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Abstract—The unsupervised learning of community structure,
in particular the partitioning vertices into clusters or communi-
ties, is a canonical and well-studied problem in exploratory graph
analysis. However, like most graph analyses the introduction
of immense scale presents challenges to traditional methods.
Spectral clustering in distributed memory, for example, requires
hundreds of expensive bulk-synchronous communication rounds
to compute an embedding of vertices to a few eigenvectors of
a graph associated matrix. Furthermore, the whole computation
may need to be repeated if the underlying graph changes some
low percentage of edge updates. We present a method inspired by
spectral clustering where we instead use matrix sketches derived
from random dimension-reducing projections. We show that our
method produces embeddings that yield performant clustering
results given a fully-dynamic stochastic block model stream
using both the fast Johnson-Lindenstrauss and CountSketch
transforms. We also discuss the effects of stochastic block model
parameters upon the required dimensionality of the subsequent
embeddings, and show how random projections could signifi-
cantly improve the performance of graph clustering in distributed
memory.

Index Terms—streaming algorithms, random matrices, graph
clustering

I. INTRODUCTION

Analysts working in applications as widely ranging as biol-
ogy, sociology, network science, computer science, telecom-
munications, and others deal regularly with graph-expressible
data where a major task of interest is to find structure,
usually defined as a partitioning of “like” vertices into clusters.
Although many graph clustering algorithms have arisen in the
literature, and several works make important contributions to
improving their distributed versions [1]-[4], applying them
to scales that require distributed implementations on modern
systems (topology data is near PetaScale, say > 100B edges)
remains challenging.

We will center our focus in this paper to accelerating
algorithms in the form of spectral clustering [5]. In the
most generic form, spectral clustering computes approximate
eigenpairs of a graph-dependent matrix (commonly adjacency,
Laplacian, or a centered/normalized variant). Then, k extremal
eigenvectors form an embedding of the vertices into RF.
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Some downstream conventional clustering algorithm (e.g. K-
means [6] or dbscan [7]) then partitions the vertices using
their embedded locations. Often recursion is employed, where
the initial embedding reveals several of the best partitions
(strongest communities) and reapplying the process on much
smaller sub-partitions to further resolve community structure.

Although spectral clustering is a popular method and
reasonably performant (log-linear cost and storage in input
data) for real-world serial applications, it is not currently
employed at extreme scales. State-of-the-art eigensolvers such
as Krylov/Lanczos methods are iterative methods, relying on
sparse linear algebraic kernels (primarily sparse matvec, dot-
product, and their block vector variants), for which high-
quality scientific computing packages are available [8], [9].
Recent work develops these linear algebra kernels and others
for challenging graph topology [10]. Distributed memory
implementations of eigensolvers require hundreds of resource-
hungry bulk-synchronous operations (sequences of sparse
matvecs). Numerical stopping criteria are also poorly un-
derstood for general, large real-world graphs. Finally, con-
ventional spectral embedding algorithms are not efficient in
evolving graph applications, where an update of a few edges
(say those connecting previously poorly connected partitions)
can cause previous solutions to take longer to iteratively
improve than random initial guesses would.

In this document we present an alternative method relying
upon a cheaper and more scalable embedding procedure using
linear sketches: dimension-reducing linear projections drawn
from a carefully-chosen distribution. Random sketch matrices
allow us to approximately preserve row inner products and
norms of an arbitrary matrix in a much lower dimension with
high probability. Our method replaces an expensive spectral
embedding with an efficient - though coarse - linear sketch
embedding. In addition to gaining computational efficiency,
linear sketches are designed for the turnstile streaming data
model - i.e. they are indifferent to the order in which matrix
items are received, and are robust to changes in the underlying
matrix. Thus, our method produces a vertex embedding that
features (1) computation and communication linear in the
number of edge updates, (2) a simple distributed memory
implementation, and (3) natural robustness to dynamic data.

Others have broadly applied matrix sketches throughout
numerical linear algebra, often with an emphasis on matrix
multiplication, regression, or low-rank approximation [11].



Ailon and Chazelle introduced a fast formulation of the classic
Johnson-Lindenstrauss transform (JLT, [12]) with the fast
approximation of nearest neighbors in the embedding space as
a motivating example [13]. Traganitis et al. devised a library of
tools SkeVa that utilize sampling to produce approximate K-
means clustering on high-dimensional data [14]. Our approach
is partially inspired by Gilbert et al., who used JLTs to directly,
though coarsely, approximate the singular values and vectors
of large matrices [15].

