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Key Mission Areas 

• Energy  
• Homeland Security 
• Defense Systems 
• Nonproliferation 
• Nuclear Weapons  



Kauai, Hawaii 

Albuquerque, New Mexico 

Pantex, Texas 

Livermore, California 

Tonopah, Nevada 

Yucca Mountain, Nevada 

WIPP, New Mexico 

Sandia  Locations 



• 8,500 regular full-time employees 
• 1,500 post docs, limited term, & contract 

employees  
• 1,500 PhDs and 2,300 Masters 
• $2+ billion operating budget 
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Sandia has a Workforce of 
Over 10,000 Employees 



Work/life balance: eye candy 
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From Z (division) to Z (machine) 

• 1945: Los Alamos Z Division moves to Albuquerque 
• 1949: Sandia (Albuquerque) founded to turn physics 

packages into deployable weapons 
• 1956: Livermore site opened 
• 1974: technical advisor for WIPP 
• 1997: started Z-pinch research for basic science and 

stockpile stewardship 
• 2010: creation of Livermore Valley Open Campus 
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Some Sandia Opportunities for 
Nuclear Engineers 

• Pulsed power 
• Nonproliferation 
• Advanced fuel cycles 
• Materials development 
• Homeland security 
• Waste transport/storage 
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Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department 
of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Gas centrifuge enrichment plant, 
Piketon, OH 



Special thanks to… 

• Pete Marleau, Erik Brubaker 
– Technical expertise 

• Mark Gerling 
– Neutron Scatter Camera experiments, modeling 

• Michael Streicher (summer intern, Purdue) 
– Neutron Scatter Camera experiments, modeling 



A Rough Presentation Outline 

• Introduction to the problem  
• How I got involved 
• Using fast neutrons 
• Initial calculations 
• Some measurements 
• Future plans 
• Other possibilities 
• Discussion 



What is the problem? 

• Enriched uranium can be 
used to construct a nuclear 
weapon 

• It is important to verify the 
enrichment of uranium as it 
exits the processing stream 
to detect material diversion 
efforts 

• Diversions may be possible 
with current NDA technology 



A quick review: the front end 
of the fuel cycle 



Current technology is good, but… 

• “Enrichment meter” 
measures gamma 
emissions from the 
uranium hexafluoride (UF6) 
– Gives local enrichment, not 

total mass (need a scale for 
masses) 

– Sensitive to variations in 
container wall thickness 

– Not sensitive to material 
beyond outer skin of UF6 The enrichment meter principle.  From Reilly et al., 

Passive Nondestructive Assay of Nuclear 
Materials, Fig. 7.3 



How I got involved… 



Summarizing the problems 

• Typical NDA techniques measure enrichment, not 
isotope masses 
– To obtain masses, a load cell (scale) measurement is necessary 

• The enrichment measurement relies upon weakly-
penetrating particles 
– Sensitive to container wall thickness 
– Sensitive to geometry 
– Cannot sample entire volume…what’s in the center? 

+ = ? 



Sandia’s concept: directly measure fast neutron 
emissions 

• Fast neutrons generated by 
independent processes within 
the UF6 can provide an 
independent enrichment 
measurement that samples 
the entire UF6 volume 

• Neutron imaging of the UF6 
distribution detects 
unexpected UF6 geometries 
and applies necessary 
corrections 

• Sandia has developed 
expertise in neutron imaging 
and spectroscopy that will 
enable success 

Transmission of particle beams through 
5% enriched UF6 (without container wall) 



Neutron spectrometry can potentially be used to 
determine UF6 enrichment and mass in a 30B 

• 238U: neutrons via spont. fission 
and (α,n) reaction on F atoms 

• 234U: neutrons via (α,n) reaction 
on F atoms 

• The two processes have 
measurably different energy 
spectra 

– It should be possible to separate 
234U and 238U contributions to the 
energy spectrum 

– Direct measurement of 234U and 
238U masses 

• 234U content is proportional to 
235U content (proven by LANL 
for enrichment ≤ 5%) 

SOURCES4C calculation of neutron 
spectrum for 5% enriched UF6 



Summarizing the concept… 

• Spectral information 
– The high-energy portion of the spectrum is purely from fission, 

and the magnitude is a function of the total 238U mass 
– The low-energy portion of the spectrum is mostly from (α,n) on 

F, and the magnitude is a function of the total 234U + 238U mass 
– The sum of these components indicates the total sample mass 
– The ratio of these components is a function of uranium 

enrichment 

• Imaging information 
– Imaging the material distribution may allow for geometry 

corrections to be applied (if necessary) 
– Imaging the total volume can provide confidence that diversions 

are not occurring (“smuggling” with an inner volume) 

 



Advantages of this technique 

• Independent verification of isotope ratios and 
masses 

• Highly-penetrating particles are less sensitive to 
geometry perturbations 

• No load cell necessary 
• Imaging can be used to: 

– Map material distribution 
– Reject natural backgrounds 
– Reject neutrons from nearby cylinders 



