
SANDIA REPORT
SAND2020-9501

Printed August 2020
•

Sandia
National
Laboratories

A File Format and API for Dynamic Radar
Cross Section Data
Dylan A. Crocker

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185

Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

mT - - 4k SOX
ltrirfirpagar NacApar $4,c‘rritrActrarinheradoc

2

ABSTRACT

Often the Radar Cross-Section (RCS) of a target is incorrectly assumed to be a single number by
those unfamiliar with electromagnetic scattering. In actuality, a target's RCS depends on many
factors. These factors include radar signal frequency, radar observation angle, as well as target
orientation. Another possible parameter (often not considered) is time. The RCS of targets may
change over time due to movement, environmental changes, etc. In order to accurately represent
the dynamic RCS of a target in a time-stepped analysis, the ability to interface with large RCS
datasets efficiently is desired. To this end, a file format and API (written in C++) were developed
and are described in this report.

3

CONTENTS

Nomenclature 7

1. Introduction 9

2. Background 11
2.1. Geometry Definition 13
2.2. Polarization Mismatch 15
2.3. Circular Polarization 16

3. File Format 18
3.1. Time Table 18
3.2. Frequency Table 18
3.3. Aspect Angle Table 20
3.4. RCS Table 20

4. API 22
4.1. Creating the RCS Data Files 22
4.2. Querying the RCS Data Files 23
4.3. Command Line Interface 24

5. Summary 25
5.1. Summary of Features 25
5.2. Future Work 25
References 27

References 27

5

LIST OF FIGURES

Figure 2-1. Radar coordinate frame (note that h is out of the page). 13
Figure 2-2. Target coordinate frame (note that h is into the page). 14
Figure 2-3. Polarization mismatch angle cc (note that k is into the page). 14

Figure 3-1. Time table example 19
Figure 3-2. Frequency table example. 19
Figure 3-3. Aspect angle table example. 20
Figure 3-4. RCS data (complex scatting length) table example. 21

6

Nomenclature

API Application Programming Interface

CP Circular Polarization

CSL Complex Scattering Length

FFT Fast Fourier Transform

JSON JavaScript Object Notation

LHCP Left Hand Circular Polarization

M&S Modeling and Simulation

PSM Polarization Scattering Matrix

RCS Radar Cross Section

RHCP Right Hand Circular Polarization

SQL Structured Query Language

7

1. INTRODUCTION

Modeling and Simulation (M&S) of complex and dynamic systems involving radars are often
employed for many different applications. Military battlefield scenario simulations, airport traffic
control simulations, and more recently passenger vehicle simulations are just a few M&S
examples that may include radar systems. The governing equation for the simulation of a radar's
ability to detect and track targets is

pr
Pt Gr Gt 21/4.,2

6
(4703R4 •

which appropriately called "the radar equatioC [1]. The variables in (1.1) have the following
definitions:

Pr is the power received at the radar from the signal scatted from the target (Watts),
Pt is the power transmitted from the radar (Watts),
GT is the gain of the radar receive antenna,
Gt is the gain of the radar transmit antenna,
X, is the wavelength of the transmitted signal (meters,)
a is the Radar Cross Section (RCS) of the target (m2) and,
R is the distance from the radar to the target in meters.

Notice that the RCS a is the sole parameter dependent on the target. It is this parameter that fully
describes the interaction between an incident wave (from the radar) and the target. Often the RCS
of a target is incorrectly assumed to be a single number by those unfamiliar with electromagnetic
scattering. In reality, a target's RCS depends on many factors including radar signal polarization
and frequency, radar observation angle, as well as the target's orientation. Another possible
parameter (often not considered) is time. The RCS of targets may change over time due to
movement, environmental changes, etc. Examples include objects surrounded by time varying
plasma, changes in flora due to seasons, and target configuration changes (such as a tank rotating
its turret). The time variation, coupled with the other varying parameters (e.g., frequency), can
cause the RCS datasets necessary for M&S scenarios to become relatively large. Furthermore,
phase information is often included with the RCS (for coherent processing) which doubles the
storage requirements. In order to accurately represent the dynamic RCS of a target in a time
stepped M&S analysis, the ability for the M&S tools to efficiently interface with large RCS
datasets is desired. To this end, a file format and API (written in C++) have been developed and
are described in the subsequent sections of this report.

