

# Uncertainty Quantification: Enabling Predictive Simulations

*Bert Debusschere*

Sandia National Laboratories, Livermore, CA, USA

[bjdebus@sandia.gov](mailto:bjdebus@sandia.gov)

# Overview

- Introduction
- Basic methods for uncertainty quantification
- Application to chemical kinetics
- Advanced uncertainty quantification topics

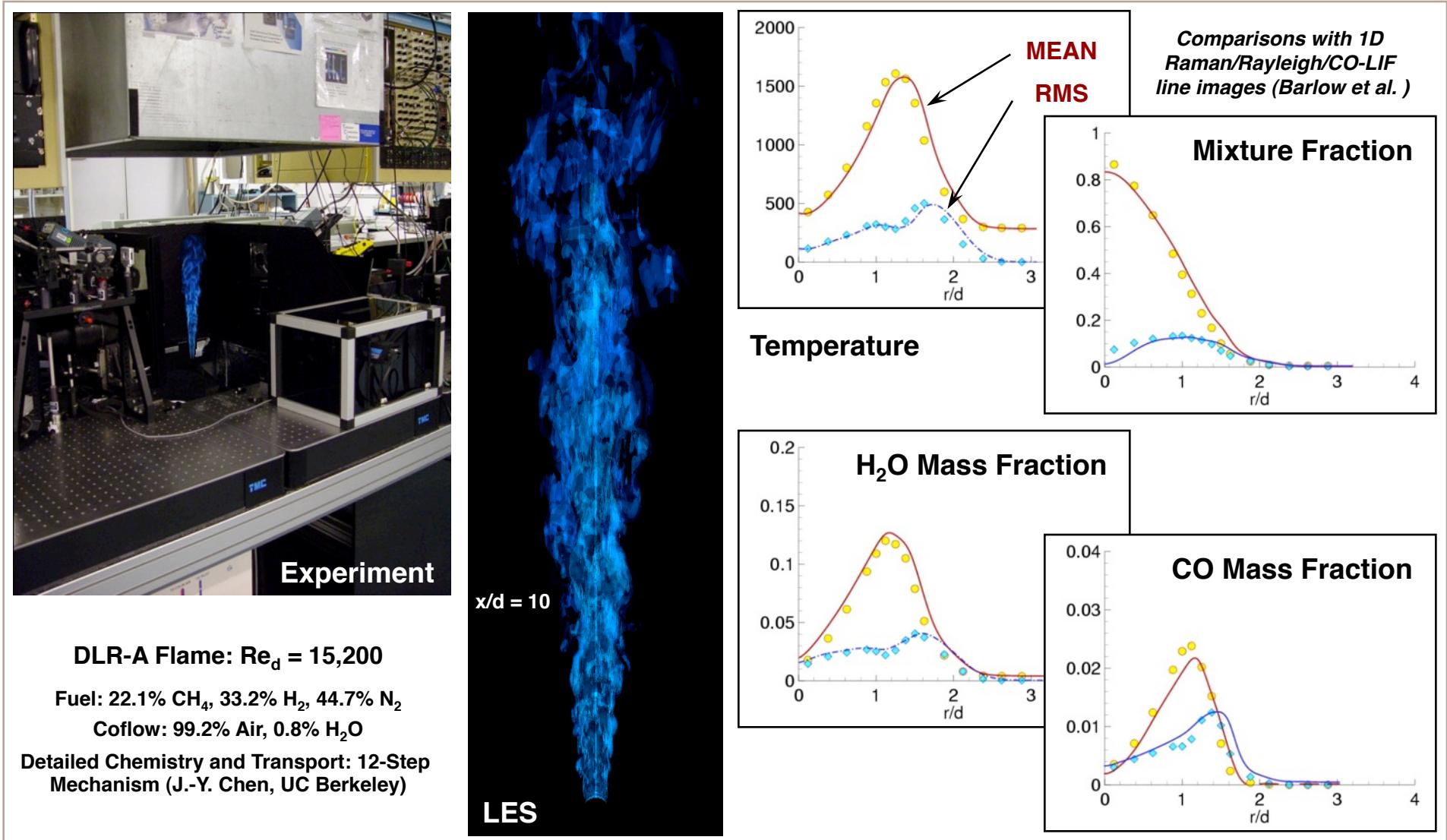
# Overview

- **Introduction**
  - Predictive simulation
  - Sources of uncertainty
  - Uncertainty quantification objectives
- Basic methods for uncertainty quantification
- Application to chemical kinetics
- Advanced uncertainty quantification topics

# Predictive simulations enable science based design

- Empirical design is inefficient and costly
  - Trial and error does not work well for complex systems
- Experiments not always feasible or permissible
  - Reliability of nuclear weapons
  - Climate change mitigation approaches
- Predictive simulations provide insight into the underlying physics that drive complex systems
  - Identification of key mechanisms
  - Allows for rigorous optimization strategies

# Model validation requires targeted experiments



# Predictive simulation requires careful assessment of all sources of error and uncertainty

- Numerical errors
  - Grid resolution
  - Time step size
  - Time integration order
  - Spatial derivative order
- Epistemic uncertainty
  - Initial and boundary conditions
  - Model parameters
  - Model equations
- Aleatory uncertainty / intrinsic variability
  - Stochastic processes
  - Sampling noise

# Governing equations

- Mass:

$$\frac{\partial}{\partial t}(\theta \bar{\rho}) + \nabla \cdot (\theta \bar{\rho} \tilde{\mathbf{u}}) = \bar{\rho}_s$$

