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ABSTRACT

We consider the problem of recovering program structure from compiled binary code. We first
extract the call graph and layout of functions in memory from the compiled code and represent
this information in a graphical format. We then employ Louvain's modularity algorithm to
identify clusters of functions that are considered to be related. We find that the quality and
properties of clusters extracted by our technique are greatly impacted by the relative importance
we assign to the call graph and the ordering of functions in memory.
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NOMENCLATURE

DWARF a debugging data format (potential backronyrn: Debugging With Attributed Record
Formats)

ELF Executable and Linkable Format (formerly Extensible Linking Format) — a file format used
for executable files and other binary code

HTML HyperText Markup Language — a markup language used to display documents in a web
browser
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1. RECOVERING PROGRAM STRUCTURE FROM COMPILED BINARY

CODE

1.1. Introduction

Software engineering is the art of applying fundamental engineering principles when designing
large, scalable software. The field of software engineering spans a wide breadth of activities;
these include requirements gathering, design, development, testing, and maintenance. Software
design is the process during which one creates a blueprint of the software system, taking into
consideration the requirements of the system. For larger projects, one major goal of software
design is the management of the complexity of the program. This is largely done through the
principles of abstraction, encapsulation, modularization, and hierarchy [9]. Here, modularization
refers to the practice of dividing the program into relatively self-contained components, or
modules. Typically, each module encapsulates a fundamental set of related functionalities. For
example, a web browser could have modules for the user interface, the network interface, and
rendering HTML and other code to the screen. Each module may additionally be divided into a
number of submodules. For example, the network interface module may have a submodule that
implements security features for the browser.

A well-designed program that exhibits a high degree of modularization will be easier to develop
(e.g., because different modules can be developed independently by different programmers) and
maintain (e.g., because someone who wishes to find and fix a bug will have a better understanding
of the overall structure of the program and will be better able to isolate the bug). Throughout the
development process, modularization is implemented by placing the source code for different
modules in different files or directories.

During the compilation process, however, these human-understandable artifacts of modularization
are lost, as the compiler will combine and merge all functions into one file. Thus, when reverse
engineering compiled code (e.g., for a security audit), an analyst is faced with a large collection of
functions; most of these functions will not be relevant to the specific question the analyst wishes
to answer. Understanding where to look within the binary file to answer key questions can take a
large amount of analyst time. It is thus the goal of this report to describe a method by which some
of the modules of the program may be isolated and recovered automatically.

Our approach is to perform a cluster analysis on the set of functions so that functions defined in
proximity to one another and functions that frequently call one another will belong to the same
cluster. In particular, we augment the function call graph of the program with edges that reflect
proximity in address space and employ Louvain's modularity community detection algorithm to
create clusters of functions. By changing the relative importance of the call graph and address
space proximity, we can capture and recover different notions of modules.
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Our approach relies on two major assumptions. First, we assume that modularization is reflected
in both the function call graph and the directory structure. That is, we assume that functions
defined within one directory call one another much more than they call functions in other
directories. This assumption allows us to extract program modules by identifying tightly knit
clusters in the function call graph. Moreover, this assumption allows us to use directory structure
as a proxy for ground truth.

Next, we assume that the compiler preserves function locality. That is, we assume that the
compiler will place functions defined in the same file at similar locations in address space, and
that given two files in the same directory, the compiler will place the two sets of functions defined
in these files close together in address space. Although this assumption holds for the most
frequently used compilers, there are notable exceptions (e.g., [16]) that employ "binary
scrambling" and other techniques as countermeasures against cyber-attacks. Although techniques
like binary scrambling can prevent some automated analyses, many of these techniques do not
serve as a major hindrance to a reverse engineer.

We also assume that we can discern from the compiled binary program which functions call one
another without running the program (e.g., using static analysis). This assumption is mostly
satisfied for programs compiled from most non-object-oriented languages (e.g., C). When code
has been compiled from an object-oriented language (e.g., C++), the decision of which function
to call can be made at runtime (e.g., through a virtual table) and is difficult to determine statically.
Although we expect that the methods discussed here could be extended to take into account more
exotic control structures like virtual tables, we assume that these are not present in the code that
we examine

We test our approach on six different compilations of the Linux kernel compiled with different
compilers (clang and gcc) and with various levels of optimization (-Os, -02, and -03). There is
not an appreciable variation in the homogeneity of the resulting clusters across different
compilations of the kernel. This is somewhat expected — it is reasonable to assume that the
majority of changes to compiled code that are observed when varying the compiler and
optimization flags will affect the code produced within each function while generally leaving
unchanged the call graph and the general order in which functions are placed in memory1.
Although not perfect, our technique is largely able to create clusters consisting of similar
functions.

