

Diagnosis and Treatment of Life-Threatening Neonatal Diseases

SAND2011-7556P

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. **SAND**

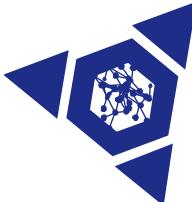
Common Neonatal Diseases

- **Failure of passive transfer (FPT)**
- **Septicemia**
- **Diarrhea**
- **Enterotoxemia**
- **Pneumonia**
- **Neonatal maladjustment syndrome**
 - Difficult calving
 - Hypoxemia *in utero*
- **Viral diseases that do not cause diarrhea**

Congenital anomalies

Failure of Passive Transfer: Cause

- **Failure to ingest colostrum**
 - Musculoskeletal abnormalities
 - Flexure deformities
 - Calving injury
 - Cow steps on the calf
 - Neonatal maladjustment syndrome
 - Hypoxemia at birth
 - May be related to a difficult birth
 - Nutritional deficiencies resulting in weakness at birth
 - Neonatal septicemia
- **Ingestion of poor quality colostrum**
 - The quality of colostrum can be improved with good maternal care prior to calving
 - Adequate nutrition
 - Vaccination 30 – 60 days prior to calving will increase the antibody concentration in the colostrum
 - First calf heifers may not produce enough colostrum

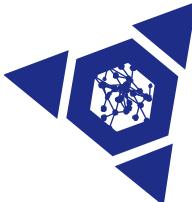


Failure of Passive Transfer

- **FPT is caused by a calves inability to ingest adequate colostrum or because the colostrum is of poor quality**
- **FPT is a risk factor for other infectious diseases**
- **By ensuring that colostrum is ingested and that it is of good quality will reduce the likelihood that a calf will become infected with an infectious pathogen**
- **Ingestion of adequate good quality colostrum is the single most important husbandry practices to support calf health**
- **FPT can be diagnosed by measuring the concentration of serum proteins**

Treatment of FPT in Cattle

- **Treat the primary problem**
 - Difficult birthing
 - Sepsis
 - Neonatal maladjustment syndrome
 - Prematurity
- **Early diagnosis of FPT can be treated with colostrum administered orally**
- **Diagnosis of FPT in cattle beyond 12 - 24 hours of age can be treated with a whole blood transfusion**
 - The dam and/or an unrelated bovid is a suitable donor
 - It is not necessary to cross match cattle for one transfusion
 - **More than one transfusion requires cross-matching**
 - ***Horses and small ruminants require cross-matching***



Neonatal Septicemia: Cause

- **FPT is a common risk factor associated with neonatal septicemia**
- **Calves that do not ingest adequate colostrum or poor quality colostrum are at risk of developing septicemia**
- **Urachus remains patent and ascending infection results**
- **Calves can become septic *in utero***
 - Maternal placentitis
- **Most cases of septicemia are caused by gram negative bacteria**
 - Several studies have shown that gram negative bacteria account for approximately 80 percent of bacterial isolates from septic ruminants
 - *E. coli* is the most common bacteria isolated
 - Gram positive organisms account for approximately 20 percent of bacterial isolates



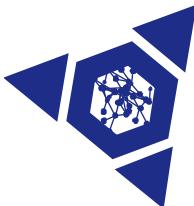
Neonatal Septicemia: Clinical Signs

- **Depression**
- **Lack of a suckle reflex**
- **Anorexia**
- **Dehydration**
- **Anterior uveitis and/or iritis**
- **Swollen painful joints**
- **Swollen painful urachus**
- **Petechiae**
- **Cold extremities**

Diarrhea

Neonatal Septicemia: Treatment

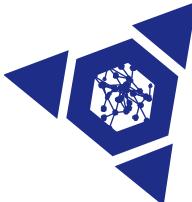
- **Supportive care**


- Fluid replacement
 - **Administration of dextrose containing solutions is usually warranted due to hypoglycemia**
- Fluid maintenance
- Nutritional support
 - **Feed through orogastric intubation**
 - Milk the dam and feed to the calf
 - Milk replacer
- Anti-inflammatory agents
 - **Flunixin meglamin (Banamine®)**
 - 1.1 to 2.2 mg/kg (IV, SQ, IM)
 - **One dose**
 - In adults residues can persist for up to 30 days – no data on neonates
- **Aspirin**
 - 50 - 100 mg/kg orally

