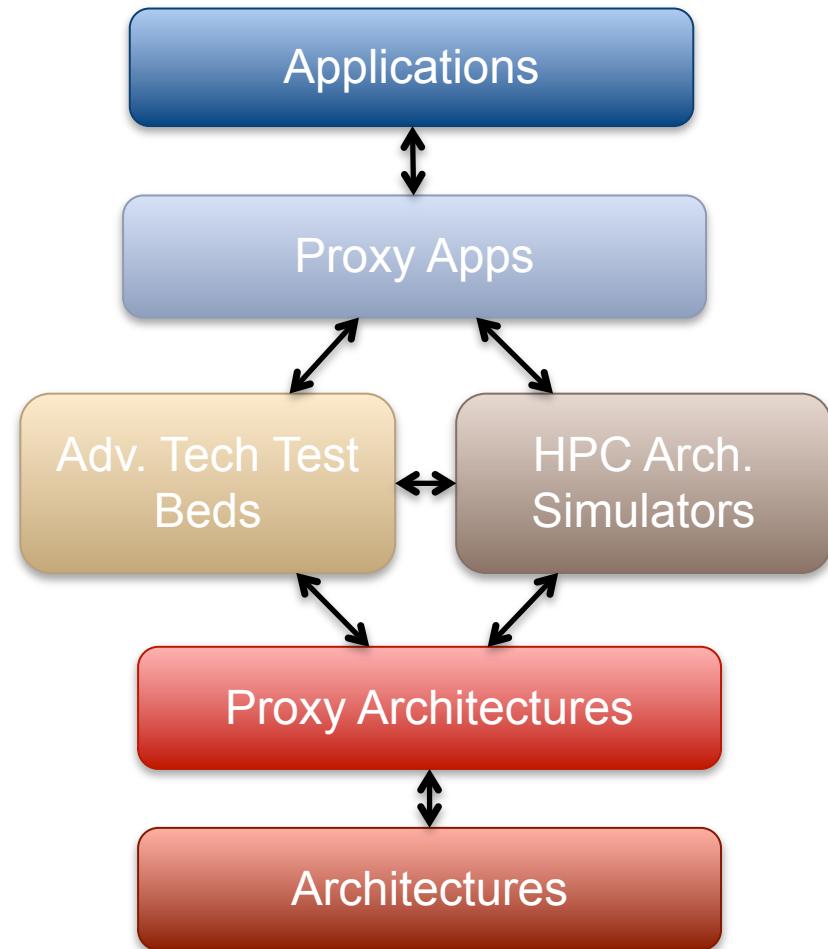


Exceptional service in the national interest

NNSA/ASC Test Bed Update

S.D. Hammond, R.F. Barrett, C.T. Vaughan, J. Jayaraj, C.R. Trott, J.H. Laros, S.M. Kelly, J.A. Ang
and System Admins


Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Methodology for Codesign

- Key Co-design Capabilities
- HPC Architectural Simulators
- Proxy Applications
- Advanced Architecture Testbeds
- Proxy Architectures

- Manteko Proxy Applications
- <http://www.manteko.org>
- SST HPC Simulation Framework
- <http://code.google.com/p/sst-simulator>

NNSA/ASC Test Beds

- **Compton**: Dual-socket Intel Sandy Bridge + Dual Xeon Phi co-processor with InfiniBand interconnect
- **Shannon**: Dual-socket Intel Sandy Bridge + Dual NVIDIA Kepler K20X GPUs with InfiniBand interconnect
- **Teller**: AMD A10 Fusion “Trinity” (Quad-core + HD 7XXX series Northern Islands GPU) with InfiniBand interconnect
- **Watson**: Dual-socket IBM POWER7+ with 10GbE
- **Cray XC30**
- **Others**

Compton Test Bed

- Compton is a test bed cluster for Intel's Xeon Phi product
- 42 nodes
- Dual-socket, 8-core 2.66GHz Sandy Bridge E-class processors
 - HPC processors found in TLCC-class machines, SMT is enabled on some nodes
- Each processor has a PCIe link to a Xeon Phi (Knights Corner) card
 - Knights Corner is a 57-core, 4-way SMT thread card
 - 5.0GT/s memory bus (up to 120 – 140GB/s of STREAM B/W)
 - 8GB of GDDR5 for each card
- Each node has an 80GB SSD to enable NFS relationship between node and Xeon Phi cards
- InfiniBand interconnect for nodes (and Xeon Phi cards)