The report proceeds as follows. In Section 1.2, we discuss previous work related to program
analysis and graph community detection. In Section 1.3, we present our proposed technique —
using Ghidra to extract information about a binary executable file, creating graphs that encode
function similarity using the information extracted by Ghidra, and performing Louvain
community detection to cluster functions. Section 1.4 contains the results of applying our
technique to the Linux kernel. Section 1.4.1 discusses how we extract information about the
Linux kernel, Section 1.4.2 discusses the extent to which our assumptions hold in the Linux
kernel, and Section 1.4.3 provides a quantitative evaluation of our proposed technique using the
homogeneity score. In Section 1.4.4, we provide a more qualitative evaluation by analyzing how

1Notable exceptions to this assumption include optimization flags like gcc's "-finline-functions" flag that en-
courages functions to be integrated into their callers.
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well our technique extracts the set of functions related to function tracing in the Linux kernel.
Finally, we conclude our report with a discussion of our findings in Section 1.5.

1.2. Related work

1.2.1. Program analysis and program graphs

Most work performed in computer program analysis focuses on understanding code at a
micro-level. Tools like Ghidra [1], Radare [2], and IDA [18] allow an analyst to step through and
reverse engineer smaller sections of code. These tools are incredibly useful when an analyst has a
specific question in mind and will be focused on a relatively small and easily identified portion of
the binary file. On the other hand, when attempting to gain a general understanding of a binary
file, one might use Linux utilities like file and readelf to learn information about file types,
program and section headers, and defined symbols. Within an executable binary file, the . text
section contains the actual code executed. Unfortunately, there are currently very few analytics
for acquiring a general understanding of this . text section. It is our goal to introduce one such
analytic.

Within the realm of program analysis, researchers often make use of graphical representations of
programs. There are three commonly used graphical representations of programs — the control
flow graph, the data flow graph, and the call graph [15]. The control flow graph collapses into one
node any sequence of machine instructions that are always executed together (e.g., sequences
without any branches or jumps); edges in the control flow graph represent potential transitions
between these sequences. The data flow graph represents each instance of data as one node and
dependencies between various data values as edges. Whereas the control flow and data flow
graphs are most commonly used to understand the inner workings of a function, the call graph
represents how different functions of a program call one another [14]. These graphs can be used
by an analyst looking at either source code or compiled binary code to gain a better understanding
of the program. There are a number of analytics that make use of these graphs. For example, one
can use control flow graphs indicative of malware to detect malicious code [11, 12], one can use
dynamic traces of a running program in combination with the call graph to detect non-crashing
bugs in code [14], and one can interpret anomalous subgraphs as indications that a bug may exist
[21] •

Analysts often look at only small portions of these graphs — an analyst will identify a variable or a
sequence of instructions of interest and use the data flow or control flow graph to understand how
that variable was derived or how that sequence of instructions might be executed. It is less
common for analysts to apply global analytics to these graphs to gain a broader understanding of
the program as a whole. We thus propose to apply global graph analytics to graphs derived from
binary code in order to better understand the general purpose of the program.
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1.2.2. Automated techniques for program analysis

Researchers have long performed analytics on source code [13, 27]. The semantic information
provided in source code, which can include variable names, function names, data types, and data
structures, is often much more rich and complete than that in compiled binary code. Furthermore,
source code abstracts away details specific to the implementation of a computer program on
hardware; what remains is a representation of a program that focuses more on what a program
does rather than how the program is executed on computer hardware. Recently, there has been a
flurry of work on source code that uses neural representations to perform downstream tasks (e.g.,
variable or method name prediction, identification of similar functions, bug detection)
[4, 6, 17, 19, 22, 28, 30]. Much of this research takes into account the control flow and data flow
information that can be derived from source code. Some research further considers innovative
methods of constructing data used to train an algorithm; for example, Henkel et al. generate
training data from a program using symbolic execution [17].

Some of the techniques used to analyze source code can port to binary code; others cannot.
Indeed, any techniques that rely on semantic information in source code will not work with binary
code. As a result, the analytics that one can immediately run on binary code are somewhat limited.
Most research concerning analytics applied to binary code falls into two categories. In the first
category, researchers attempt to fingerprint binary code to identify the compiler or author of the
code [7]. In the second category, researchers attempt to identify similar functions [20, 26, 29].