The subsequent sections of this report are outlined as follows. Section 2 provides the background
for the RCS computations including the geometry definitions assumed and post processing
capability (e.g., polarization alignment). The file format, which is based on the SQLite database

9

file format, is detailed in Section 3. The C++ API developed for interfacing with the data is
described (with examples) in Section 4. Finally, Section 5 provides a summary including future
work.

10

2. BACKGROUND

In order to calculate the Radar Cross-Section (RCS) of a target, the incident and scattered
electromagnetic (EM) fields must be computed. EM simulation tools accomplish this by applying
a known incident field and computing the subsequently induced currents on the target. From the
currents, the scattered fields can be computed. With both the incident and scattered fields known,
the RCS of the target can is computed as

a = lim 47ER2/4 — lim 4TER2 Its 21
R—>0. 131 R—yos I E ip •

(2.1)

In (2.1), a is the radar cross-section in units of meters squared, R is the distance from the radar to
the target (meters), p' and ps represent incident and scattered power density (W/m2) respectively,
and ti and ES represent incident and scattered electric field vectors (V/m) respectively. The
expression using power densities serves to clearly illustrate that RCS is a power quantity;
however, the official IEEE definition of RCS is expressed in terms of the electric fields [1].
Although non-obvious from the definition, a is independent of R due to the fact that the scattered
field Es is a function of 1/R. The limit with respect to R is included to reinforce the fact that the
equation is only valid in the far-field.

Due to the far-field separation between the target and radar, ki and Es are plane waves (have no
field component in the direction of propagation) and the electric field vector resides in a 2D plane
(discussed further in Section 2.1). Thus, the polarization of the field can be described by two
orthogonal basis vectors. Often, vertical 9 and horizontal h bases are used, which may be
considered equivalent to the 0 and (I) unit vectors defined in the radar's spherical coordinate
system. Other bases may be used such as Left and Right circular polarization. Unless specified,
general orthogonal polarization basis vectors el and e2 will be used as place holders. Given the
polarization of the fields, the RCS is in general a 2 x 2 dyad1 as defined by

[G] = G1 1 6121

G21 622

ti
The scattered field PS is determined by the interaction of the incident field ki and the target
geometry (essentially induced currents re-radiating). This interaction is dependent on the
orientation of the target relative to the incoming signal as well as signal polarization and

(2.2)

1Note that the terminology in the dyad components (e.g., (521) is in the Receive-Transmit format. That is, 621 refers
to the RCS for an incident field of el polarization and a scattered field of e2 polarization.

11

frequency2. The interaction is described mathematically by the Polarization Scattering Matrix
(PSM) [S] as defined by

' Es]
rj2 'Es

_
[

rci
L'j

ri • ET (2.3)
2

i
.ki] •

Where

[s] _ s1221rs2 111 s2 (2.4)

and each component sii represents the ratio of the scattered field with polarization i to the
incident field with polarization j. In general, the values of a target's PSM are complex since they
contain phase information. The PSM is related to the RCS through

[S]
—

rilei(1)11 ISi2lef012 1 ,7

1,5211d1)21 1,9221d1)22
"s

V

(312e°12

=
VIICR-)-1/2

Valle:J(1)11 ./

A/021ePr21 .1-
(322e022 • (2.5)

Where (I) represents the field phase information which is necessary for coherent processing (e.g.,
converting from frequency to time/range domain). Since RCS is a power quantity, it does not
contain phase information by definition. Due to this, EM engineers often define a parameter y
referred to as the Complex Scattering Length (CSL)3. The relationship between CSL and RCS is
described by

y= NAF5efil), (2.6)

and conversely

(2.7)

It is the target CSL that is stored in the RCS data files described in this report.

