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Overview

* Introduction
— Predictive simulation
— Sources of uncertainty
— Uncertainty quantification objectives



Predictive simulations enable science based design

« Empirical design is inefficient and costly
— Trial and error does not work well for complex systems

« Experiments not always feasible or permissible
— Reliability of nuclear weapons
— Climate change mitigation approaches

* Predictive simulations provide insight into the underlying
physics that drive complex systems

— ldentification of key mechanisms
— Allows for rigorous optimization strategies



Model validation requires targeted experiments
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Predictive simulation requires careful assessment of
all sources of error and uncertainty

 Numerical errors
— Grid resolution
— Time step size
— Time integration order
— Spatial derivative order

« Epistemic uncertainty
— Initial and boundary conditions
— Model parameters
— Model equations

« Aleatory uncertainty / intrinsic variability

— Stochastic processes
— Sampling noise



Governing equations

e Mass:

e Momentum:;
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e Total Energy:
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e Spray Source Terms  » Composite Stresses/Fluxes e Chemical Source Terms



Smagorinsky sub-grid scale model

e Eddy Viscosity:
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e Stress Tensor:
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Dynamic modeling and reacting flows involve additional
complexity
e Eddy Viscosity:
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e Stress Tensor:
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e Energy Flux:
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Coefficients Cy, Pr, and Sc;, Evaluated Dynamically as Functions of Space and Time



UQ assesses confidence in model predictions and
allows resource allocation for fidelity improvements

Parameter inference
— Determine parameters from data
— Characterize uncertainty in inferred parameters

* Propagate input uncertainties through computational
model

— Account for uncertainty from all sources
— Resolve coupling between sources

* Analysis
— Sensitivity analysis
— Attribution

 Enables model calibration, validation, selection,
averaging



Overview

« Basic methods for uncertainty quantification
— Representation of random variables
— Forward propagation
— Parameter inference



Polynomial Chaos expansions offer compact

representations of random variables

 Random variables are represented as (truncated)
Polynomial Chaos (PC) expansions
P
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Propagation of uncertainty

« Consider example ODE with uncertain parameter A

du
—=f(A, t=0)=
T f () u(r=0)=u
* Represent both u and A with PC expansions
A= :=O AW, A, known

u(t)=Y u ()%,  u(r) unknown

« Additional uncertain parameters introduce new
stochastic dimensions

 Intrusive and non-intrusive approaches for determining
the PC coefficients u,



Spectral intrusive propagation of uncertainty

« Substitute PC expansions for u and A in the governing
equation
* Perform Galerkin projection onto the PC basis functions

— System of equations for the PC coefficients u,(t)
— (P+1) coupled deterministic equations



Substituting PC expansions into the governing equation

yields deterministic equations for PC coefficients
« Example ODE with uncertain parameter A

du P P

—=he A DAY u(t)=) u ()W,
« Substitute PC expansions in the ODE
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« Multiply by W¥,, take expectation and use orthogonality
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Spectral intrusive propagation in practice

Pros
— Elegant

— One time solution of system of equations for the PC coefficients
fully characterizes uncertainty in all variables at all times

— Tailored solvers can (potentially) take advantage of new
hardware developments

Cons

— Often requires re-write of the original code

— Reformulated system is factor (P+1) larger than the original
system and can be challenging to solve

Many efforts in the community to automate intrusive UQ

— UQToolkit http://www.sandia.gov/UQToolkit/

— Sundance http://www.math.ttu.edu/~klong/Sundance/html/

— Stokhos http://trilinos.sandia.gov/packages/stokhos/



Non-intrusive or sampling-based propagation of
uncertainty

* Do not require changes to the original solver code
— Used as black box to generate samples

 Two main categories
— Galerkin projection approaches
— Collocation approaches



Non-intrusive spectral projection (NISP) for
uncertainty propagation
» Obtain u, by direct projection onto PC basis

Wy 1 o0 g2
o o e
« Random sampling approach: g~ &2 I @~
pling app f_oof(g)e 2 dxsﬁzizlf(gi)