Our approach differs from most published research in two respects. First, our analysis is more
global; we aim to help uncover the general structure of an entire program. Second, our hope is
that our analytic might be used by a security analyst to understand a binary program. In this
respect, our goals are similar to those of Rosetta [3], which aims to assist analysts in recovering
data structures from binary code.

1.2.3. Graph community detection

Graph community detection is the process of finding groups of nodes in graphs (called
communities) such that the density of edges within each community is higher than that between
communities. In this work, we use the Louvain community detection algorithm [8], which
attempts to maximize the modularity Q of the community assignments2. Modularity is defined
mathematically as

Q= 
2m . . 
—E [Au _ 7=]

2m

where Aid represents the weight of the edge between nodes i and j, ki = EjAi j is the sum of the
weights of the edges attached to node i, m = J is the sum of all edge weights, and 8(ci, c1)
is equal to 1 if the community assignments ci and ci of node i and node j are identical and 0
otherwise. The parameter 7 > 0 controls the resolution of the communities [25]; higher values of
y tend to yield community assignments with more communities. Although the problem of finding

2We use "modularity' to refer to this mathematical quantity Q and "modularization" to refer to the practice of
organizing large programs into modules.
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the community assignments that exactly maximize this quantity is NP-complete [10], there are a
number of algorithms which approximately maximize modularity. The Louvain algorithm, one
such algorithm, has been the de facto standard for the past decade. The algorithm initializes a
separate community for each node and iteratively combines communities if doing so increases
modularity. The algorithm terminates when no more of these combinations are possible. As the
Louvain algorithm is randomized, the results of running the Louvain algorithm multiple times on
the same graph are expected to differ. Nonetheless, the algorithm is relatively stable on most
real-world data.

1.3. Methods

Our overall approach is to construct graphs that encode properties that facilitate separation of
modules, combine these graphs, and perform Louvain community detection on the combined
graph. We perform experiments with both directed and undirected graphs, and with both weighted
and unweighted graphs. Our default is to use weighted, directed graphs. In our experiments, we
did not observe an appreciable change in performance when moving from weighted to
unweighted graphs, or when moving from directed to undirected graphs3. To create an undirected
graph from a directed graph, we first collapse and combine any edges from n to n' and from n' to
n, summing edge weights as necessary. To create an unweighted graph from a weighted graph, we
replace all edge weights with weight 1.

We first reconstruct a call graph from function information extracted from the compiled binary.
The nodes of this graph represent functions, and an edge from node n to node n' signifies that the
function f corresponding to node n calls the function t corresponding to node n'. Furthermore,
the weight associated to the edge from n to n' is the number of cal 1 instructions within the code
of f with a target of t.
We next construct an address similarity graph, assuming that a function's instructions are
consecutive and that instructions and addresses belong to only one function. We first construct a
sorted list of the start addresses of all functions. We then construct a graph where an edge
between two nodes indicates that two functions are defined near each other. Given functions f
and ff defined at addresses a and d and represented by nodes n and n', we draw an edge from n to
n' if the distance d between a and d in the sorted list of function addresses is less than 8 (we use
= 4 as default in our experiments)4. Note that, if our graph is directed, there will be an edge

from n to n' if and only if there is an edge from n' to n. Furthermore, if the graph is weighted, we
assign a weight g(d) to the edge. We experiment with the following options for g:

• g(d) = (1.0d)a

• g(d) = a — d

3The lack of a noticeable change in performance when moving from a weighted graph to an unweighted graph may
be partially explained by the fact that, given any two functions f and t, it was unusual in the code we looked
at for f to have more than one or two call instructions to r. The lack of a noticeable change in performance
when moving from a directed graph to an undirected graph may be partially attributed to the fact that, given two
functions f and t, we rarely saw situations where both f calls and calls f.

4The distance 8 refers to the index of a function in a list, not to the distance between functions in address space.
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• g(d) =

• g(d) = e'd2

Because performance is relatively similar for most choices of g and most "reasonable choices of
a, we use the function g(d) =

(1.0±d)° 5 
to weigh address similarity in all experiments discussed

in Section 1.4.

We then combine the call graph and address similarity graph5. We construct the graphs so that the
edge weights of the address similarity graph together contribute . _Xaddr times the total edge weights
of the call graph6. For directed graphs, we first divide each edge weight in each component graph
by the sum of all weights in that component graph; for undirected graphs, we divide each edge
weight in each component graph by twice the sum of all weights in that component graph. We
then multiply the edge weights in the address similarity graph by Xaddr• We then construct a new
graph whose edge weights are equal to the sum of the (scaled) edge weights of the component
graphs.