- Momentum:

$$\frac{\partial}{\partial t}(\theta \bar{\rho} \tilde{\mathbf{u}}) + \nabla \cdot \left[ \theta \left( \bar{\rho} \tilde{\mathbf{u}} \otimes \tilde{\mathbf{u}} + \frac{\mathcal{P}}{M^2} \mathbf{I} \right) \right] = \nabla \cdot (\theta \vec{\mathcal{T}}) + \bar{\mathbf{F}}_s$$

- Total Energy:

$$\frac{\partial}{\partial t}(\theta \bar{\rho} \tilde{e}_t) + \nabla \cdot [\theta (\bar{\rho} \tilde{e}_t + \mathcal{P}) \tilde{\mathbf{u}}] = \nabla \cdot \left[ \theta \left( \vec{\mathcal{Q}}_e + M^2 (\vec{\mathcal{T}} \cdot \tilde{\mathbf{u}}) \right) \right] + \theta \bar{Q}_e + \bar{Q}_s$$

- Species:

$$\frac{\partial}{\partial t}(\theta \bar{\rho} \tilde{Y}_i) + \nabla \cdot (\theta \bar{\rho} \tilde{Y}_i \tilde{\mathbf{u}}) = \nabla \cdot (\theta \vec{\mathcal{S}}_i) + \theta \bar{\omega}_i + \bar{\omega}_{s_i}$$

- Spray Source Terms
- Composite Stresses/Fluxes
- Chemical Source Terms

# Smagorinsky sub-grid scale model

- Eddy Viscosity:

$$\mu_t = \bar{\rho} C_R \Delta^2 \Pi_{\tilde{\mathbf{S}}}^{\frac{1}{2}} \quad \Pi_{\tilde{\mathbf{S}}} = \tilde{\mathbf{S}} : \tilde{\mathbf{S}} \quad \tilde{\mathbf{S}} = \frac{1}{2} (\nabla \tilde{\mathbf{u}} + \nabla \tilde{\mathbf{u}}^T)$$

- Stress Tensor:

$$\vec{\mathcal{T}} = (\mu_t + \mu) \frac{1}{Re} \left[ -\frac{2}{3} (\nabla \cdot \tilde{\mathbf{u}}) \mathbf{I} + (\nabla \tilde{\mathbf{u}} + \nabla \tilde{\mathbf{u}}^T) \right] - \bar{\rho} (\tilde{\mathbf{u}} \tilde{\otimes} \tilde{\mathbf{u}} - \tilde{\mathbf{u}} \tilde{\otimes} \tilde{\mathbf{u}})$$

# Dynamic modeling and reacting flows involve additional complexity

- Eddy Viscosity:

$$\mu_t = \bar{\rho} C_R \Delta^2 \Pi_{\tilde{\mathbf{S}}}^{\frac{1}{2}} \quad \Pi_{\tilde{\mathbf{S}}} = \tilde{\mathbf{S}} : \tilde{\mathbf{S}} \quad \tilde{\mathbf{S}} = \frac{1}{2} (\nabla \tilde{\mathbf{u}} + \nabla \tilde{\mathbf{u}}^T)$$

- Stress Tensor:

$$\vec{\mathcal{T}} = (\mu_t + \mu) \frac{1}{Re} \left[ -\frac{2}{3} (\nabla \cdot \tilde{\mathbf{u}}) \mathbf{I} + (\nabla \tilde{\mathbf{u}} + \nabla \tilde{\mathbf{u}}^T) \right] - \bar{\rho} (\tilde{\mathbf{u}} \tilde{\otimes} \tilde{\mathbf{u}} - \tilde{\mathbf{u}} \tilde{\otimes} \tilde{\mathbf{u}})$$

- Energy Flux:

$$\vec{\mathcal{Q}}_e = \left( \frac{\mu_t}{Pr_t} + \frac{\mu}{Pr} \right) \frac{C_p}{Re} \nabla \tilde{T} + \sum_{i=1}^N \tilde{h}_i \vec{\mathcal{S}}_i - \bar{\rho} C_p (\tilde{T} \tilde{\mathbf{u}} - \tilde{\mathbf{u}} \tilde{\otimes} \tilde{\mathbf{u}})$$

- Mass Flux:

$$\vec{\mathcal{S}}_i = \left( \frac{\mu_t}{Sc_{t_i}} + \frac{\mu}{Sc_i} \right) \frac{1}{Re} \nabla \tilde{Y}_i - \bar{\rho} (\tilde{Y}_i \tilde{\mathbf{u}} - \tilde{\mathbf{u}} \tilde{\otimes} \tilde{Y}_i)$$

Coefficients  $C_R$ ,  $Pr_t$ , and  $Sc_{t_i}$  Evaluated Dynamically as Functions of Space and Time

UQ assesses confidence in model predictions and allows resource allocation for fidelity improvements

- Parameter inference
  - Determine parameters from data
  - Characterize uncertainty in inferred parameters
- Propagate input uncertainties through computational model
  - Account for uncertainty from all sources
  - Resolve coupling between sources
- Analysis
  - Sensitivity analysis
  - Attribution
- Enables model calibration, validation, selection, averaging

# Overview

- Introduction
- Basic methods for uncertainty quantification
  - Representation of random variables
  - Forward propagation
  - Parameter inference
- Application to chemical kinetics
- Advanced uncertainty quantification topics

# Polynomial Chaos expansions offer compact representations of random variables

- Random variables are represented as (truncated) Polynomial Chaos (PC) expansions

$$\lambda(\theta) \approx \sum_{k=0}^P \lambda_k \Psi_k(\xi_1, \xi_2, \dots, \xi_{N_{\text{dim}}}) \quad P+1 = \frac{(N_{\text{dim}} + N_{\text{ord}})!}{(N_{\text{dim}}! N_{\text{ord}}!)} \quad \xi_i = N(0,1)$$

