 
hr Hour 
K Kelvin 
kg Kilograms 
kJ Kilojoules 
kPa Kilopascals 
kW Kilowatts 
MW Megawatts 
MWe Megawatts electric 
MWt Megawatts thermal 
MWh Megawatt hours 
s Seconds 

Acronyms 
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c 

CSP Concentrated solar power 
EES Engineering Equation Solver 
HPT High-pressure turbine 
IAPWS International Association for the Properties of Water and Steam 
IPT Intermediate-pressure turbine 
LPT Low-pressure turbine 
MILP Mixed integer linear program 
NTU Number of transfer units 
PPA Power purchase agreement 
PV Photovoltaics 
SAM System Advisory Model 
SCC Spencer-Cotton-Cannon Method 
SM Solar multiple 
TES Thermal energy storage 

Models 
(C) Constant efficiency model 
(D) Data provided by our industry partner 
(E) Rankine cycle model capable of off-design performance calculations using EES 
(Ec) Off-design performance cycle model (E) pertaining to constant boiler pressure operation 
(Es) Off-design performance cycle model (E) pertaining to sliding boiler pressure operation 
(R) SAM’s Rankine performance model 
(Rc) Off-design performance cycle model (R) pertaining to constant boiler pressure operation 
(Rs) Off-design performance cycle model (R) pertaining to sliding boiler pressure operation 

Notation: Entire Parameters 
a0, a1, a2 Coefficients for the constant, linear and quadratic terms, respectively, 

on the expansion curve [kJ/kg-K], [1/K], [kg/kJ-K] 
aij Coefficient for the (i, j) exponent pair (see Table 1) [-] 

Specific heat [kJ/kg-K] 
f Fraction [-] 
h Specific enthalpy [kJ/kg] 
HR Heat rate [-] 
HR Relative heat rate [-] 
ITD Initial temperature difference [K] 
k Proportionality constant [1/kg-m] 
ṁ Mass flow rate [kg/s] 
n Number of [-] 
P Pressure [kPa] 
P̃c Normalized condenser pressure [-] 
Q̂ Normalized heat rejection [-] 
Q̇ Rate of heat transfer [kW] 
R Ideal gas constant for air [kJ/kg-K] 
s Specific entropy [kJ/kg-K] 
T Temperature [◦C] 
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T̂ Normalized temperature [-] 
T̂x Subset of time periods which contains the x % of the highest-valued period [-] 
Ẇ Power [kW] 
Ẇ cycle Cycle power [kW] 
β Shape factor parameter [-] 
Δ Difference (between two quantities) [·] 
η Efficiency [-] 
ρ Density [kg/m3] 
UA Overall heat transfer coefficient [kW/m2-K] 

Notation: Subscripts and Superscripts 
ac Alternating current 
acc Air-cooled condenser 
air Air 
amb Ambient 
c Cold fluid of the heat exchanger 
d Design condition 
db Dry bulb 
dc Direct current 
e Extraction (turbine) 
fan Fan 
g Gross electric 
h Hot fluid of the heat exchanger 
i Stage inlet 
m Mechanical 
max Maximum 
min Minimum 
net Net 
o Stage outlet 
p Pump 
pl Part-load 
rej Rejection 
s Isentropic 
sat Saturated 
t Thermal 

Notation: Functions 
Cp(·) EES’s specific heat function 
Psat(·) EES’s saturation pressure function 
s(·), s0(·) LPT expansion curve of entropy as a second-order polynomial of enthalpy 
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