Finally, we use Louvain's modularity-based community detection algorithm to obtain n clusters7.
We try to obtain n = 100 clusters; for the Linux kernel, we found that n = 100 allows for the
formation of homogeneous clusters of functions without providing an overwhelming number of
clusters. Although the Louvain algorithm does not allow the number of clusters to be set, we can
alter the resolution parameter y to achieve a desired number of clusters. In particular, we set
bounds for y and perform a binary search within these bounds until we find a value for y that
produces the desired number of clusters. We perform a maximum of iter E [10,30] iterations of
the search, each with a different value of y (the specific value of iter used depends on the
experiment; if the desired number of clusters is not seen by the iterth value of y, we use the
clustering obtained during the final run of the Louvain algorithm. As the Louvain algorithm is
randomized, the number of clusters produced for a given value of y is also a random quantity; in
our experiments, we were almost always able to find a clustering of the functions such that the
number of clusters was within 5% of the desired number of clusters.

1 .4. Experiments

1.4.1. Data collection

We compile six different versions of the Linux kernel — we use two different compilers (clang and
gcc), each with three levels of optimization (-Os, -02, and -03). In order to obtain ground truth
from the binary files, we compile Linux with the debug information; as such, the produced
binaries are substantially larger than fully stripped versions of the Linux kernel. Debug

5Because the nodes are identical in the two graphs, combining the graphs amounts to no more than altering edge
weights.

6Note that modularity only considers the relative weights of the edges; the algorithm is unaffected by scaling all
weights by some constant factor.

7Although it is common to call the groupings of nodes "communities" in graph analytics, we call our groupings
"clusters" here.
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Compiler Optimization Size of binary n fcns n conn. fcns n disconn. fcns
gcc -Os 648 MB 56,826 49,021 7,805
gcc -02 678 MB 50,542 42,396 8,146
gcc -03 717 MB 45,988 38,811 7,177
clang -Os 530 MB 50,784 42,521 8,263
clang -02 556 MB 47,023 39,382 7,641
clang -03 560 MB 46,843 39,267 7,576

Table 1-1. Information about the compiled binaries of the Linux kernel. It should be
noted that there are a surprising number of functions that did not directly call nor
were called directly by another function. The number of such functions in each binary
is given in the rightmost column of the table.

information is required only to determine ground truth8; we claim that our analytics will apply
equally as well to fully stripped binaries. A summary of the produced binaries can be found in
Table 1-1. Unless otherwise noted, our experiments are performed on the version of the Linux
compiler compiled with gcc using -02 optimization.

Ground truth is given by a map of functions to source file paths (e.g., my_function may be
mapped to /path/to/source_file.c). Note that functions are uniquely identified by address (offset in
the binary). To produce ground truth data, we first extract DWARF (ELF debug) information
using ob j dump -dwarf=decodedline9. The output contains mappings from offsets in the binary
to the source file path and the line number where the function is defined. We then use Ghidra [1]
to iterate through all functions that Ghidra detects. We can be relatively certain that the functions
that Ghidra has detected are exactly the functions present in the binary file due to the debug
information present in our binary files. Given the function address, we use the output of ob j dump
to look up the source filem.

After we obtain ground truth for each function, we again use Ghidra to produce more detailed
information about each function. A summary of the extracted data is given in Table 1-2. Note that
not all of this information is used by our analytics.

1.4.2. Validating our assumptions

As discussed previously, our approach relies on assumptions about compiled code. Namely, we
assume that functions defined within the same directory tend to call one another much more than

8We also use debug information to inform and expedite the process of extracting functions and the call graph from
the binary file. Recovering functions and the call graph is possible without debug information but may require
more effort.