2The electrical size of a target is defined in wavelengths X which is a function of frequency: X = c/ f where c is the
propagation velocity of the wave. Due to this relationship, the RCS of a target can vary with frequency as it is
effectively changing size electrically.

3RCS is an area term usually expressed in units of m2. Subsequently, CSL is a length quantity and has units of meters
(\/(m2) = m).

12

2.1. Geometry Definition

In order to properly interface RCS datasets with M&S applications, the geometrical assumptions
must be clearly defined. The assumed radar coordinate system is illustrated in Fig. 2-1. The
direction of the propagating radar signal is defined by the k unit vector. Since the radar to target
distance is large, the signal is regarded as a plane wave (no element of the fields are in the
direction of propagation). The linear polarization basis 19 and It is chosen to define the polarization
of the radar signal since this is how the data will be stored in the RCS data files. The vertical
polarization 9 lies in the k2-plane (or ke-plane in standard spherical coordinates) and the
horizontal polarization h lies normal to the k2-plane (or in the 4-plane in standard spherical
coordinates). These vertical and horizontal polarizations are respectively equivalent to the TMz
and TEz polarizations that are often used in the literature [2].

Figure 2-1. Radar coordinate frame (note that h is out of the page).

The RCS data for a target is often defined in the target's coordinate frame, which is denoted by
primed variables as illustrated in Fig. 2-2. In this coordinate frame the propagation of the incident
radar signal is in the direction. When querying the RCS data, the incident propagation unit
vector is required as an input (see Section 4.2) and must be equal to

A discrepancy between the polarization vectors defined in the radar and target coordinate frames
will occur when the coordinate frames are rotated relative to each other. This polarization
"misalignment" can be described by an angle a, which is defined as a right hand rotation about ic
(or -0 from 9' to 9 (or h' to h) as illustrated in Fig. 2-3. Compensation for such a mismatch is
described in the next section.

13

A 1

Z
A.

Figure 2-2. Target coordinate frame (note that 1; is into the page).

h.,,

A,.

Figure 2-3. Polarization mismatch angle a (note that ic is into the page).

14

2.2. Polarization Mismatch

The complex scattering matrix [S] can be obtained from the complex scattering length [y] (the
values stored in the RCS file) [3] as

[s], = [ay' v av'w1 = (4,7tR2) -1 /2 [7], = [7v'v' 7v/W

ahf v ahf Yhih'
(2.8)

Note, the primed variables indicate the target coordinate frame and R is the distance between the
radar and target. The scattering matrix is used to calculate the scattered field of an object given an
incident field

[Evs J = [S]'[EE
(2.9)

We define a rotation matrix [R] such that the polarization basis of the electric fields can be
transformed as

Where [R] is the passive right-hand rotation

[R]= [

== [ft]

matrix

cos a
.
sm a

ESL h/ J

— sin
cos

a
a

(2.10)

(2.11)

We can now calculate the scattering in the radar's coordinate frame using a similarity transform
[4] as

[EEvss] [R.] [s],
[il]
- 1 [Ed . (2.12)

The complex scattering matrix may be transformed (e.g., rotated) as long as the transformation is
unitary [3] since unitary transforms preserve inner products. The transformation shown in (2.12)
is a unitary transform since [R] is unitary4 (i.e., [R]T [R] H [R]-1).

The API utilizes the following transformation when querying the data in order to return RCS data
defined in the radar coordinate frame:

4The rotation matrix [R] is real valued and has the property [R]T = [12]-1 hence it is orthogonal [5]. Orthogonal
matrices are a special case of the more general unitary matrices, which are complex valued and have the property
[R]H = [R]-1 [5]. The superscript H is used to define the conjugate transpose or Hermitian transpose.