Neonatal Septicemia: Treatment

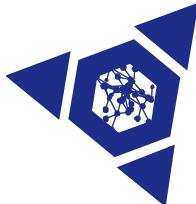
- **Supportive care**
 - Antimicrobial therapy
 - **Use broad spectrum antimicrobial agents**
 - Emphasis on gram negative coverage
 - Often require long-term treatment of 5 to 7 days
 - **Antimicrobials with gram negative spectrum of activity**
 - Gentamicin (3mg/kg every 12 hours or 6.6 mg/kg every 24 hours – intramuscularly or intravenously for 5 to 7 days)
 - **Long meat withdrawal time – 18 months**
 - **Accumulates in the kidneys**
 - **Used in combination with an antimicrobials that target gram positive agents**
 - **Must ensure adequate hydration or can cause renal failure**
 - Amikacin (7 – 10 mg/kg every 12 hours - intravenously or intramuscularly for 5 to 7 days)
 - **Long meat withdrawal times – same as gentamicin**
 - **Should be used with an agent that targets gram positive agents**
 - **Must ensure adequate hydration or can cause renal failure**
 - **Expensive**

Neonatal Septicemia: Treatment


- **Supportive care**

- Antimicrobial therapy

- **Antimicrobials with gram negative and gram positive spectrum of activity**

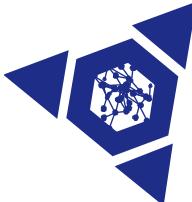

- Ceftiofur (1 to 5 mg/kg twice daily – intravenously or intramuscularly for 5 to 7 days)
 - Short withdrawal time – 2 – 4 days
 - Safe for use in neonates
 - Ampicillin (10 mg/kg every 12 hours intravenously or intramuscularly for 5 to 7 days)
 - Long meat withdrawal times – especially important for human consumption due to penicillin allergies
 - Weak gram negative coverage mostly gram positive - should be used in combination with an agent that has gram negative coverage
 - Safe for use in neonates
 - Antimicrobials should be administered for the full 5 to 7 days

Neonatal Diarrhea

- **Neonatal diarrhea is commonly caused by infectious pathogens**
 - *E. coli*
 - **Calves less than a week are usually affected by enterotoxigenic *E. coli* strains**
 - Rotavirus
 - **Calves of all ages are susceptible to rotavirus**
 - Coronavirus
 - **Calves of all ages are susceptible**
 - Salmonella
 - **Calves of all ages are susceptible**
 - *Cryptosporidium*
- ***Successful calf rearing and a low incidence of diarrhea is based on good management***

Etiological Agents

- **Diarrhea can be a result of increased secretions or decreased absorption**
- **Enterotoxigenic *E.coli*, *Salmonella* sp., and *Campylobacter* sp. cause diarrhea by producing toxins that bind to the intestinal epithelium to increase intestinal secretions**
- **Rotavirus, Corona virus, and *Cryptosporidium* typically destroy the intestinal epithelium and impair fluid absorption**
 - Rotavirus may also secrete a toxin that increases intestinal secretions


Neonatal Diarrhea: Clinical Signs

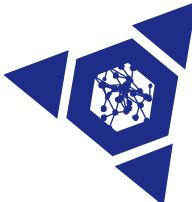
- **Diarrhea**
 - May or may not have blood
- **Fever may or may not be present**
 - Depends on etiological agent and whether or not systemic infection exists
- **Can occur with septicemia**
 - Symptoms associated with septicemia
- **Calves with enterotoxigenic *E. coli* diarrhea may have profound depression due to metabolic acidosis**
 - Hyperkalemia may cause arrhythmias
 - Depression is usually present with diarrhea associated with other etiological agents but may not be as severe