9Another option is to use ctags to extract the function-to-source mapping. This does not work well because functions
can share the same name across different source files. Additionally, the build process on a given source tree
often results in more than one binary file being produced (e.g., a main program and several utilities). It would be
difficult to align functions and source files to a specific binary because the build process may differ for different
source trees.

mGhidra has support for DWARF, but it is not easy to obtain the source location information directly from Ghidra;
ob j dump is a good intermediate step.
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Item Notes

Address
Name Used for reference only; not used for graph analytics
ID Unique Ghidra ID number
Stack frame size Size of local variables
Number of arguments
Return type Accurate only when debug information is present
Size Total function size in bytes
Types of arguments Accurate only when debug information is present
Global and read-only data refer-
ences

Address of each global or read-only data referenced
by the function

Functions called A list of functions called, along with the number of
times each function is called; only direct calls are
used at this time due to the difficulty in recovering
the targets of indirect calls

Table 1-2. Information about each function that was extracted using Ghidra.

they call functions defined in another directory, and we assume that the compiler preserves
function locality. In this section, we calculate a set of statistics that reveal the degree to which
these assumptions are valid. Occasionally, functions cannot be mapped back to a source file (e.g.,
statically linked library functions). We lump all such functions into their own directory for this
analysis. When reading these results, it will be helpful to keep in mind that the version of Linux
we compile has 231 directories, 50,542 functions total, and that we are trying to group these
functions into 100 clusters. Furthermore, there are only 176 directories which define over 20
functions; these directories account for 50,092 out of 50,542 functions defined.

Figure 1-1 shows the distribution of the number of functions defined per directory. This figure has
an extremely long tail; indeed, 131 of the 231 directories define fewer than 100 functions, and
over half of all functions are defined in only 23 directories.

To evaluate our assumption that the compiler preserves function locality, we examine the extent to
which functions defined in the same directory are placed next to one another in address space. We
find that functions are generally placed next to one another in a number of contiguous regions,
which we call address ranges. Figure 1-2 shows that the vast majority of directories define their
functions in fewer than 5 such contiguous regions. Generally, the directories defining functions
that are dispersed in address space are either "include directories or directories containing
architecture-specific code. Figure 1-3 shows the distribution of the fraction of functions in each
directory that are defined in the largest address range. We see that, generally, the majority of
functions are defined in the largest address range. Indeed, at least 50% of functions are defined in
the largest address range in 74% of the directories. When we restrict to the directories defining at
least 20 functions, this statistic drops slightly; at least 50% of functions are defined in the largest
address range in 69% of such directories. We conclude that although our function locality
assumption is mostly valid, we must recognize that there are a number of exceptions to this
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Figure 1-1. Kernel density estimate showing the distribution of the number of func-
tions defined per directory in Linux kernel source code.

rule.

To evaluate our assumption that functions will tend to call other functions within the same
directory, we look at the (weighted) fraction of function calls that occur within a directory. We

cif 
weigh the function call from the function f to the function gi by where Igifi is the set of

size ctf of functions called by the function f. The number of calls from f to gi is not taken into
account in this analysis11. For each directory that defines at least 10 functions, we calculate three
(weighted) fractions:

• [incoming calls]: the (weighted) fraction of all calls whose target is in the directory such
that the caller is also in the directory,

• [outgoing calls]: the (weighted) fraction of all calls made by functions of the directory
whose target is also in the directory, and

• [all calls]: the (weighted) fraction of all calls whose caller or callee belongs to the directory
that do not involve a function outside the directory.

The distribution of such fractions can be seen in Figure 1-4. Generally, the plurality (although not
the majority) of function calls occur within a directory, regardless of whether we are looking at
incoming calls, outgoing calls, or all calls. Interestingly, we see that, when choosing uniformly at
random a directory d, a function call c into d, and a function call c' made by a function defined in
d, the probability that c was made by a function defined in d is much higher than the probability

11Because most function calls occur with low multiplicity, we obtain very similar results when the call multiplicity is

taken into account.
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Figure 1-2. Kernel density estimate showing the distribution of the number of address
ranges per directory in Linux kernel source code.
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Figure 1-3. Kernel density estimate showing the distribution of the fraction of func-

tions in each directory that are defined in the largest address range in Linux kernel

source code.

18



Fraction of function calls within a directory

— incoming calls

— outgoing calls

— all calls

0.4 0.6
Fraction of function calls

Figure 1-4. Kernel density estimates showing the distribution of the (weighted) frac-

tion of calls occurring within a directory. We construct separate estimates for incom-
ing function calls, outgoing function calls, and all function calls. We consider only
directories defining at least 10 functions.

that the target of c' is also in d. Said differently, on average, function calls are much more likely
to originate in the same directory than they are to have a target in the same directory.