— Monte Carlo (MC), Latin Hypercube Sampling (LHS), ...
— Convergence as 1/JN

* Quadrature approach: f:f(g)e‘gzdx = Eiip w.f (&)

— Gauss-Hermite quadrature for u, exact with N, = P+1ifuis a
polynomial of order P (one-dimensional)

— Evaluate u at N, quadrature points corresponding to different
values of A(g))




Collocation approaches rely on interpolation

* Do not perform projection onto the basis functions
« Consider u=g(A)
« Sample parameter space

)Li= ’ )qujk(gi)

k=0

» Solve a system of equations for u,
U, = g(A‘i) = E;ouk v, (51)

« Many variants depending on location and number of
sample points
— Generally more samples than PC coefficients



Sampling-based approaches in practice

* Pros
— Easy to use as wrappers around existing codes
— Embarrassingly parallel

 Cons
— Most methods suffer severely from curse of dimensionality
N =n"
» (Adaptive) sparse quadrature/collocation methods
« Sampling methods have found very, very W|despread
use in the community
— DAKOTA http://dakota.sandia.gov/




Bayesian methods provide probabilistic framework for
parameter inference

« Bayesrule
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posterior
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* Probabilistic framework

— Naturally handles uncertainties
— Posterior width indicates confidence in

inferred information

— Can handle heterogeneous data sources
— Lends itself well to model comparison

(Bayes factors)
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Likelihood measures goodness-of-fit

—dlst d; ,m( /Sl2
)<]]¢

Compare experimental data D={d }

with computational model output m(6)

via measurement model Measured Quantity = f;(Modeled Quantity )
and instrument noise s,

e.g., Gaussian assumption,

dist [d,,m(0)] = [d, - 1, (m(6))]

* |nstrument noise and measurement model details often inferred as
hyperparameters.



Posterior distribution generally sampled with Markov
Chain Monte Carlo (MCMC)

» Basic Metropolis-Hastings algorithm
— Generate new sample 62 from

Gaussian proposal distribution |

centered at current state 9
* Proposal distribution width
determines mixing

— Compute

p(6°
p(6'

D,M)
D,M)

+
uv

o= min(l,

— Accept new sample with probability a

« Many variations / enhancements exist



Overview

* Application to chemical kinetics
— Inference and propagation of reaction kinetics uncertainty
— Effect of correlation between inferred parameters



Synthetic “experimental ignition data” generated from
detailed chemistry model with added noise

« GRI 3.0 model for |

methane-air chemistry I E
» Ignition time versus o GRI
Initial temperature 2
o B .
 Multiplicative noise £ | ORlwnoise
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Global single-step irreversible chemical model is fitted
to ignition data

* Model equations ij_ i
CH,+20,—>CO,+2H,0 =3 WWW
R=[CH,][0, ]k, ol -
k= Aexp(—E/ROT) o8 WW’,‘

* Infer 3-D parameter vector : 10.6_— A

(In A, In E, In o) 03

 Good mixing with adaptive 1-1:

MCMC when startingat 27
Maximum Likelihood 2.5¢

W L DD W

Estimate (MLE) 0 2000 4000 6000 8000 10000
Chain Step




Calibrated global model fits the data well

N =

10.85

\ GRI |=—= GRI+noise
\ Fit Model

10.8

g I
10.75 ~ i N |
.qa) GRI+noise \\
107 s 01F \\ -
E | "\ 5
10.65 - S _
106 \
0.01F, . | . | . E
1000 1100 1200 1300

Initial Temperature (K)

« Marginal posterior (In A, In E) shows strong correlation
between the inferred parameters Ok

X =
« Model both with one Gaussian random variable Tina




Uncertainty in forward model predictions
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Evolution of temperature PDFs during preheat phase
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0.15F ' T ' ' m 0.15F ' T ' T

t=0.455 sec

ﬁ t=0.455 sec

o
—_
|
|
o
—_
|

|

0.459 sec 0.459 sec

5

S

N
|

Probability Density
Probability Density
p—— )