15

[7] = [Yvv Yvh]
7hv Yhh

_ 1
= [R] [Y] [R] =

[cos a — sin a]
sin a cosa

plvvf yvh,
V V hi

cos a sin al

— sina cos a
(2.13)

The components of [y] are then calculated by the following equations (actually implemented in
the API):

and

Yvv = Yvy cos2 a — (Ay yvw) sin a cos a + Ark sin2 a, (2.14)

Yvh = YvIht cos2 a — (ywh, — Yvy) sin a cos a — Yhy sin2 a, (2.15)

Yhv = COS2 a — (ywh, — wy) sin a cos a — 7„,h, sin2 a, (2.16)

Yhh = yht cos2 a + (Ay yvh,) sin a cos a + sin2 (2.17)

RCS values 6 are then computed by 1712.

2.3. Circular Polarization

The RCS data can also be referenced to a circularly polarized basis5. If the h (•$) component is
delayed90° from the (0) component, the electric field will rotate with a right handed sense
around k [2]. Similarly, a 90° advance will produce a left hand rotation. The conversion between
linear and circular polarized basis functions is given by

and

EiR1
LEL

1 [1 — 1 1 j Eit '

[En (1 [1 _1-1 1[4] _ 1 [1
[4] [1]) [Eli 0, [-; •

When converting linear scattering to circular scattering a conjugation of the matrix must be
performed

5Note that the CP basis is defined in the radar coordinate frame.

16

(2.18)

(2.19)

[Ell 1 [1 — * [En _ 1 [1 j [En
[ELI 0 [1 j [ELI 0, [1 — LEfl •

(2.20)

This is done in order to account for the change in rotation sense (RHCP is now referenced to the
— k direction) [1] [2]. Given a linearly polarized scattering matrix, (2.3) can then be rewritten for
circular polarization as

ER = 1
[ELI 2

rl j [ay,/ avh] 1 1 1
•

(2.21)
ahv ahh _— j ji [ELI

It follows that the linear polarized CSL matrix (values actually stored in the RCS data files) can
be converted to a circularly polarized basis by

YRR YRL 1 [1 j Yvv Yvh 1 1

] •YLR YLL 2 1—I Yhv Yhh j
(2.22)

This transformation (Eg. 2.22) is implemented by the following equations in the API when CP is
selected during a query:

and

YRR = i(Yvv Yhh) j(7vh+7hv)),

YRL = 2
((7vv +TM) j(7vh Yhv)),

1 „
YLR = 2

avv + 712h) + j(7vh

Yzz = ((7vv — j(7vh+Av)) •

17

(2.23)

(2.24)

(2.25)

(2.26)

3. FILE FORMAT

The dynamic RCS datasets have the potential to be quite large (multiple GB). This is due to the
fact that the datasets contain full polarimetric complex RCS data for multiple aspect angles,
frequencies, and time steps (as discussed in the previous sections). The potential size of the
datasets makes simple text parsing (loading ASCII files into memory and searching for the
required data) undesirable. A fast and flexible method for storing and querying the RCS data was
desired and therefore SQLite [6] was chosen as the base file format.

SQLite was chosen because it is light weight (does not require large computational resources),
portable, serverless (it is an API and does not require a separate database server process) and can
handle large datasets efficiently. It utilizes B-Tree data structures [7] and can therefore perform
queries in 0(log n) time while loading and parsing text files would at best be O(n) and require
more memory.

The SQLite data file stores the RCS data as complex scattering length (CSL) in the target
coordinate frame using the vertical and horizontal (9 and h) polarization basis. The data is
organized into four tables: time, frequency, aspect angle, and RCS. Each table is discussed in
more detail below.

3.1. Time Table

The time table has unique identifier, start time, and stop time columns. The start and stop time
(units of seconds) indicate the time period in the simulation where the corresponding RCS data is
applicable. An example of the time table is shown in Fig. 3-1 with the SQL statement used to
create the table shown in Listing 3.1.