Poor appetite

Dehydration

Enterotoxigenic *E.coli* Diarrhea

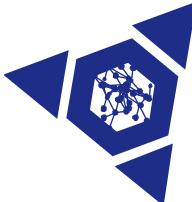
- Enterotoxigenic *E. coli* and other bacterial pathogens bind receptors on the intestinal epithelium, which induces the secretion of sodium, potassium, and chloride into the gut lumen
 - Water follows the electrolytes into the lumen and induce diarrhea
 - Electrolyte secretion can be severe enough to alter the acid base status
 - **Calves can develop a severe metabolic acidosis because of the rapid sodium loss**
 - **Because of the acidosis, large intracellular stores of potassium are pushed out of the cell and can result in hyperkalemia**
 - Whole body potassium has not been affected – it is a shift from intracellular to extracellular compartments
 - **Hyperkalemia can adversely affect the function of the heart causing bradycardia and atrial standstill**
 - Bradycardia in the face of dehydration is an indicator of enterotoxigenic *E.coli*
 - Sodium bicarbonate and dextrose therapy will rapidly reverse hyperkalemia and metabolic acidosis



Neonatal Diarrhea: Treatment

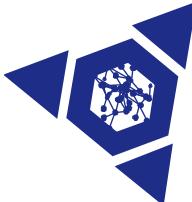
- **Supportive care**

- Fluid replacement
 - **Oral versus intravenous**
- Fluid maintenance
 - **Oral versus intravenous**
- Nutritional support
 - **Feed through orogastric intubation if tolerant of milk**
 - Rota and corona virus infection disrupts lactase producing villous tips
 - **Milk is poorly tolerated**
 - **Yoghurt with live cultures can help support the re-establishment of intestinal flora**
 - Antimicrobial therapy
 - **Only indicated with systemic signs**



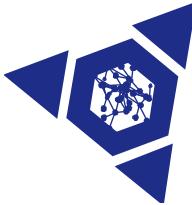
Fluid Therapy to Treat Enterotoxigenic *E.coli*

- **Calves with enterotoxigenic *E.coli* may require correction of electrolyte abnormalities and metabolic acidosis**
- **If severe depression is present, correction of acid base abnormalities may be required**
- **Sodium bicarbonate can be supplemented in intravenous fluids or orally**
- **For intravenous use - 13 grams of sodium bicarbonate (baking soda) per liter of water makes an isotonic solution of 156 mmol/L**
 - This can be added to a liter of sterile water
 - If no sterile water exists it is best to put into 5% dextrose solution
 - The solution will be hypertonic and can worsen dehydration
 - Administer in two liters
- **For oral administration – 2-4 tablespoons of baking soda can be added to 2 liters of water and administered by orogastric intubation**
 - Do not mix alkalizing solution with milk – it will disrupt clot formation



Enterotoxemia: Cause

- **Enterotoxemia is caused by *Clostridium perfringens* type C**
 - *C. perfringens* type C produces alpha hemolytic toxin and the beta hemolytic toxin
- **The organism is acquired from the environment in the first few days of life**
- **Adults can be asymptomatic shedders**
 - It is not considered a normal commensal like type A



Enterotoxemia: Clinical Signs

- **The clinical signs are consistent with necrotic enteritis and diarrhea**
 - Diarrhea varies in consistency and color
 - Streaks of necrotic mucosa may be present
 - Abdominal pain and bloating, especially on the right side
 - Depression and lethargy
 - Anorexia
 - Dehydration
- **Some calves may die before diarrhea develops**
- **Morbidity and mortality are high**

Enterotoxemia: Treatment

- **Supportive care is required**
 - Fluid therapy
 - Nutritional support
 - Anti-inflammatory
- **Systemic antimicrobial therapy is required if systemic systems exists**
- **Oral penicillin has been used but success has not be documented scientifically**
- **Morbidity and mortality are high and treatment is usually unsuccessful**

Prevention through vaccination is the best therapy

Summary

- **Many diseases of the neonate present similarly**
- **Treatment is often very similar**
- **Supportive care and appropriate antimicrobial therapy are the key to successful management of neonatal diseases**
- **Veterinarians should educate farmers about proper maternal and calf husbandry practices to improve calf survival and minimize infectious diseases**
 - Vaccinations
 - Nutrition
 - Colostrum