0.05[ 0.462 sec 0.462 sec

\J\ | JLJ.&I . | )

300 1200 1500 1600 1300 1200 1500 1600
Temperature (K) Temperature (K)

Similar results from Monte Carlo (20K samples) as
intrusive PC

With time, uncertainty increases and high-T tails get longer



Evolution of temperature PDFs during ignition
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Correlation slope between uncertain parameters has a
strong effect on predicted ignition transient uncertainty
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Correlation slope between uncertain parameters has a
strong effect on predicted ignition transient uncertainty
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Correlation slope between uncertain parameters has a
strong effect on predicted ignition transient uncertainty
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Correlation slope between uncertain parameters has a
strong effect on predicted ignition transient uncertainty
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Correlation slope between uncertain parameters has a
strong effect on predicted ignition transient uncertainty
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Correlation slope between uncertain parameters has a
strong effect on predicted ignition transient uncertainty

Probability Density

0.08

0.07

S
o
X

o
o
O

Q
(@)
=

S
o
[OV)

0.04475

AL

2000 2500

Temperature (K)

3000



Correlation slope between uncertain parameters has a
strong effect on predicted ignition transient uncertainty
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Correlation slope between uncertain parameters has a
strong effect on predicted ignition transient uncertainty
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Overview

« Advanced uncertainty quantification topics
— Model validation
— Surrogate models
— High-dimensional systems
— Discontinuities / non-linearities
— Data free inference



Model validation approaches

* Model sanity checks:
— Posterior predictive check

P(d|D.M)= [ P(d

0.D,M)P(6|D,M)d0

« Compare posterior predictions of quantities of interest versus
existing/new data sets

» Perform cross-validation
— Model discrepancy terms

d, = f,(m(0)+96,(0))+0,¢
» Discover structural deficiencies in forward model

* Enrich model until model discrepancy term small enough

 Model comparison and plausibility

— How adequate is the model for the given dataset, irrespective of
model parameters?



Model evidence term combines goodness-of-fit and
model complexity

®* Data
— Order 3 Model (good)

— Order 6 Model (overfitting)

 Likelihood marginalized
over all parameters

* Represents Ockham’s
razor

P(D\M)=[P(D|6.4)P(0| )6

average posterior fit model complexity penalty

” ”

DIM * Voo P s — POID, M)
logP(gD|M) :‘/P(\9|D, M) l(:)gP(HD|9, ‘\[-)dg_/P(9|D1i\[) log L | , M)

, — 6
P(6|M)

Relative entropy or information gain
between prior and posterior



Model comparison is based on model evidence term

* Model Selection: evidence ratio (Bayes Factor)
P(D|M,)
BF =
P(D|M,)

* Model Averaging: based on plausibility for robust predictions

M={M. i=1,... NV }

72 M

P(M,|D)xP(D|M,)P(M,)
P(q‘D,M) - ZP(q‘D,MZ.)P(MZ. D)

Beck and Yuen (2004), Cheung et al (2011).



Polynomial Chaos (PC) as a cheap surrogate model

» Input parameter = 0Oy + 016 &€ —1,1]
« Model output frn(@) S Z frnk\IJk(f)
k

\Ifk(f) are, e.g., Legendre orthogonal polynomials

« PC modes 71k can be found by

o orthogonal projection

= simulate the model at specific parameter values (quadrature)
= fails for noisy model outputs

o BayeS|an inference

= works with any set of model simulations
= robust with respect to noisy outputs
» |eads to random PC modes, i.e. stochastic surrogate model
= BUT, good accuracy may require prohibitively many simulations



Some outstanding challenges in UQ

* High-dimensional systems
— (Adaptive) sparse quadrature rules - - -
— Dimensionality reduction methods

« Discontinuities or strong

non-linearities S
— Make global PC expansions fail
— Domain or data decomposition
— Infer parameterization of discontinuity and represent smooth
function on both sides
« Data to infer full probabilistic description of model inputs
often not available
— Mean and standard deviation may be only thing known
— Use Data-Free-Inference (DFI) to determine full distribution