Many recent graph and matrix sketching applications make
use of linear ¢,-sampling sketches [16] based upon precision
sampling [17]. Ahn et al. described spectral clustering algo-
rithms on hypergraphs, and used sampling sketches to accel-
erate their algorithms [18]. Ahn, Guha and McGregor applied
linear sampling sketches to estimate graph properties [19], [20]
including approximating spectral sparsification [21], which
Kapralov et al. improved with a single-pass algorithm [22].
Unfortunately, £,-sampling sketches are tricky to implement
and are not considered efficient for large scale applications.

Others have utilized sketches as a means to accelerate
spectral clustering. Fowlkes et al. [23] describe a method using
a Nystrom low-rank approximation to the Laplacian by way
of column sampling, and later using the eigenspectrum of
the Nystrom approximation to construct an embedding to be
clustered in O(nmk +m?) operations, where n is the number
of vertices, m is the dimension of the Nystrom approximation,
and k is the embedding dimension. Li et al. [24] later improved
the complexity to O(nmk). We will describe a method that
requires O(nnz(X)) time, where nnz(X) is the number of
nonzero elements in the graph matrix X - i.e. twice the
number of edges. Gittens et al. use a conventional power
iteration method to coarsely approximate eigenvectors before
utilizing JLTs to project into a small dimensional space [25].
Our method avoids the expensive power iteration process.
Additionally, unlike either of these methods, our embeddings
scale naturally to the distributed model, take advantage of the
sparsity structure in the graph matrix, and are fully robust to
dynamic and streaming graphs.

We consider popular efficient random matrix projections in
our analyses: the fast Johnson-Lindenstrauss transform based
upon the Walsh-Hadamard transform (FWHT) [13], and the
CountSketch transform (CST) [26]. We will produce results
comparing the performance of FWHT- and CST-based em-
beddings of stochastic block model (SBM) vertices into lower-
dimension space. In our experiments, we employ UMAP [27]
to perform an additional non-linear dimensionality reduction
and HDBSCAN [28] to cluster the resulting embeddings. We
further present scaling results demonstrating that our linear
embedding procedure can embed SBMs with tens of billions
of edges in seconds on a modest compute cluster.

II. NOTATIONS AND BACKGROUND

We will assume throughout an undirected, unweighted,
unsigned, connected and static graph G = (V, £) with vertex
and edge sets of size |V| = n and |£| = m, respectively.
Spectral clustering methods generalize trivially to weighted

graphs and other have extended them to handle signed graphs
[29], dynamic graphs [30], and directed graphs [31]. The
sketching methods we employ generalize to weighted, signed,
dynamic, and directed graphs with much less complication,
as the key operator is a simple linear projection. In cases
where signal to noise ratio is high enough, the sketching
approach likely provides scalability that is not possible in
the existing approaches. For example, some directed graph
methods involve complex-valued iterative eigensolvers, which
are challenging to implement efficiently at scale on graph
topologies. This is particularly the case for sketch-based
dynamic graphs [32].

In particular, we will assume that G is sampled from an
undirected stochastic block model with ¢ communities (or
blocks) with symmetric probability matrix P € [0, 1]°*¢ and
the community size vector C € ZS. The (i, j)th entry of P
indicates the pairwise probability that each of the C; vertices
in community ¢ are neighbors with each of the C; vertices
in community j. In general, the diagonal entries of P will
be larger than the off-diagonal entries, which is meant to
simulate the inter- and intra-connection densities of ground
truth communities in empirical networks. The expected ratio
between the diagonal entries of P and and off-diagonal entries
of P are determined by additional parameters p;, and pgy¢,
which parameterize the distributions from which the elements
of P are sampled.

A graph G has adjacency matrix A, where A, , = 1 iff
xzy € & and is zero otherwise. We will embed the rows
of the adjacency matrix because the SBMs we consider are
nearly regular, and so little is gained by utilizing a Laplacian
formulation. We use pythonic notation for matrix rows and
columns (the row vector corresponding to the neighborhood
of vertex ¢ is A; . and the i-th column is A, ;).

Canonical adjacency-based spectral embedding of dimen-
sion k on G is performed as follows:

1) Let V e R"* be the matrix whose columns
Vii,..., V. are the eigenvector of A associated with
most positive eigenvalues.

