
Data Analysis at Extreme:
The Dax Toolkit

The transition to exascale machines represents a fundamental change in
computing architecture. Efficient computation on exascale machines
requires a massive amount of concurrent threads, at least 1000 more

concurrency than existing systems. Current visualization solutions cannot
support this extreme level of concurrency. Exascale systems require a
new programming model and a fundamental change in how we design
fundamental algorithms. To address these issues, our project, titled “A
Pervasive Parallel Processing Framework for Data Visualization and
Analysis at Extreme Scale,” builds the Data Analysis at Extreme (Dax)
Toolkit.

A Toolkit for Exascale Data Analysis
The Dax Toolkit supports the fine-grained
concurrency for data analysis and
visualization algorithms required to drive
exascale computing. The basic
computational unit of the Dax Toolkit is a
worklet, a function that implements the
algorithm’s behavior on an element of a mesh
(that is a point, edge, face, or cell) or a small
local neighborhood. The worklet is
constrained to be serial and stateless; it can
access only the element passed to and from
the invocation. With this constraint, the serial
worklet function can be concurrently
scheduled on an unlimited number of threads
without fear of memory clashes or other race
conditions.

The Dax Toolkit provides a unit called an
executive that accepts a mesh, iterates over
all elements in the mesh, invokes one or more
worklet on each element, and collects the
resulting values for each element.
Conceptually we can think of this iteration as a serial operation, but of
course in practice the executive will schedule the operation on multiple
threads.

SAND2011-6964P

int vtkCellDerivatives::RequestData(…)
{
 …[allocate output arrays]…
 …[validate inputs]…
 for (cellId=0; cellId < numCells; cellId++)
 {
 ...[update progress]...
 input->GetCell(cellId, cell);
 subId = cell->GetParametricCenter(pcoords);
 inScalars->GetTuples(cell->PointIds,
 cellScalars);
 scalars = cellScalars->GetPointer(0);
 cell->Derivatives(subId,
 pcoords,
 scalars,
 1,
 derivs);
 outGradients->SetTuple(cellId, derivs);
 }
 ...[cleanup]...
}

DAX_WORKLET void CellGradient(...)
{

 dax::exec::Cell cell(work);
 dax::Vector3 parametric_cell_center
 = dax::make_Vector3(0.5, 0.5, 0.5);

 dax::Vector3 value = cell.Derivative(
 parametric_cell_center,
 points,
 point_attribute,
 0);
 cell_attribute.Set(work, value);

}

VTK Code Dax Code

Simplified Parallel Programming
The Dax Toolkit simplifies the development of parallel visualization
algorithms. Consider the code samples above that come from the
Visualization Toolkit (VTK) on the left and our Dax Toolkit on the right. Both
implementations perform the same operation; they estimate gradients
using finite differences. Both toolkits provide similar classes and functions,
and consequently the code looks remarkably similar.

However, because the Dax Toolkit is structured such that it can schedule
its execution on a GPU, we measure that it performs this operation over
100 times faster than the VTK code running on a single CPU. Furthermore,
although the Dax code above is compiled and run using CUDA, all CUDA-
specific constructs all encapsulated with the Dax Toolkit, simplify ing the
programmer’s job and easing transitions to new programming models.

For more information and updates, please visit http://daxtoolkit.org.

Contacts
Kenneth Moreland, PI
Sandia National Laboratories
kmorel@sandia.gov

Kwan-Liu Ma, Co-PI
University of California at Davis
ma@cs.ucdavis.edu

Berk Geveci, Co-PI
Kitware, Inc.
berk.geveci@kitware.com

Utkarsh Ayachit, Technical Lead
Kitware, Inc.
utkarsh.ayachit@kitware.com

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

http://daxtoolkit.org/