Neutron spectrometry measurements can be 
performed with the Neutron Scatter Camera 

• The Neutron Scatter Camera is a 
mature system developed at Sandia 
for large-area search 

– Multi-element system 
– Liquid scintillator for n/γ discrimination 
– Imaging capabilities (interaction cell locations, 

measured energies) 
– Spectrometry (deposited energy, time-of-flight) 

 

252Cf 

AmBe 



Initial calculations: emitted neutron 
spectra using SOURCES4C 

• Calculate spectra for 
different enrichments to 
examine the dependence 

• Use SOURCES4C 
– Input: isotopics, density, 

energy bin boundaries 
– Output: (α,n), spontaneous 

fission rates (n/cm3s) 

• No detector response or 
transport physics in 
cylinder at this point 



Calculations of the cylinder emissions 
imply manageable spectral perturbations 

• The source term is perturbed in a large mass of UF6. 
– Scattering 
– Induced fission 
– Absorption 

• A 30B cylinder was modeled in MCNP5. 
– Enrichments: DU, natU, 5% enriched 235U 
– Maximum fill mass 

• Spectra appear to maintain enough structure for the 
measurement concept to work. 



Results of the MCNP5 calculations 



The enrichment can be inferred from 
the neutron energy spectrum 

• The ratio of neutrons in the (α,n) and S.F. regions is a function 
of enrichment 
– Cut data at the end of the (α,n) spectrum (~2.54 MeV) 
– A realistic detector will have a detection threshold (choose 1 MeV) 

• For the simulated data, the ratio is a monotonic function of 
enrichment 



The (simulated) 30B emissions with full 
detector response 

These spectra are normalized to more easily 
compare the distributions 



Challenge: filling profile differences may 
require imaging 

• Imaging may be necessary to couple with 
spectrometry 

DUF6: X=0 (black), X=100 (blue) Three measurement 
locations for X=0, natUF6 



Experiments to characterize 
the Neutron Scatter Camera 

• We want to understand the tradeoff between energy 
resolution and double scatter rates as a function of 
plane spacing for the Neutron Scatter Camera 
– Close planes = high rate, degraded spectrum 
– Extended planes = low rate, best spectrum 



Experiment: rates vs. plane spacing 

• Used an AmBe source in the B942 high bay 
• DTRA camera with 4 rear cells missing (12+8) 



Experiments: rates vs. camera angle 

• The rate of imaged events will vary with the angle of 
the Neutron Scatter Camera relative to the source 
– Angles between cell pairs changes 
– Alters the energy partitioning between cells for identical neutrons 



Quantifying the change in energy 
resolution 

• The AmBe experiments are fine for rate studies, but 
it is difficult to quantify the energy resolution vs. 
plane spacing 

• Use a D+D neutron generator 
– Monoenergetic neutrons of an appropriate energy: 2.45 MeV 
– Over time, also build in 14.1 MeV neutrons 


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D+D source experiments 



Planning: field measurements 

• It is important to measure filled 30B cylinders with 
the Neutron Scatter Camera to collect data with 
– The appropriate (α,n) source term 
– A complex source with multiplication, scattering 
– Appropriate rates (neutrons and gammas) 
– Realistic backgrounds 

• Paducah Gaseous Diffusion Plant may be the place 



Discussion and Summary 

• Direct measurement of neutron signatures for UF6 material 
accountancy appears to be a useful safeguards technique 
– Two physical processes create neutrons with different energy spectra 
– Simulations indicate enrichment can be extracted from emitted 

neutrons, even after full transport 
• Advantages: 

– Sensitive to entire cylinder volume (detect diversion attempts) 
– Imaging suppresses backgrounds from nearby cylinders, allows one to 

map material distribution within a cylinder (if important) 

• Accomplishments: 
– Simulations show spectrum changes with enrichment (transport, 

detector response included) 
– Basic lab experiments to characterize Neutron Scatter Camera 



Challenge: virgin vs. reprocessed UF6 



Considering PuO2 holdup accountancy 

• Consider PuO2 holdup in 
a reprocessing facility 
– Gloveboxes 
– Pipes, components 

• Geometry is variable, 
materials self-absorbing 
– Gamma-based 

measurements are not 
accurate 

• Can spectrometry and 
imaging be used to 
locate and quantify 
material? 

La Hague reprocessing facility 



Plutonium vs. uranium measurements 

• Consider PuO2.  How do the proposed 
measurements compare to UF6? 
 

• PuO2 advantages: 
– Spectrum: (α,n) on O produces higher-energy neutrons 
– Rates: There are >1000x more neutrons emitted from PuO2 per 

cm3 

• PuO2 disadvantage: 
– Isotopics are messy…f(initial enrichment, burnup, cooling time) 



Considering the PuO2 neutron spectrum 

 Each isotopic mix 
produces unique (α, n) 
and SF neutron spectra 

 Ideal: use spectrum to 
estimate each isotope’s 
individual contributions 
and mass 

 Reality: not enough 
information; must use 
(α,n), SF components 
only (for pure neutron 
measurements) 
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