2) Identify with each vertex x the row vector V..

We call the rows of V' a spectral embedding of their corre-
sponding vertices. The spectral clustering algorithm consists
of computing a spectral embedding and executing a clustering
algorithm on the embedded vectors, i.e. the rows of V.

III. MATRIX SKETCHING

Matrix sketching is a numerical linear algebraic tool with
applications in, e.g., latent semantic indexing [33], low-rank
approximation [34], and least-squares problems [35]. A pri-
mary goal of matrix sketching is to embed a matrix X € R™*P,
comprised of n data points in a p-dimensional feature space,
in a lower dimensional space such that geometric properties of
the original matrix are preserved to a desired level of fidelity.
Mathematically, this typically entails the application of a linear



operator S € RP*® with s <« p to form the sketch matrix
XS e Rxs, 1
For the scope of this work, we seek sketching matrices that

1) preserve pairwise distances between rows in X to within
a tolerance which we denote ¢, with a constant failure
probability;

2) satisfy 1) by projecting into ©(¢~2logn) dimensions;

3) admit scalable and sparse distributed memory implemen-
tations.

To this end we consider the FWHT, which satisfies conditions
1) and 2), but we will show that it struggles to satisfy
our needs for condition 3). We also consider the CST and
show that it exhibits superior distributed memory scaling as
compared to FWHT, although it does not provide as strict a
guarantee for condition 1). In particular, CST is not a Johnson-
Lindenstrauss transform. However, it has been applied to great
effect throughout the literature even with its less strict guaran-
tee [11], [26], [36]. We extensively show that CST and FWHT
create embeddings of similar quality in our experiments in
Section IV.

In rough terms, the Johnson-Lindenstrauss lemma states that
there is distribution of linear operators that can embed any n
points in a p dimensional feature space into ©(c~2log(n))
dimensions such that all pairwise inner products are preserved
to within a factor of (1 £ ) with a constant probability of
failure [12]. That is, our embedding dimension is independent
of the dimension of the feature space and logarithmically
dependent on the number of points which we are embedding.
The FWHT embeds a matrix X as XDPS € R"** where
D € RP*P ig a diagonal matrix whose entries are i.i.d. +1
with equal probability, P € RP*P is a Hadamard matrix, and
S € RP*# is a sparse matrix whose nonzero entries are one to
indicate uniform subsampling. In practice p is assumed to be
a power of two. This construction allows the FWHT to satisfy
the Johnson-Lindenstrauss lemma with asymptotically lower
complexity than prior JLT formulations.

D, P, and S are never actually formed in practice, as their
entries can be generated quickly as needed. In particular, em-
bedding an element X; ; amounts to sampling column indices
k1,...ks and generating a vector X; ;*D; ;*[H; i, ... Hj 1]

The CST was first developed for numerical linear algebra
by Clarkson and Woodruff [26] and was inspired by the
celebrated CountSketch [37]. The sketch is computed as X R,
where R € {—1,0,1}P*® is a sparse matrix with 1 non-zero
element per column that is =1 with equal probability. The
nonzero column indices and nonzero values are computable
using 2-universal hash functions, obviating the expensive i.i.d.
sampling requirements of the FWHT.

Importantly, computing X R CST requires only O(nnz(X))
operations. Also important, the rows of X R preserve the spar-
sity of the rows of X. FWHT embeddings will always be dense
- even if the corresponding row has only 1 nonzero element!

I'Similar sketching procedures involving multiplication on the left-hand
side of the argument, as well as those which embed both the row-space and
column-space of X (bi-linear sketches), can be defined analogously.

These features make CST particularly suited to distributed
online sketching of graphs, in which edges arrive one-by-
one into working memory simultaneously on a large number
of processors as highly sparse vector updates. However, the
FWHT satisfies more stringent theoretical guarantees, making
it a useful baseline for comparison.

It is import to note that both FWHT and CST can be
implemented in a fully-dynamic streaming fashion on arbitrary
matrices that arrive in any order and can evolve during the
process of performing the embedding. This makes FWHT and
CST embeddings fully robust to changes in the underlying
graph, a large advantage over the practical difficulties that face
spectral methods in the streaming setting.