3.2. Frequency Table

The frequency table has unique identifier and frequency (GHz) columns. The table stores all the
unique frequencies for which the RCS data is defined. An example frequency table is shown in
Fig. 3-2. The SQL statement that creates the table is shown in Listing 3.2.

CREATE TABLE t_table (uid INTEGER PRIMARY KEY, start REAL NOT NULL,

end REAL NOT NULL) ;

Code Listing 3.1. Time table SQL CREATE statement.

18

1LQLite Mariage7vny'1/42.01Arehicle_genenc_trajectory_genericinultiband_bodsmasqlill

Database Table Index View Trigger Tools Help

EE;' 11;''

vehicle_generi... •••• Structure Browse & Search Execute SQL DE Settings

Directory i• (Select Profile Database) •• Go

P Master Table (1)
TABLE t table Search Show All Add DuRlicate Edit Delete

....
_

o Ta bl es (4)

P a_table
uid start end E':

l> f_table
1 .1 1246°

'-.

I> rcs_table
2 12450 12470-a— —E-

I> t table 1 3
12470 - MI 13"

—

b Views (0)

P Indines (1)

P Triggers (0)

SQLite 3.9.1 Gecko 45.7.0 0.8.3.1-signed.1-signed Exclusive Number of in selected directory: 10 ET: 1 ms

Figure 3-1. Time table example.

rDatabase Table Inda View Trigger Tools Help

SQLite Manager - EAGESDIrudirksimis.2.01vehicle_generic_trajectory_generic_rrultiband_bodyplasma.sqlite

Directory i•

Structure Browse &Search Execute SQL I DB Settings

(Select Profile Database) •• Go

P Master Table (1)
TABLE f table Search Show All Add Doulicate Edit Delete -

o Ta bl es (4)

I> a_table
—

t.f_table —
t. ritable

I> t_tatile

f Views (0)

P Indiaes (1)

P Triggers (0)

8:uid fghz

1 12 1

2 13 1

3 153 1

4 110 1

.E-

SQLite 3.9.1 Gecko 45.7D 0.8.3.1-signed.1-signed Exclusive Number of files in selected directory: 10 ET: 1 ms

Figure 3-2. Frequency table example.

CREATE TABLE f_table (uid INTEGER PRIMARY KEY, fghz REAL NOT NULL) ;

Code Listing 3.2. Frequency table SQL CREATE statement.

19

SQLite Manager - EAGESDIrudrewn0.2.01vehicle_generic_trajectory_generic_multiband_body- plasma.sq

e:Database Table Ind View Trigger Tools Heip

Ad [Ail; frx11 ▪ FE: Frl
vehicle_generi.— •••

C.. Master Table (1)

eTables (4)

a_table

f_table

rcs_table

t_table

C, Views (0)

C,Indines (1)

C, Triggers (0)

EE:

Structure

Directory 10

Browse & SearcTExecute SQL

(Select Profile Database] ••

DB Settings

Go

TABLE a_ta bl e

uid

1

2

3

4

5

fi

7 12

Search Show All Add DuRlicate Edit Delete

aZ

2

4

6

8

10

el

-90

-90

-90

-90

-90

-90

-90

SQLite 3.9.1 GEC .0 45.7.0 '.1-signed.1-signed Ecclusive Number of files in selected directory: 10 ET: 2 ms

Figure 3-3. Aspect angle table example.

CREATE TABLE a_table (uid INTEGER PRIMARY KEY, az REAL NOT NULL,

el REAL NOT NULL) ;

Code Listing 3.3. Frequency table SQL CREATE statement.

3.3. Aspect Angle Table

The aspect angle table has unique identifier, azimuth (deg), and elevation (deg) columns. The data
is stored in the target's coordinate frame as illustrated by Fig. 2-2. A single unique identifier is
used to represent a unique aspect angle defined by both azimuth and elevation. An example of the
aspect angle table is shown in Fig. 3-3. Listing 3.3 displays the SQL statement used to create the
table.