Shannon Test Bed

- Shannon is a test bed cluster for NVIDIA's Kepler K20-GPU
- 32 nodes
- Dual-socket, 8-core 2.66GHz Sandy Bridge E-class processors
 - HPC processors found in TLCC-class machines, SMT is enabled on some nodes
- Each processor has a PCIe link to an NVIDIA K20X "Kepler" GPU
 - 2688 "Cores" @ 732MHz
 - 6GB GDDR5 Memory
 - 1.3 TFLOP/s
- InfiniBand interconnect for nodes

Teller Test Bed

- Teller is a test bed for AMD's APU (CPU+GPU) product
- 104 nodes
- Single-socket, A-10, quad-x86-core APU, 3.8GHz
 - Desktop-grade part being used to evaluate potential server-grade parts available in the future
- GPU on each APU is integrated
 - Radeon HD 7660D (Northern Islands)
 - Is AMD's older GPU VLIW architecture
- Each node has 16GB of system RAM with 2GB separated for the GPU aperture
- “Zero-copy” between CPU and GPU is enabled at the driver level
 - Experimental-grade feature which works but is not perfect
- InfiniBand interconnect

Snapshot of Technologies

	MPI	Intrins.	CUDA	OpenAcc	OpenCL	Kokkos Array	Cilk+	OpenMP		TBB	ArBB/CEAN	qthreads	pthreads	MKL/Math Lib.	Adv. Lang.	DSLs
								S	T							
NVIDIA (GPU)	Green	White	Green	Green	Green	White	White	Orange	White	White	White	White	White	Green	White	?
AMD (CPU)	Green	Orange	Orange	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Orange	?
AMD (APU)	Green	?	Orange	Orange	Green	White	White	White	White	White	White	White	White	Orange	White	?
Intel (CPU)	Green	Orange	Orange	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Orange	?
Intel (MIC)	Green	White	Orange	Orange	Green	Green	Green	Green	Green	Green	Orange	Green	Green	Orange	White	?
IBM (BG)	Green	Green	White	White	White	White	White	Green	?	White	Green	Green	Green	Orange	Orange	?
ARM	Green	Green	White	White	Orange	Green	Orange	Green	Green	Orange	Green	Green	Green	Orange	Orange	?

miniFE	Green	Green	Green	Orange	Green	Green	Green	Green	Green	Green	Green	Green	Green	Orange	Orange	White
miniMD	Green	Green	Green	White	Orange	Green	Orange	Green	Green	White	White	White	Orange	Orange	White	White
miniGhost	Green	White	White	Green	Orange	White	White	Green	Green	White	White	White	White	White	White	White
LULESH	Green	White	Orange	Orange	Orange	White	White	Green	White	White	White	White	White	Orange	Orange	Orange
S3D	Green	White	White	Green	White	White	White	Green	White	White	White	White	White	White	Orange	Orange
CoMD	Orange	White	White	White	Orange	White	White	Orange	White	White	White	White	White	White	White	White

Successes

- Many application ports now completed
 - OpenMP, OpenACC, OpenCL, CUDA, MPI
- Demonstrating significant performance improvements on some hardware (for some problems)
 - 2x not uncommon, 4x in some cases
- Growing experience in how to port and optimize code
- Excellent vendor discussions and feedback
 - Compilers, vendor libraries, profilers, debuggers etc

Difficulties

- Technology is still emerging
 - OpenACC is particularly problematic neither CAPS or PGI really work (even compile) with C++
 - Many, many bugs in the software environment
- Tension between depth of code changes which we want to pursue
 - Deeper, intrusive changes are giving better performance
 - Application developers are saying they don't want to over specialize code
- Keeping stack up to date is challenging
 - We are building many components ourselves

Observations

- Vectorization is proving challenging
 - And not *always* beneficial (particularly in solvers)
- Very often optimizations are making codes on Xeon run faster
 - Can recognize some performance improvements even today
- Focusing on parallelism seems to result in fluid algorithm design
 - We keep thinking “MPI + Threads + Vectors”
 - In the end most platforms blend different amounts of these
- Use MPI between NUMA domains, threads inside
- Don’t use #pragma ...

**Sandia
National
Laboratories**

Exceptional service in the national interest