- One-dimensional Gauss-Hermite PC

$$\Psi_0(\xi) = 1$$

$$\Psi_1(\xi) = \xi$$

$$\Psi_2(\xi) = \xi^2 - 1$$

$$\Psi_3(\xi) = \xi^3 - 3\xi$$

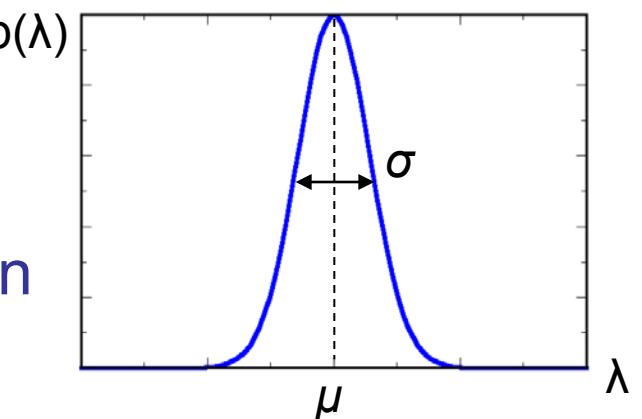
$$\Psi_4(\xi) = \xi^4 - 6\xi^2 + 3$$

$$\lambda_k = \frac{\langle \lambda \Psi_k \rangle}{\langle \Psi_k^2 \rangle}$$

$$\langle \lambda \Psi_k \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \lambda \Psi_k e^{-\xi^2/2} d\xi$$

- Parameter with Gaussian distribution

$$\lambda = \mu + \sigma \xi$$



# Propagation of uncertainty

- Consider example ODE with uncertain parameter  $\lambda$

$$\frac{du}{dt} = f(\lambda, u) \quad u(t=0) = u_0$$

- Represent both  $u$  and  $\lambda$  with PC expansions

$$\lambda = \sum_{k=0}^P \lambda_k \Psi_k \quad \lambda_k \text{ known}$$

$$u(t) = \sum_{k=0}^P u_k(t) \Psi_k \quad u_k(t) \text{ unknown}$$

- Additional uncertain parameters introduce new stochastic dimensions
- Intrusive and non-intrusive approaches for determining the PC coefficients  $u_k$

## Spectral intrusive propagation of uncertainty

- Substitute PC expansions for  $u$  and  $\lambda$  in the governing equation
- Perform Galerkin projection onto the PC basis functions
  - System of equations for the PC coefficients  $u_k(t)$
  - $(P+1)$  coupled deterministic equations

# Substituting PC expansions into the governing equation yields deterministic equations for PC coefficients

- Example ODE with uncertain parameter  $\lambda$

$$\frac{du}{dt} = \lambda u^2 \quad \lambda = \sum_{i=0}^P \lambda_i \Psi_i \quad u(t) = \sum_{j=0}^P u_j(t) \Psi_j$$

- Substitute PC expansions in the ODE

$$\frac{d}{dt} \sum_{j=0}^P u_j(t) \Psi_j = \left( \sum_{l=0}^P \lambda_l \Psi_l \right) \left( \sum_{m=0}^P u_m(t) \Psi_m \right) \left( \sum_{n=0}^P u_n(t) \Psi_n \right)$$

$$\sum_{j=0}^P \frac{du_j(t)}{dt} \Psi_j = \sum_{l=0}^P \sum_{m=0}^P \sum_{n=0}^P \lambda_l u_m(t) u_n(t) \Psi_l \Psi_m \Psi_n$$

- Multiply by  $\Psi_k$ , take expectation and use orthogonality

$$\left\langle \Psi_k \sum_{j=0}^P \frac{du_j(t)}{dt} \Psi_j \right\rangle = \left\langle \Psi_k \sum_{l=0}^P \sum_{m=0}^P \sum_{n=0}^P \lambda_l u_m(t) u_n(t) \Psi_l \Psi_m \Psi_n \right\rangle$$

$$\frac{du_k(t)}{dt} = \sum_{l=0}^P \sum_{m=0}^P \sum_{n=0}^P \lambda_l u_m(t) u_n(t) C_{klmn} \quad C_{klmn} = \frac{\langle \Psi_k \Psi_l \Psi_m \Psi_n \rangle}{\langle \Psi_k^2 \rangle}$$

# Spectral intrusive propagation in practice

- Pros
  - Elegant
  - One time solution of system of equations for the PC coefficients fully characterizes uncertainty in all variables at all times
  - Tailored solvers can (potentially) take advantage of new hardware developments
- Cons
  - Often requires re-write of the original code
  - Reformulated system is factor  $(P+1)$  larger than the original system and can be challenging to solve
- Many efforts in the community to automate intrusive UQ
  - UQ Toolkit <http://www.sandia.gov/UQToolkit/>
  - Sundance <http://www.math.ttu.edu/~klong/Sundance/html/>
  - Stokhos <http://trilinos.sandia.gov/packages/stokhos/>
  - ...