1.4.3. A na I yt ica I results

Below, we discuss the results of our numerical experiments. We report the goodness of a function
clustering using homogeneity [24]. The homogeneity of a clustering is an entropy-based measure
of the similarity of items within each cluster. The homogeneity is a number in the closed interval
[0,1], with larger values indicating a clustering which more closely matches ground truth. We
assume a set K = {ki,...,kin} of clusters, classes C = {c1, .., c,j, and a contingency table {ai,j}i,j,
where aij is the number of items belonging to class ci in cluster kj. When all data belongs to the
same class, homogeneity is defined to be 1. Otherwise, homogeneity is defined as

H(CIK) 
1

H(C) '

where H(C) (resp. H(C1K)) denotes the entropy of the class assignments (resp. the conditional
entropy of the class assignments given cluster assignments):

Iclicil Icil H(C) = — E log
i=i N - N
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Figure 1-5. The effect of kaddr on homogeneity.
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When calculating the homogeneity score, we ignore any functions that cannot be mapped back to
a source file.

As mentioned previously, of all possible parameters, )t--addr has the largest effect on homogeneity.
Indeed, the effects of all other parameters are hardly noticed, provided one chooses "reasonable"
parameter values (e.g., those relatively close to the defaults discussed above). Here, we examine
the effect of altering Xaddr on the homogeneity score. In particular, we calculate the homogeneity
score for values of Xaddr ranging from 0.001 to 1000. For each such value, we calculate the
average homogeneity score of performing 10 clusterings. The results of this experiment are
visualized in Figure 1-5. We see that homogeneity is maximized when 10 < A.addr < 100. Because
the highest homogeneity score is not seen at the lowest or highest considered values of Xaddr,
Figure 1-5 also suggests that we can obtain a higher homogeneity when combining information
from both the function layout and the call graph than when using information from one of those
alone.

The parameter Xaddr also has a somewhat large effect on the distribution of the sizes of the clusters
produced by our technique. Figure 1-6 shows three kernel density estimates of the cluster sizes
produced with varying values of Xaddr. We see that when A,addr is large, the distribution of cluster
sizes is roughly Gaussian. However, as _Xaddr decreases, the distribution becomes skewed to the
right — there are a few larger clusters and many smaller clusters. When Xaddr = 0.05, there is a
large percentage of clusters whose size is very small; we keep the bandwidth of the kernel density
estimate small to better show this phenomenon. Table 1-3 shows the percentage of clusters whose
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Figure 1-6. Kernel density estimates showing the distributions of cluster sizes pro-

duced while varying -addr•

Cluster size 1 - 9 1 - 49 1-99 100-749 750+ 1000+ 2000+

?caw = 60.0 0.0% 0.0% 0.0% 99.1% 0.9% 0.0% 0.0%

Xaddr = 1.0 0.0% 3.2% 11.1% 72.6% 16.3% 8.0% 1.5%

kaddr = 0.05 7.6% 15.1% 23.4% 56.5% 20.1% 12.0% 3.2%

Table 1-3. The effect of Xaddr on the approximate percentage of clusters whose sizes

are in certain ranges.

sizes are in certain ranges for the various values of Xaddr. This table further accentuates that the
range of cluster sizes, as well as the density of cluster sizes at the extremes, increases as Xaddr
decreases.

Table 1-4 shows a table comparing homogeneity when Linux was compiled with different
compilers, compilation settings, and values of Xaddr. Each homogeneity value in this table is
calculated as the median of 3 trials. The main insight to be gained from this table is that,
compared to varying Xaddr, varying the compiler and optimization settings has a relatively small
effect on the homogeneity of the resulting clustering.

Finally, we analyze the effect of Xaddr on the distribution of a directory's functions over clusters.
If our technique worked perfectly, all functions in a directory would be placed in the same cluster.
Unfortunately, it is most common for the functions in a directory to be placed in multiple clusters.
Figure 1-7 shows the distribution of the number of clusters into which functions from a single
directory are placed. The most noticeable feature of this figure is that directories are divided into
fewer clusters as A,addr increases. Figure 1-8 provides a dual perspective; this figure shows the
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Xaddr -OS
gcc
-02 -03 1 -Os

clang
-02 -03

60.0 0.819 0.822 0.824 0.820 0.815 0.819
1.0 0.627 0.644 0.605 0.637 0.613 0.613
0.05 0.426 0.410 0.397 0.414 0.399 0.393

Table 1-4. The effect of compiler, optimization flags, and kaddr on the homogeneity
of the clusters found by performing Louvain clustering on the combined graph con-
structed from the Linux kernel.

distribution of the number of directories represented by the functions in a cluster. Again, we see
that as Xaddr increases, clusters tend to contain functions from fewer directories. Put together,
these graphs suggest that as the layout of functions in address space becomes less important and
the call graph becomes more important, it is more common to see clusters containing functions
from many different directories. This observation is reflected in Figure 1-9 — this figure shows the
distribution of address ranges in each cluster. Given that gcc and clang largely preserve function
locality, clusters that contain functions from many different directories will contain functions
from different parts of address space.