3.4. RCS Table

The RCS table has columns for unique identifier, time identifier, aspect angle identifier, frequency
identifier, and both real and imaginary components of the complex scattering lengths (CSL) for
all linear polarizations (VV, VH, HV, and HH)1. The unique identifiers from the time, aspect
angle, and frequency tables are used to index the RCS table which may be very large. In order to
decrease the query time, indexes are built on the RCS and aspect angle tables. An example of the
RCS data table is shown in Fig. 3-4. The SQL statement used for the table's creation is shown in
Listing 3.4.

1Note that the Receive-Transmit notation is used when denoting RCS data polarization e.g., VH indicates transmit H
and receive V.

20

E: .01vehicle_generic_trajectory_generic_ruultiband_bodyplasma.sqlite

Database Table Indin View Trigger Tools Help

LIAO rrrl
vehicle_generi...

Master Table (1)

❑Ta bles (4)

a_table

1>f_table

ri_table

1>t_table

Views (0)

l;,Indines (1)

Triggers (0)

FE: Directory t

S ructure Browse& Search Execute SQL

(Select Profile Database) ••

DI3 Settings

TABU

uid

1

2

3

4

5
fi•

7

tid aid

1

1

1

1

1

1

1

1

1

1

1

2

2

2

Search

fid

1

2

3

4

1

2

3

Go

Show All Add Duplicate Edit Delete

vv_real vv_i ma g hv_real

-0.25584... 10.138684...10

0.111728...10260581...10

0.131277...10.041762...10

0.039992...10.091452...10

-0.25633... 10.140248...10

0.112949...10.259566...10

0.131635...10.039818...10

hv_imag

0

0

0

0

0

0

Sglite 3.9.1 Gecko 45.7D 0.8.3.1-signed.1-signed Exclusive Number of in selected directory: 10

vh_rea I

0

0

0

0

0

0

vh_imag

0

0

0

0

0

0

hh_real hh_imag

-0.25584... 10.138684...

0.111728— 10.260581-

0.131277...10.041762...

0.039992...10.091452...

-0.25633... 10.140248...

0.112949...10.259566...

0.131635...10.039818...

❑

ET: 9 ms

Figure 3-4. RCS data (complex scatting length) table example.

CREATE TABLE rcs_table (uid INTEGER PRIMARY KEY, tid INTEGER,

fid INTEGER, vv real REAL NOT NULL, vv_imag REAL NOT NULL,

hv_real REAL NOT NULL, hv_imag REAL NOT NULL, vh_real REAL

vh_imag REAL NOT NULL, hh_real REAL NOT NULL, hh_imag REAL

Code Listing 3.4. RCS table SQL CREATE statement.

21

aid INTEGER,

NOT NULL,

NOT NULL);

4. API

An Application Programing Interface (API) was developed to provide M&S applications the
ability to interface with the RCS data. C++ was chosen as the implementation language for its
speed, ability to interface with the SQLite C API, and the fact that many M&S tools are written in
C++ (e.g., AFSIM [8]). The developed API additionally provides capability for creating the
SQLite RCS data files from the datasets generated by electromagnetic analysis tools.

The source code for the API, a Command Line Interface (CLI) application, as well as Verification
& Validation (V&V) scripts (written in Python) are maintained in a Git repository located on the
internal Sandia network1.

4.1. Creating the RCS Data Files

The RCS data file creation is handled by the class DatabaseCreator defined in the files
database_creator . cc/ . h. The class requires only two inputs for creating the RCS data file: a
path to the directory containing the data files to compile (*.field files2) and the name of the
configuration file. Example usage is given in Listing 4.1. Note that all code in the API is defined
in the rcsdm namespace.

using namespace rcsdm;
std: :string data_dir = "/home/user/data";

std: :string config_file = "config_file. json";

auto dbcreator = DatabaseCreator (data_dir, config_file) ;
dbcreator.Build() ;

Code Listing 4.1. Example usage of the DatabaseCreator class.