# Non-intrusive or sampling-based propagation of uncertainty

- Do not require changes to the original solver code
  - Used as black box to generate samples
- Two main categories
  - Galerkin projection approaches
  - Collocation approaches

# Non-intrusive spectral projection (NISP) for uncertainty propagation

- Obtain  $u_k$  by direct projection onto PC basis

$$u_k = \frac{\langle u \Psi_k \rangle}{\langle \Psi_k^2 \rangle} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u \Psi_k e^{-\xi^2/2} d\xi \Big/ \langle \Psi_k^2 \rangle$$

- Random sampling approach:  $\int_{-\infty}^{\infty} f(\xi) e^{-\xi^2} dx \cong \frac{1}{N} \sum_{i=1}^N f(\xi_i)$ 
  - Monte Carlo (MC), Latin Hypercube Sampling (LHS), ...
  - Convergence as  $1/\sqrt{N}$
- Quadrature approach:  $\int_{-\infty}^{\infty} f(\xi) e^{-\xi^2} dx \cong \sum_{i=1}^{N_{qp}} w_i f(\xi_i)$ 
  - Gauss-Hermite quadrature for  $u_k$  exact with  $N_{qp} = P+1$  if  $u$  is a polynomial of order  $P$  (one-dimensional)
  - Evaluate  $u$  at  $N_{qp}$  quadrature points corresponding to different values of  $\lambda(\xi_i)$

## Collocation approaches rely on interpolation

- Do not perform projection onto the basis functions
- Consider  $u = g(\lambda)$
- Sample parameter space

$$\lambda_i = \sum_{k=0}^P \lambda_k \Psi_k(\xi_i)$$

- Solve a system of equations for  $u_k$

$$u_i = g(\lambda_i) = \sum_{k=0}^P u_k \Psi_k(\xi_i)$$

- Many variants depending on location and number of sample points
  - Generally more samples than PC coefficients

# Sampling-based approaches in practice

- Pros
  - Easy to use as wrappers around existing codes
  - Embarrassingly parallel
- Cons
  - Most methods suffer severely from curse of dimensionality
$$N = n^d$$
    - (Adaptive) sparse quadrature/collocation methods
- Sampling methods have found very, very widespread use in the community
  - DAKOTA <http://dakota.sandia.gov/>

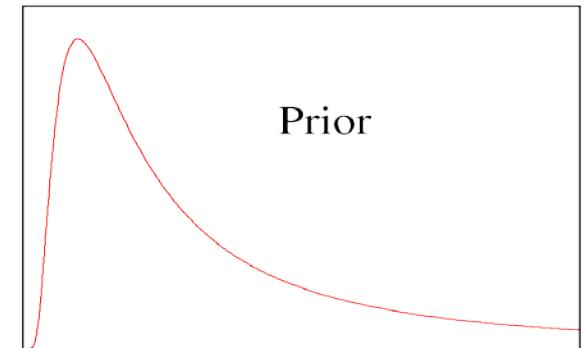
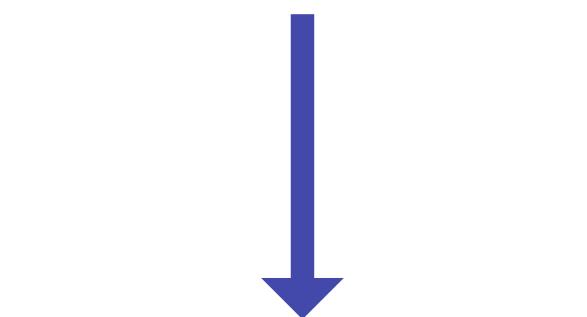
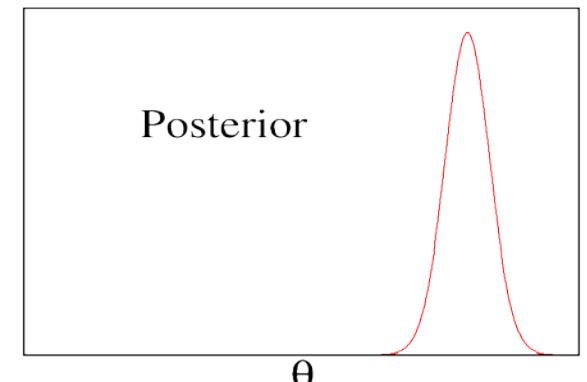


# Bayesian methods provide probabilistic framework for parameter inference

- Bayes rule

$$\overbrace{P(\theta | D, M)}^{\text{posterior}} = \frac{\overbrace{P(D | \theta, M) P(\theta | M)}^{\text{likelihood prior}}}{\overbrace{P(D | M)}^{\text{evidence}}}$$

- Probabilistic framework
  - Naturally handles uncertainties
  - Posterior width indicates confidence in inferred information
  - Can handle heterogeneous data sources
  - Lends itself well to model comparison (Bayes factors)



## Likelihood measures goodness-of-fit

$$L(\theta) \propto \prod_{i=1}^N e^{-\text{dist}[d_i, m(\theta)]/s_i^2}$$

Compare experimental data  $D = \{d_i\}_{i=1}^N$

with computational model output  $m(\theta)$

via *measurement* model  $\text{Measured Quantity} = f_i(\text{Modeled Quantity})$

and instrument noise  $s_i$

e.g., Gaussian assumption,

$$\text{dist}[d_i, m(\theta)] = [d_i - f_i(m(\theta))]^2$$

- Instrument noise and measurement model details often inferred as *hyperparameters*.