One might assume from the results of this section that address locality is much more important
than the call graph. The following section shows why this is not always the case.

1.4.4. Qualitative validation — kernel function tracing

In this section, we provide a focused assessment of our technique that does not rely on the
homogeneity score. In particular, we validate our cluster results by exploring how well our
technique extracts and isolates the tracing system built into the Linux kernel. Tracing refers to the
use of logging to record information about a program's flow of execution [23]. For example, one
can use tracing to track system calls or kernel function calls in order to debug, profile, or
otherwise assess the performance of the kernel (or user programs that make extensive use of
kernel functionality).

Linux's implementation of tracing is rather intricate, utilizing a complex system of macros whose
usage is not isolated to one directory. Furthermore, the directory that defines the plurality of
tracing functionality, include/trace/events, defines functions that are scattered across 118
address ranges. As such, the tracing module is a prime example of a module that largely defies
our assumption that the compiler preserves function locality. Because this module is defined
across a large number of address ranges, it will not be captured well by our technique when we
use larger values of Xaddr (i.e., values that typically provide higher homogeneity scores).
Furthermore, because the tracing "module' is defined in multiple directories, we cannot even use
the directory structure as ground truth.

We thus examine the tracing module by taking as ground truth 6 (partially overlapping) sets of
tracing-oriented functions as defined in Table 1-5. This table also shows the extent to which these
sets of functions do not adhere to our function locality assumption. Note in particular that sets 2
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Figure 1-9. Kernel density estimates showing the distribution of the number of ad-

dress ranges in each cluster. The x-axis of this figure was truncated at 75.

through 4 are each defined across 18 or 19 directories, and that all sets are segmented into over 80
address ranges. Table 1-6 shows how well our technique extracts each of the 6 defined sets of
functions for various values of Xaddr. Note that all considered sets of tracing-oriented functions
were clustered much more tightly for lower values of Xaddr. For example, when kaddr = 0.05, over
98% of functions in sets 2 through 4 were found in one cluster, whereas when X

dd
6O.00,each

of these sets of functions were separated into at least 47 clusters, with no cluste" having-rar= 
 rnre 

than
18% of the functions in the set.

Ultimately, this analysis shows that the value of Xaddr must be chosen to suit the need or
application at hand. Whereas high values of Xaddr are valued when the functions belonging to
modules of interest are expected to be adjacent to one another in address space, lower values of
Xaddr are recommended when the functions of interest are expected to be spread out in address
space.

1 .5. Discussion

In designing our experiments, we made two choices about how to evaluate our method. The first
was that the directory structure of the original source code can be used as ground truth. The
validity of this choice rests on the (not always valid) assumptions that the underlying source code
was well organized in its directory structure, and that code used frequently in the same context is
placed in the same directory. The second choice was to use homogeneity as an evaluation metric.
Most metrics used to measure clustering take into account both the homogeneity (i.e., whether
items in the same cluster belong together) and the completeness (i.e., whether all items that
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Set # Definition # addr rngs pct lrgst addr rng # dirs pct lrgst dir

1 Functions in
include/trace/events

116 12.7% 1 100%

2 Functions beginning with
trace_raw_output

87 17.2% 18 54.3%

3 Functions beginning with
trace_event_raw

134 17.3% 19 54.1%

4 Functions beginning with

perf_trace

122 10.2% 19 53.7%

5 The union of sets 2

through 4

134 17.4% 20 54.0%

6 The union of sets 1

through 4

141 17.3% 20 54.1%

Table 1-5. Six sets of functions of the Linux kernel that relate to tracing. For each

set of functions, we provide a set number, the definition of the set of functions, the

number of address ranges for the set, the percentage of functions in the set defined in

the largest address range, the number of directories that overlap nontrivially with the

set, and the percentage of functions in the set defined in the directory that contains

the plurality of the set's functions.