The configuration file specifies each RCS dataset, i.e., *.field file, with its applicable time
duration. Note that the configuration file is expected to be in the same directory as the data files.
The configuration file also specifies the name of the conglomerate dataset that will be used to
name the resulting SQLite data file. The data in the configuration file is formatted in the widely
used Javascript Object Notation (JSON) file format for easy parsing. An example configuration
file is shown in Listing 4.2.

For more details on the usage of the DatabaseCreator class, refer to the code documentation in
database_creator.h (see source code).

1https://gitlab.sandia.gov/applied-electromagnetics/rcs-data-manager
2Several RCS simulation tools output data in the *.field file format. This format is desired because the data contains

phase information (CSL data values). However, if a simulation tool does not utilize the field file format, a custom
script may be developed to convert the files.

22

{
"datasetname" : "dynamic_rcs_target"
"fielddatasets" : [

{

1
}

"filename" : "initial_rcs.field",
"starttime" : 0,
"endtime" : 1200

"filename" : "modified_rcs_01.field",
"starttime" : 1200,
"endtime" : 1800

},

{
"filename" : "modified_rcs_01.field",
"starttime" : 1800,
"endtime" : 2400
}

Code Listing 4.2. Example of a configuration file (JSON format).

4.2. Querying the RCS Data Files

Querying the RCS database is accomplished through the Databaselnterface class defined in
the files database_interface. cc/ . h. Instantiation of the class requires a path to the database
file given as a s t d: : string. There are multiple options for querying the database; two options
are demonstrated in Listing 4.3. The query methods require a time step in seconds, the
observation aspect angle specified as either azimuth and elevation angles (both in degrees) or as
the unit vector -e (shown in Fig. 2-2), the frequency of the radar (GHz), the desired RCS
polarization, and, if applicable, the polarization mismatch angle (deg). Details on the geometry
are given in Section 2.1. Additional query methods include the ability to query complex (CSL)
data as well as wideband (multiple frequencies) data queries.

The query functions shown in Listing 4.3 return the RCS (a) in units of dBsm; however, the RCS
data file stores CSL (y) in units of meters. The CSL values queried from the file are converted to
RCS in dBsm via

GdBsm = 20 * log tolYm 1.

Further details (including additional query methods and options) are provided in the
documentation within the database_interface.h header file (see the source code).

23

(4.1)

using namespace rcsdm;

std: :string path = "/home/user/data/dynamic_rcs_target . sqlite";

auto dbinterface = DatabaseInterface (path) ;

double time = 2000;

double freq = 10;

double az = 0;

double el = -35;

// Time step (s)

// Radar frequency (GHz)

// Azimuth aspect angle (deg)

// Elevation aspect angle (deg)

double pol_angle = 10; // Polarization mismatch angle (deg)

polarization_t pol = VV; // RCS polarization type

// Use AZ and EL

double rcs = dbinterface.QueryRcsDbsm (time, freq, az, el, pol, pol_angle) ;

double xu = 0.8192; // x component of -k' unit vector

double yu = 0.0; // y component of -k' unit vector

double zu = 0.7877; // z component of -k' unit vector

// Use unit vector -k'

rcs = dbinterface.QueryRcsDbsm (time, freq, xu, yu, zu, pol, pol angle) ;

Code Listing 4.3. Example usage of the Databaselnterface class.

rcsdm build --input /home/user/data/config_file . json

Code Listing 4.4. Example usage of the CLI to create a database.

4.3. Command Line Interface

A simple CLI application was also developed for testing the API as well managing an RCS
dataset. The CLI is most useful for database creation as it allows the creation of datasets to be
scripted (in a shell script for instance) as shown in Listing 4.4.