# Posterior distribution generally sampled with Markov Chain Monte Carlo (MCMC)

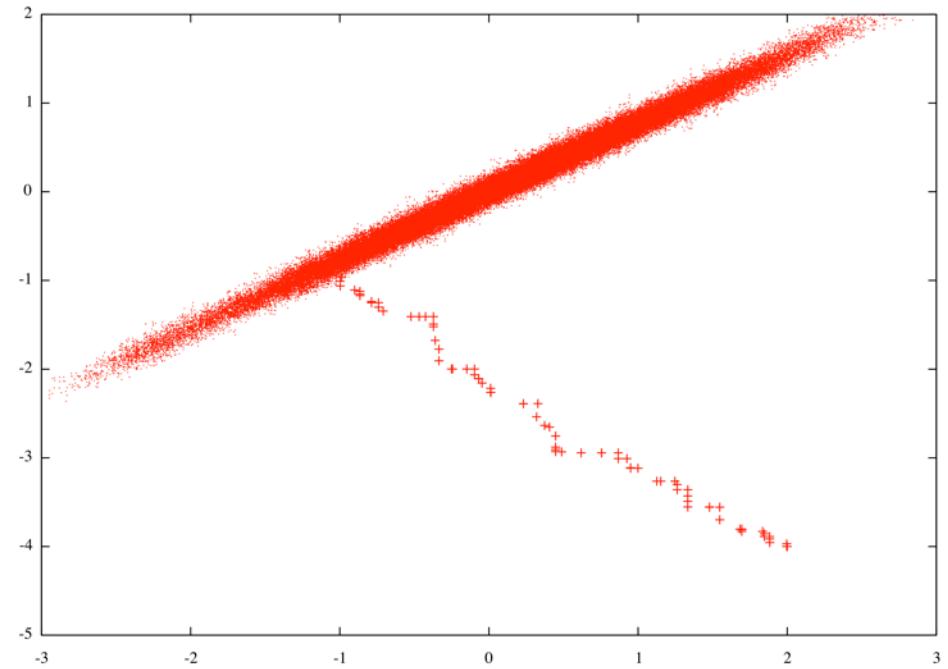
- Basic Metropolis-Hastings algorithm

- Generate new sample  $\theta^2$  from Gaussian proposal distribution centered at current state  $\theta^1$ 
    - Proposal distribution width determines mixing
  - Compute

$$\alpha = \min\left(1, \frac{p(\theta^2 | D, M)}{p(\theta^1 | D, M)}\right)$$

- Accept new sample with probability  $\alpha$

- Many variations / enhancements exist



# Overview

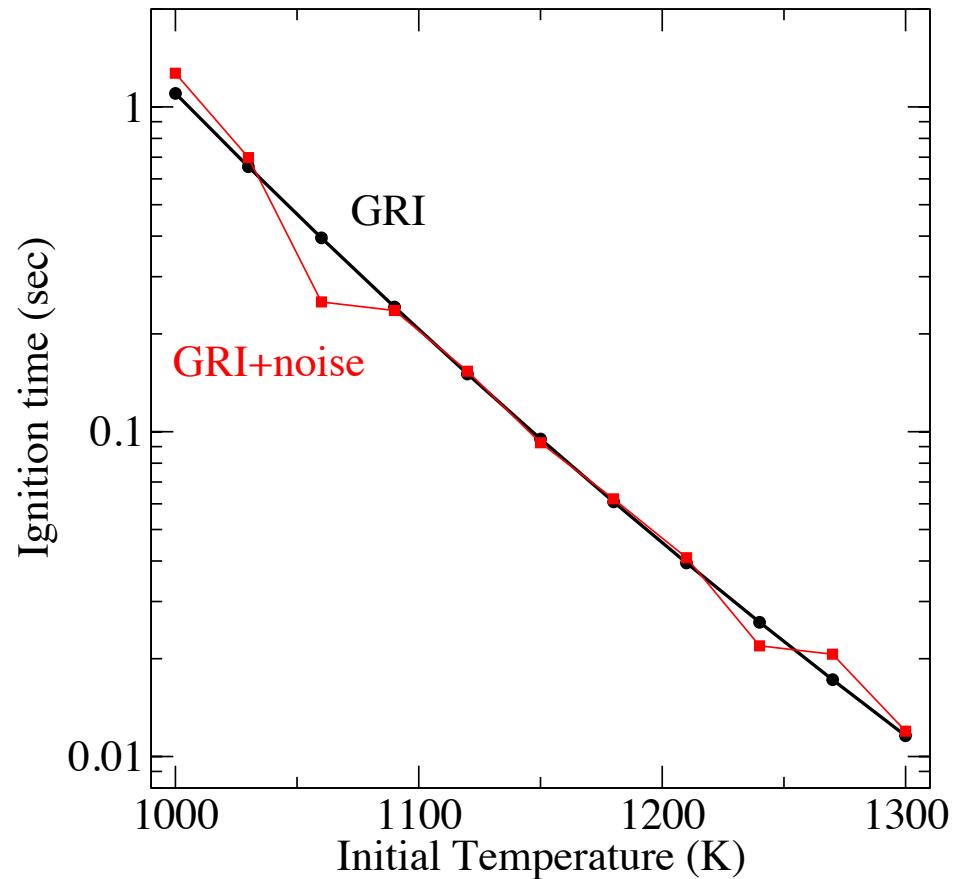
- Introduction
- Basic methods for uncertainty quantification
- Application to chemical kinetics
  - Inference and propagation of reaction kinetics uncertainty
  - Effect of correlation between inferred parameters
- Advanced uncertainty quantification topics

# Synthetic “experimental ignition data” generated from detailed chemistry model with added noise

- GRI 3.0 model for methane-air chemistry
- Ignition time versus initial temperature
- Multiplicative noise added