IV. CLUSTERING EXPERIMENTS
A. Experimental Setup

In our experiments we implement an embedding-clustering
pipeline similar to that of spectral clustering. In particular,
we use a sketch transform to produce an embedding into
some dimension s = ©(¢~2logn), and then further sharpen
the pairwise distances between communities by applying the
nonlinear dimensionality reduction tool UMAP. We assume
throughout that we know the ground truth number of commu-
nities ¢ for each graph considered, and so we use UMAP to
reduce the embedding dimension from s to c. We then cluster
the rows of the embedding in R"*¢ using HDBSCAN. We
keep the parameters of both UMAP or HDBSCAN fixed at
their default values in all experiments.

In our clustering experiments we assess the performance of
our Sketch-UMAP-HDBSCAN pipeline using pairwise preci-
sion and recall [38] as our primary metrics. In particular, we
determine the relationship between the parameter € - which
determines the fidelity to which inner products are preserved
by our embedding - with the following SBM features:

1) the ratio of on-diagonal to off-diagonal entries in the
probability matrix 5 o

2) the number of communities ¢;
3) the number of vertices n.

We test embeddings produced by both CST and FWHT,
making the simplifying assumption that all SBMs have a
probability matrix where diagonal elements equal p;,, and off-
diagonal elements equal p,,;:. We also assume that all blocks
are equally-sized, i.e. that C = n/c. We apply our methods
to more sophisticated SBMs that violate these assumptions in
the next section.

In our experiments, we track what we refer to as the
maximum viable . We define this to be the largest value €
can achieve in a sketch embedding before either the pairwise
recall or pairwise precision falls below a certain threshold.
This maximum viable ¢ is related to the sketch dimension
of the graph matrix in an inverse squared manner [12]; e.g.,
a reduction of epsilon by a factor of 10 leads to a 100-fold
increase in embedding dimension.

In the first experiment, we vary the on- versus off-diagonal
ratio of pjy, t0 poy: from 6(10) to H(103), fixing the number
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Fig. 1. The estimated maximum viable € as a function of SBM parameters. Figure 1(a) plots € as a function of the ratio of the on-diagonal to off-diagonal
elements in the probability matrix associated with a SBM with 16 communities and 256 vertices per community. Figure 1(b) plots ¢ as a function of the
number of communities in an SBM with 4096 vertices and an on-diagonal to off-diagonal p matrix entry ratio of ~ 50. Figure 1(c) plots € as a function of
the number of vertices in an SBM with 16 equally-sized communities and an on-diagonal to off-diagonal p matrix entry ratio of ~ 50.

of vertices n = 4096, the number of communities ¢ = 16
and community sizes to C; = 256 for each i. The row sums
of the generated P matrix are set to be 0.5, and for each
sketch/parameter combination we run 10 independent trials. In
the second two experiments we fix p;n/pout ~ 50 and C; =
n/c, varying ¢ in experiment two and n in experiment three.
In the second experiment, we fix n = 4096 while varying c
from 2 to 32. In the third experiment, we fix ¢ = 16 while
varying n from 512 to 8096. In all three experiments we set
the thresholds for precision and recall (the metric threshold) to
0.90, 0.95, and 0.99. Our metric threshold dictates how large
we can allow ¢ to grow while maintaining the given tolerance.

B. Results

Examining the first test case with results reported in Fig-
ure 1(a), we see that as the on-diagonal to off-diagonal ratio
is increased, the maximum viable ¢ increases. This matches
our intuition; if connections between different communities are
unlikely relative to those within communities, low-dimensional
embeddings more accurately preserve clustering features. This
corresponds directly to looser bounds on ¢; if our clusters are
more isolated from one another, the sketch embedding can
be constructed such that it preserves geometric structure to
a lesser extent. We also observe that the CST and FWHT
perform nearly identically for all test cases, giving credibility
to the use of the more distributed computationally-friendly
CST in place of the more theoretically justified FWHT. Finally,
as we decrease our metric thresholds from 0.99 to 0.90, we
obtain a larger maximum viable ¢; when we decrease our
demands on cluster quality, our embedding can be of lower
fidelity.

We now determine the dependence of the maximum viable
€ on the number of communities in our SBM. We expect that,
as we increase the number of communities with the number of
vertices fixed at 4096, achieving desired precision/recall will
become more difficult. Consequently, our sketch will have to
map into a higher embedding dimension to sufficiently capture

the geometry of the original matrix, corresponding to a lower
maximum viable . Our results shown in Figure 1(b) confirm
this prediction; as we increase the number of communities in
our SBM we see that the maximum viable € grows smaller.