More information can be found by running rcsdm -h.

24

5. SUMMARY

This report describes both a file format and the corresponding API that were developed for the
purpose of integrating large dynamic RCS datasets with M&S applications. The file format is
based on SQLite which provides a fast and flexible method for storing and querying the RCS
data. The database is normalized and has appropriate indexes built in, which results in a
negligible performance hit when querying the data in real time (< 0.01 sec per query1). The API
is written in C++ and provides methods for both building and querying the RCS data.
Functionality is also included to modify the polarization basis in order to compensate for target
and radar coordinate frame offsets or convert from linear to circular polarization. Features and
future work are summarized below.

5.1. Summary of Features

• Combine multiple RCS datasets (*.field files) containing values for multiple frequencies,
aspect angles, and all linear polarization combinations into a singe file where each dataset
can be indexed based on time.

• Query data quickly with negligible impact on overall simulation time. Queries are based on
simulation time step, frequency, aspect angle, and polarization.

• Queries can return either CSL values (which include phase information) or RCS magnitude
(dB sm). Single frequency or wideband queries may be made.

• Queries can be specified to modify the polarization basis as needed e.g., rotating linear
basis or converting to circular basis.

• Extensive debugging capability is built into each object (DatabaseCreator and
DatabaseInterface) via status variables that can be checked.

• Nearest neighbor interpolation is used when query parameters do not match those in the
dataset. The range of the interpolation may be set in DatabaseInterface object variables.

5.2. Future Work

• Expand the time table to allow for each dataset to have multiple start and stop times. This
would allow data sets within the file to be applied to multiple time periods.

1Tested on a 650 MB datafile using a 2.9 GHz processor.

25

• Wideband processing capabilities e.g., utilize FFT to produce time/range profiles.

• Add support for bistatic RCS. This could potentially lead to significantly larger datasets.

• Add flexibility to the dataset creation e.g., process *.field files with dissimilar frequencies,
aspect angles, etc. to allow the unification of data produced by different simulation runs.

26

REFERENCES

[1] M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Modern Radar: Basic
Principles. Edison, NJ: SciTech, 2010.

[2] C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 2nd ed., 2012.

[3] G. T. Ruck, Radar Cross Section Handbook. New York, USA: Plenum Press, 1970.

[4] E. W. Weisstein, "Similarity Transformation."
http: //mathworlcl.wolfram. com/SimilarityTrans formation . html. Accessed:
2017-03-13.

[5] P. Hlawiczka, Matrix Algebra for Electronic Engineers. New York, USA: Hayden Publishing,
1965.

[6] "SQLite." http : / / sql ite . org/. Accessed: 2017-09-12.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
Cambridge, USA: MIT press, third ed., 2009.

[8] P. D. Clive, J. A. Johnson, M. J. Moss, J. M. Zeh, B. M. Birkmire, and D. D. Hodson,
"Advanced framework for simulation, integration and modeling (afsim)," in Proceedings of
the 13th International Conference on Scientific Computing, pp. 73-77, 2015.

27

DISTRIBUTION

Email—Internal (encrypt for OUO)

ame

Jay Barton 05345

Sandia Email Address

jbarto@sandia.gov

Dylan A. Crocker 06773 dacrock@sandia.gov

John R. Dickinson 06773 jrdicki@sandia.gov

Thomas E. Roth 05345 teroth@sandia.gov

Ann M. Raynal 05344 amrayna@sandia.gov

Eric A. Shields 06773 eashiel@sandia.gov

Joshua Speciale 02665 jspecia@sandia.gov

R. Derek West 05346 rdwest@sandia.gov

Mathew W. Young 05345 mwyoung@sandia.gov

Technical Library 01177 libref@sandia.gov

28

29

Sandia National Laboratories is a
multimission laboratory managed
and operated by National
Technology & Engineering
Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energys National
Nuclear Security Administration
under contract DE-NA0003525.