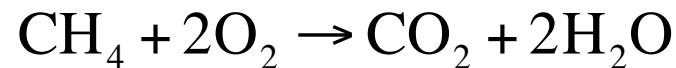
$$d_i = t_{\text{ig},i}^{\text{GRI}} (1 + \sigma \varepsilon_i)$$

$$\varepsilon_i \sim \mathcal{N}(0,1)$$



# Global single-step irreversible chemical model is fitted to ignition data

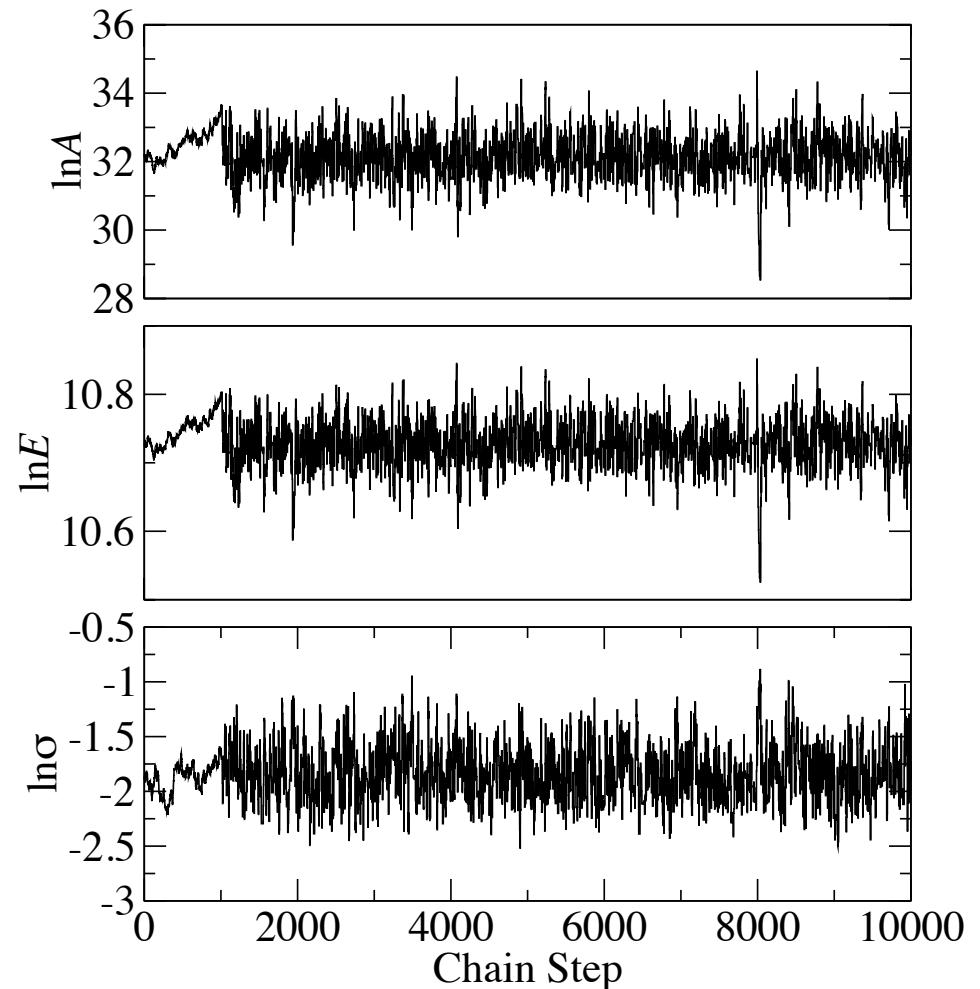
- Model equations



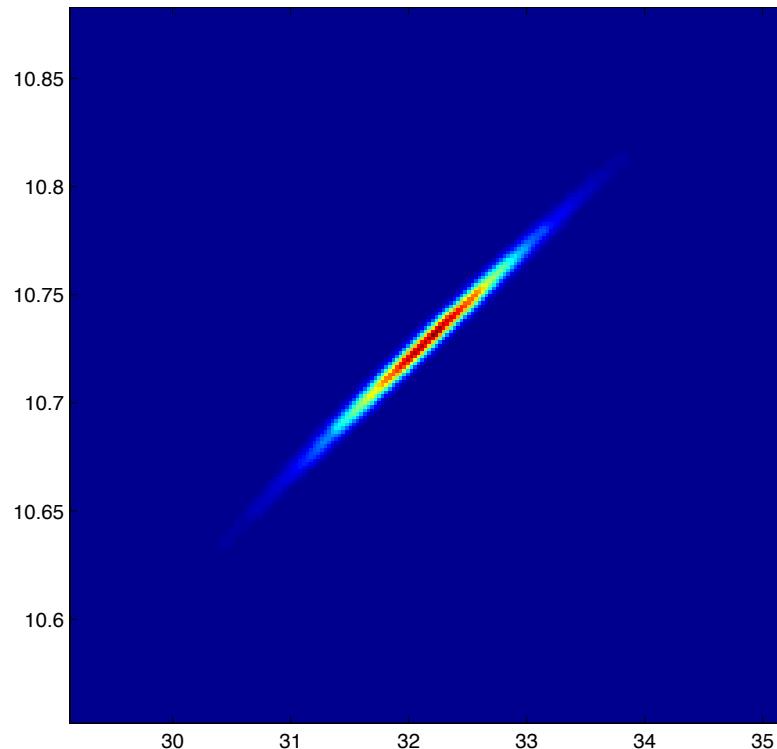
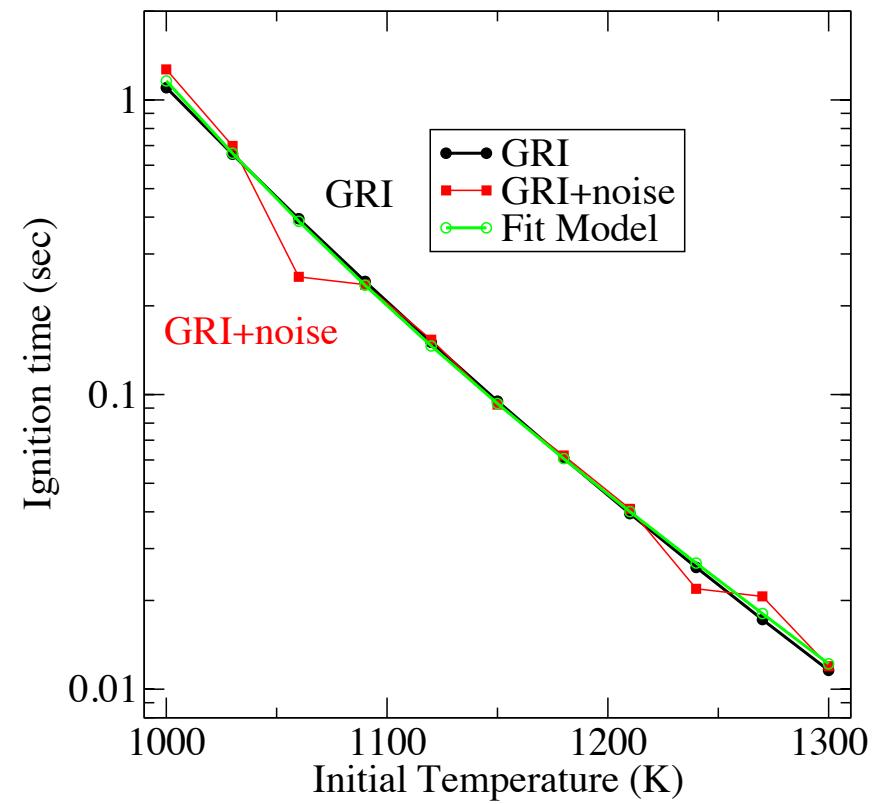
$$\mathcal{R} = [\text{CH}_4][\text{O}_2]k_f$$