Summary

UQ is an essential component of predictive simulations
— Assess confidence in model predictions
— Resource allocation for fidelity improvement

 Many mature approaches available for propagating
uncertainties through computational models

« Accurate characterization of the input uncertainties is
essential
— Joint distribution between inputs needed

 Model comparison approaches are emerging
« Many challenges remain
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Ockham's Razor

* Data
— Order 3 Model (good)

— Order 6 Model (overfitting)

Relative entropy
or
information gain between
prior and posterior

\J
average posterior fit model complfxity penalty
T | T ~ POID,M)
log P(D|M) = / P(8]D, M) log P(D|6, M)d6 — / P(6]D, M) log [;J(|9|\ o

Model Evidence balances data fit and model complexity,
I.e. penalizes against overfitting



Non-intrusive spectral projection (NISP) to obtain
Polynomial Chaos representation for observables

Observable is statistical property y = <f(X(A))>

(Truncated) Polynomial Chaos (PC) expansions
spectrally represent dependence on uncertain inputs A

r (Mg + N, !
6 _ 7] o P+]l= dim ord
y( ) ; Ck ¢ (771 ,772 , , nNdim ) i (Ndim!Nord!)

Basis functions W are orthogonal polynomials in standard
random variables n allowing Galerkin projections

_0m)w,m) _ [ram)wmpmdn S w, (4 0,)w, ()

=

() (%) (%)

Sparse quadrature needed for high-dimensional systems



Bayesian methods offer a probabilistic framework well
suited to infer PC coefficients from noisy data

p(c D)OC p(DC)E(E) D= {yi i]\=]1

— D Pr:
Posterior Likelihood lor

« Assume uniformly distributed priors
« Gaussian likelihood
— With o estimated from Central Limit Theorem or inferred
» Posterior is explored using Markov Chain Monte Carlo
sampling
— Maximum a posteriori (MAP) parameter estimate used
¢ = argmax, p(c‘D)
— Width of posterior shows confidence in inferred parameters for
given amount of data

* (Generate data by sampling system at locations of
sparse quadrature points




Karhunen-Loeve (KL) decomposition expands X in
terms of the eigenfunctions of its covariance function

C<tlﬂt2 ) - <(X(t1>9)_ y(ﬁ ))(X(tz,ﬂ)— )_((tz ))>

X)X, (1)
j]Ctl,t (¢, )dt, = 2, X, (¢,)

+E:=1\/;Tka(t)§k tE[]I),Tl]

— X (t) : orthonormal eigenfunctions of the covariance function

— A : corresponding eigenvalues

— ¢, : uncorrelated, zero-mean, unit-variance random variables

— Covariance function obtained from sampled system trajectories



Uncertain and stochastic dynamical systems

* Two types of uncertainty

— Reducible (epistemic): can be reduced by additional or better
measurements

— lIrreducible (aleatory): due to inherent stochasticity in the system

 Some examples
— Reaction rate constants in combustion mechanism
— Physical property values in a solid mechanics problem
— Turbulent eddies around an airplane wing
— Small scale variabilities (weather) in a global circulation model
— Chemical reactions between a small number of molecules

* Uncertainty Quantification (UQ) propagates
characterized uncertainties through system model

« Sensitivity analysis determines influence of each
parameter on the observables of interest



Stochastic processes can be represented in PC form
using a Karhunen-Loeve decomposition

* For example: random variability in a temperature
boundary condition

* Model random variability as: 7" =1, x[l + g(x, 19)]
* Assume stochastic process has autocorrelation function

CQxl —xz‘)= O’é eXp(—‘xl —xz‘/Lc)

* g(x,0) is written in terms of the eigenfunctions C,(x) of
the autocorrelation function C using a Karhunen-Loeve
decomposition

g(0)=(g)+ ¥ VA Ci(E = glx.0)=

jjfé g (x)¥;(6)