Finally, we fix the number of communities in our SBM
while increasing the overall number of vertices in the SBM
(hence we are increasing the number of vertices per commu-
nity as well). Figure 1(c) shows that the maximum viable ¢
increases as the number of vertices increases Further, as the
number of vertices increases, we observe a flattening out of
the maximum viable ¢, which indicates that our methods ought
to scale well as we increase the size of the graphs we are
clustering, assuming that the community count remains fixed.

Across all three experiments we observe some important
trends. First, we see that increasing our metric threshold does
not drastically decrease the value of € necessary to embed our
graph matrix. We therefore expect high performance from our
methods at a relatively marginal cost. Further, the CST and
FWHT achieve quite similar results in all test cases. Given
that the CST is much faster and naturally implemented in a
distributed setting while the FWHT satisfies more rigorous
embedding properties, this is a particularly exciting result.
Broadly, our results suggest that we ought to expect upper
bounds on ¢ to be increase as the number of communities
increases, as the number of vertices per community decreases,
and as the overlap between communities increases. On the
other hand, as clusters in a graph become less disparate, our
sketch embedding must capture the properties of the full graph
matrix to a higher degree of fidelity.

V. SCALING EXPERIMENTS

We now analyze the quality of the embedding-clustering
pipeline on large benchmark graphs and test the scalability
of our distributed-memory implementation of the embedding
procedure. We utilize a selection of open-source SBMs gen-
erated as a part of the HPEC graph challenge [38]. Unlike
our earlier experiments, these SBMs feature variable-sized



Fig. 2. A 3-dimensional visualization of the clusters produced by projecting
a 50 thousand vertex SBM with 44 communities using CST with ¢ = 0.01.
Vertex embedding locations are colored according to their ground truth
partition. Although the corresponding row of Table I shows poor clustering
results, a simple visual inspection shows that many of the true partitions
separated cleanly, even in only 3 dimensions. The discrepancy in analytic
metrics can likely be ameliorated by recursion and/or exploration of the
UMAP/HDBSCAN parameter space, which we have chosen to keep fixed.

V| Pair Precision, Recall > 0.9 Parameters
# Partitions £ PP PR Accuracy
500 8 0.1 0.96983 | 0.97719 0.986
1000 11 0.1 0.95991 | 0.95301 0.976
5000 19 0.05 0.97103 | 0.97395 0.9878
20000 32 0.018 | 0.91305 | 0.90455 0.9588
50000 44 0.01 0.55959 | 0.12414 0.73773
TABLE I

SBM EMBEDDING EXPERIMENTS

communities and more complex probability matrices. Table I
shows a selection of graph sizes, true cluster counts, and
the values of € used to produce a CST embedding, as well
as the pair precision (PP), pair recall (PR), and accuracy
averaged over 10 independent trials.” In general, € was chosen
to obtain average PP and PR both > 0.9. We note, however,
than as the graphs grow in size and complexity, that ¢ also
decreases. Figure 1(b) provides a likely explanation for this
phenomenon, as community count serves as a damping factor
on the maximum viable €. Further, performant UMAP and
HDBSCAN parameters most likely differ as SBMs vary in
size and complexity.

Figure 2 shows the largest of these SBM embeddings
projected down into 3 dimensions and colored according to
their ground truth communities. As we can see, even in the
small dimensional space, the embedding manages to separate
most of the clusters, some completely, others mixed into
clusters of 2 or more communities. This suggests that our
method, like most others at scale, will likely be best applied
by hierarchically partitioning and refining subsets of vertices.

A. Distributed Sketching

A sketch embedding of dimension s on a square graph
matrix X € R™"*" of G is performed as follows:

2Results using FWHT were similar.

1) Choose a desired precision € € (0,1).

2) Sample a sketch operator S € R™*%, with s = O(s72).

3) Compute sketch X S.

4) Identify with each vertex x the row vector (X5),,..