$$k_f = A \exp(-E/R^0T)$$

- Infer 3-D parameter vector ( $\ln A$ ,  $\ln E$ ,  $\ln \sigma$ )
- Good mixing with adaptive MCMC when starting at Maximum Likelihood Estimate (MLE)



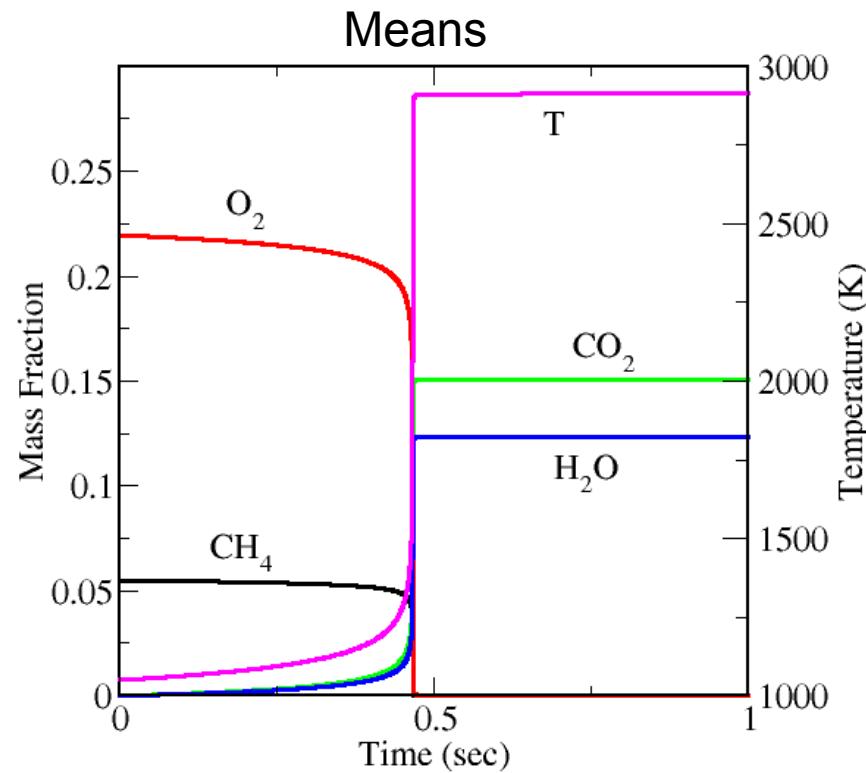
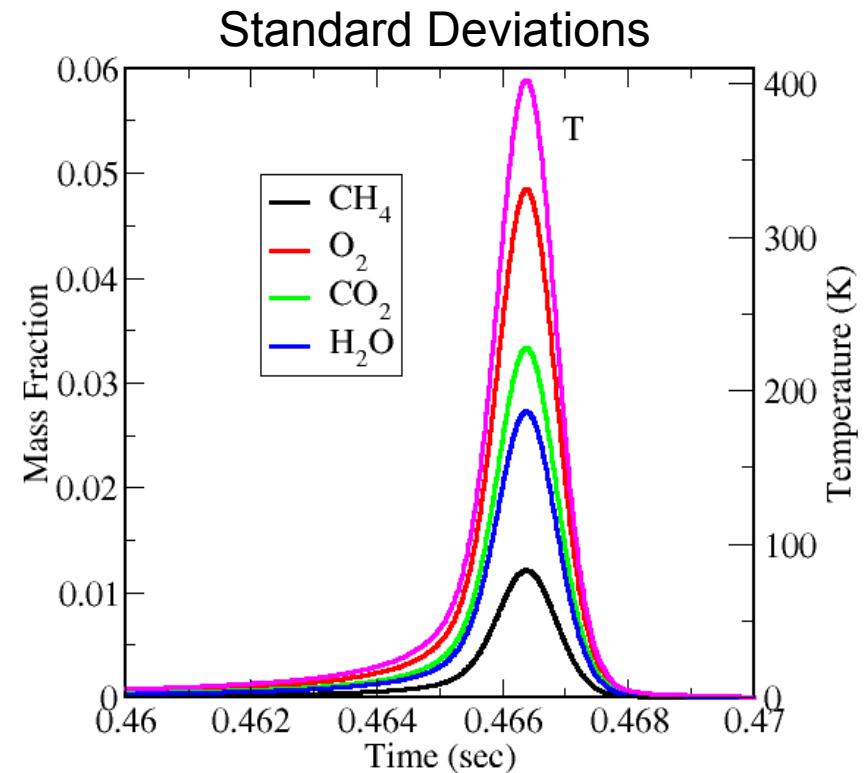
## Calibrated global model fits the data well