Set
A•addr

# clstrs
= 0.05
pct lrgst

kaddr

# clstrs
= 1.0
pct lrgst l satrdsr# ckd

= 60.0
pct 1 rg s t

1 12 65.3% 40 55.3% 39 19.0%

2 3 99.2% 32 78.8% 47 17.4%

3 6 99.1% 29 91.7% 49 17.4%

4 8 98.1% 34 79.1% 50 17.3%

5 12 65.8% 43 59.1% 51 17.4%

6 17 65.6% 46 59.0% 52 17.3%

Table 1-6. Performance metrics for six sets of tracing-oriented functions. For each

value of Xaddr, we report the number of clusters containing functions in the set and the

percentage of functions in the set belonging to the clusters containing the plurality

of the set's functions.
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belong together are placed into the same cluster) of the clustering. We argue that, for our use case,
completeness is much less important than homogeneity. Although it will take time to determine
the degree to which a cluster is of interest to an analyst, regardless of the method used, it is
perhaps not as big of an issue if, for example, twice as many such evaluations need to be
performed than if the clusters contain unrelated functions. As future work, it would be beneficial
to explore automated ways to extract or highlight clusters that would be of interest given a
specific use case or analyst question.

Furthermore, it may be prudent to reexamine the mathematical interpretation of modularization
used in this report (i.e., graph modularity) to see if our formalization maps well to real-world use
cases. In particular, we rely heavily on the assumption that modules can be interpreted as groups
of functions that interact with one another much more than with functions of other modules. This
may not always be the case. For example, one might imagine a "matV library that contains
implementations of a variety of unrelated mathematical functions. In this example, the module
consists of a set of similar functions, but the functions of interest rarely call each other. Our
approach was built under the hypothesis that this sort of module is less common than modules
that are highly connected by their call graphs, and that such modules are not frequently the targets
of interest of an analyst. We leave a characterization of different types of modules seen in binary
code for future work.

As mentioned previously, we assume that our code was compiled without any control flow
structures like virtual tables or indirect calls (i.e., we ignore virtual tables and indirect calls in our
analyses). We expect that our general technique can be easily modified to incorporate these
control flow structures. For example, it is almost guaranteed that two functions that appear in the
same virtual table will belong to the same module, and indirect calls can be resolved to some
extent using static analyses like static taint analysis, constant propagation, or symbolic execution.
We may also be able to track object data when objects are passed between functions in order to
resolve virtual table pointers.

In our experiments, we use Ghidra to extract functions. However, we do not have perfect
knowledge of the performance of Ghidra when faced with non-debug and stripped binaries.
Ghidra identifies fewer functions when faced with such binaries, but the severity of this problem
is not well-understood. We also do not know how well Ghidra extracts global or read-only data
accesses from non-debug and stripped binaries. Before our approach can be made fully
operational, it would be prudent to assess the performance of Ghidra on non-debug and stripped
binaries, and we may need to construct a more reliable method of detecting and extracting
function information.

Furthermore, type information is lost when debug information is not available. Note that we did
not use type information in this analysis, but it is possible that more complete knowledge of type
information could be used to improve our techniques. We may be able to track allocation sites
and identify which functions those allocations are passed to. Alternatively, patterns of data
accesses that are offsets from pointers (structure members) might provide evidence that two
functions manipulate the same type. For programs exhibiting a large degree of modularization,
this could provide evidence that two functions belong to the same module.
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Although we make ample use of control flow structures between functions (e.g., the call graph),
we might be able to incorporate inter-function control flow information to identify functions
belonging to the same module. Functions in the same module may have bits of code that have
similar functionality. We may be able to group together functions whose control flow graphs
share many common subgraphs.

It is also possible that we could augment our approach by incorporating data flow or patterns of
data access into our approach. One might expect functions in the same module to reference the
same flavor of data; this information could be incorporated into our existing approach as another
indication that two functions belong to the same module. It should be noted that we experimented
briefly with this idea. In particular, we tracked functions' use of global data and constructed a
graph that connected two functions with an edge if they referenced the same global data address.
In our experiments, however, incorporating global data references in this manner caused a
decrease in homogeneity.

It should also be noted that we explored two other techniques for clustering functions. In the first,
we performed a spectral clustering on the columns of the adjacency matrix of the combined call /
address similarity graph. In the second, we constructed an unsupervised graph neural network.
This network associated a vector to each node; our hypothesis was that the vectors associated to a
node n's neighbors could be used to reconstruct the vector associated to n. Traditional clustering
algorithms were then used to cluster the vectors. In our experiments, the spectral clustering and
graph neural network approaches produced homogeneity scores that were approximately 35% and
60% of that of the modularity approach, respectively. Given these results, we did not work to
refine these approaches after our initial experimentation; further experimentation may be
warranted.
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