We distribute this procedure as follows. Assume a universe
of processors P, and further assume some arbitrary balanced
partitioning of vertices to processors f : V — P.3 We will
abuse notation and refer to the set of vertices assigned to P €
P by fas f~1(P) . Let o be an arbitrary stream of edge
updates defining £, partitioned such that each P € P receives
the substream o p. Each P € P maintains a sketch vector
in R* corresponding to (XS),.. for each z € f~*(P). On
reading an edge uv € op, P sends uv to f(u) and vu to f(v).
Upon receiving an edge zy, f(x) = P, processor P updates
(X S)s,. appropriately. After having read over o and cleared
their communication buffers, P has X S stored in distributed
memory.

We examine the scaling limits of the embedding procedure
by implementing our distributed sketches using the C++/MPI
communication library YGM [39] and applying them to very
large SBMs generated with GraphChallenge 2017 parameters,
which we fit with constrained regression. We use

c=0.95%xn"936 C = 9505 Var(C) = .32n%64,

pin ~ 167507959 po ~ —1.02n70-59,

where c is the number of communities, C, Var(C) are the
parameters used for sampling community sizes, and p;y,, Pout
are internal/external edge density parameters used in the SBM
generation. All of our distributed experiments were performed
on a cluster of Intel Xeon E5-2695 processors each featuring
36 cores.

Figure 3(a) shows the wall time scaling of our codes
with a fixed number of processors as graph size increases.
Figure 3(b) shows the wall time where instead the graph
to be embedded is fixed and we increase the number of
compute nodes. Finally, Figure 3(c) shows the scaling where
only the embedding dimension increases - i.e. £ decreases.
These scaling studies reinforce our assertion of the fitness of
CST for generating high quality low-dimensional embeddings
for clustering applications, and highlight the weaknesses of
the more disciplined but also more cumbersome FWHT. In
particular, we find that our implementation scales at a rate no
worse than reading the graph into memory.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated a scalable vertex embedding proce-
dure using linear sketches, and have validated its utility and
scalability on partitioning SBMs. We have shown that this
approach provides an algorithmic workflow similar to spectral
clustering at a fraction of the cost, and with the benefit of
much higher scalability.

A major limiting factor to our analysis at scale is that we
have limited our scope to local-parallelism-only implemen-
tations of clustering algorithms. However, we have shown

3We use simple round-robin assignment in our experiments.
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Fig. 3. The distributed memory scaling of applying CST and FWHT to SBMs of various sizes. We also plot the total time spent reading the graphs from file
for comparison. Figure 3(a) plots the wall time for a set of 4 compute nodes as the edge count of the graph to be embedded into 128 dimensions increases
from ~ 500 million to ~ 22 billion. Figure 3(b) plots the wall time for embedding a fixed-size graph with 200 million vertices (~ 22 billion edges) into
128 dimensions as the number of compute nodes increases. Both Figures 3(a) and 3(b) feature roughly linear scaling, as desired. Figure 3(c) plots the wall
time for four compute nodes to embed a 20 million vertex graph as the embedding dimension increases, i.e. as € decreases.

that our embedding algorithm features excellent scalability in
distributed memory, and is able to embed graphs with tens
of billions of edges in seconds on modest hardware. Further,
our sensitivity experiments suggest that for a fixed desired
precision, we find embeddings that yield clusters whose quality
has at most a small dependence upon n, although the depen-
dance upon the number of true communities and their size
variance warrants further investigation. In future work we will
demonstrate the scalability of the full clustering pipeline to
distributed memory data scales by the introduction of novel
distributed clustering algorithms.

It is further important to recall that, though SBMs feature
convenient analytical properties, they do not reflect many prop-
erties of real graphs found in applications. Indeed, one of the
largest challenges associated with distributed graph algorithms
is managing the communication and computation bottlenecks
introduced by the presence of high-degree vertices in scale-
free graphs. Degree-Corrected Stochastic Block Models (DCS-
BMs) generalize SBMs with power-law degree distributions
so as to more accurately simulate this feature. Detection of
large dense regions (degree-corrected quasi-cliques) injected
into real-world graphs would also be an important validation
step. We will augment our algorithms in future work to manage
high-degree vertices via vertex delegation [40] and sparse
sketch storage.

Vertex embedding has many applications within graph ma-
chine learning beyond clustering. For example, recent vertex
representation learning efforts such as node2vec [41] utilize
deep neural networks to construct an embedding of vertices
into low-dimensional latent space. Scaling to massive graph
sizes, however, remains challenging. We believe that linear
sketch-based embedding such as what we have proposed could
significantly scale such nonlinear embeddings at a negligible
cost to the representation quality.
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