- Marginal posterior ( $\ln A$ ,  $\ln E$ ) shows strong correlation between the inferred parameters
- Model both with one Gaussian random variable

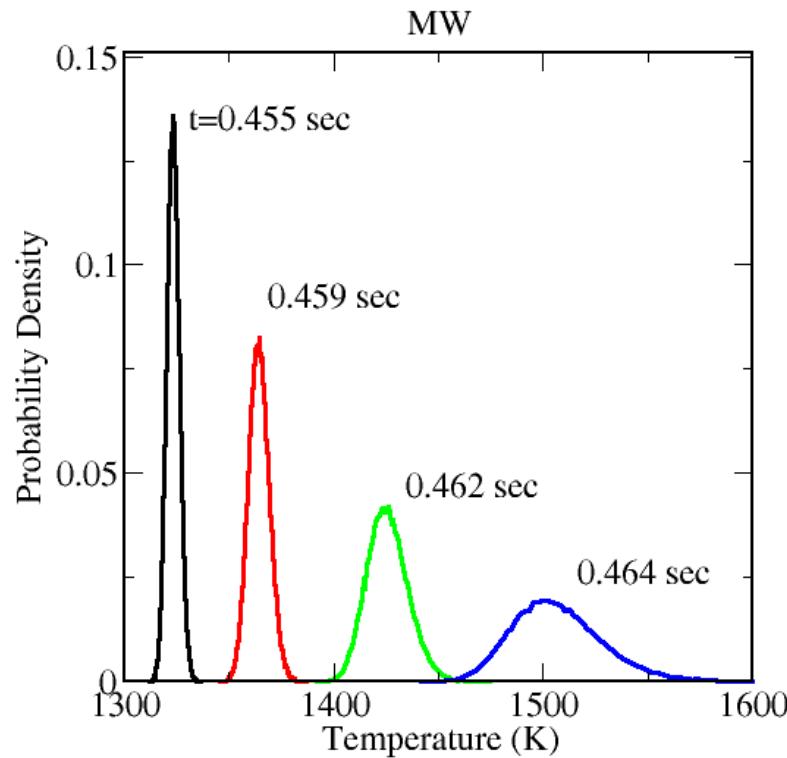
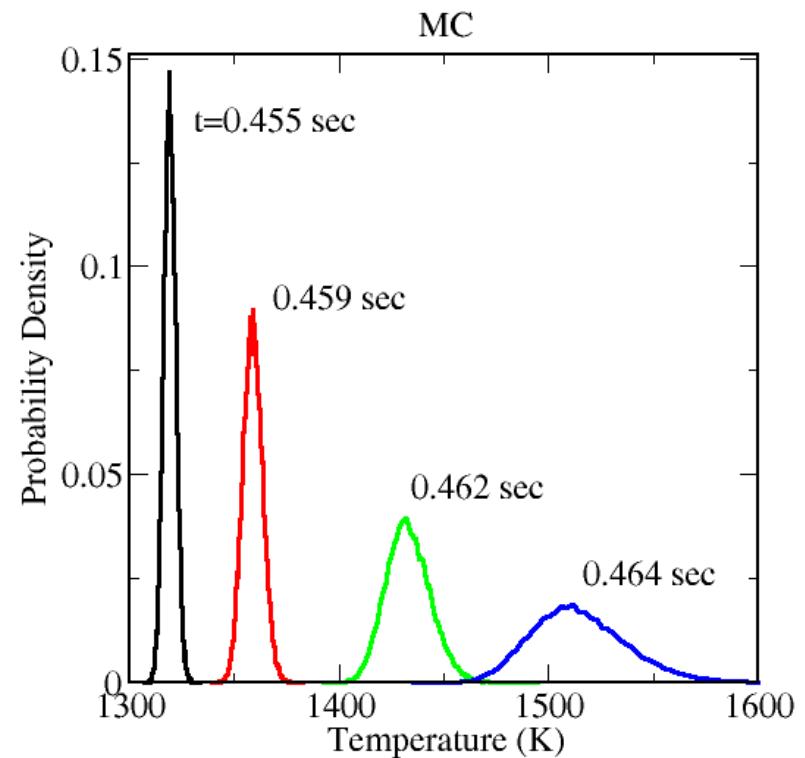
$$\chi = \frac{\sigma_{\ln E}}{\sigma_{\ln A}}$$

# Uncertainty in forward model predictions



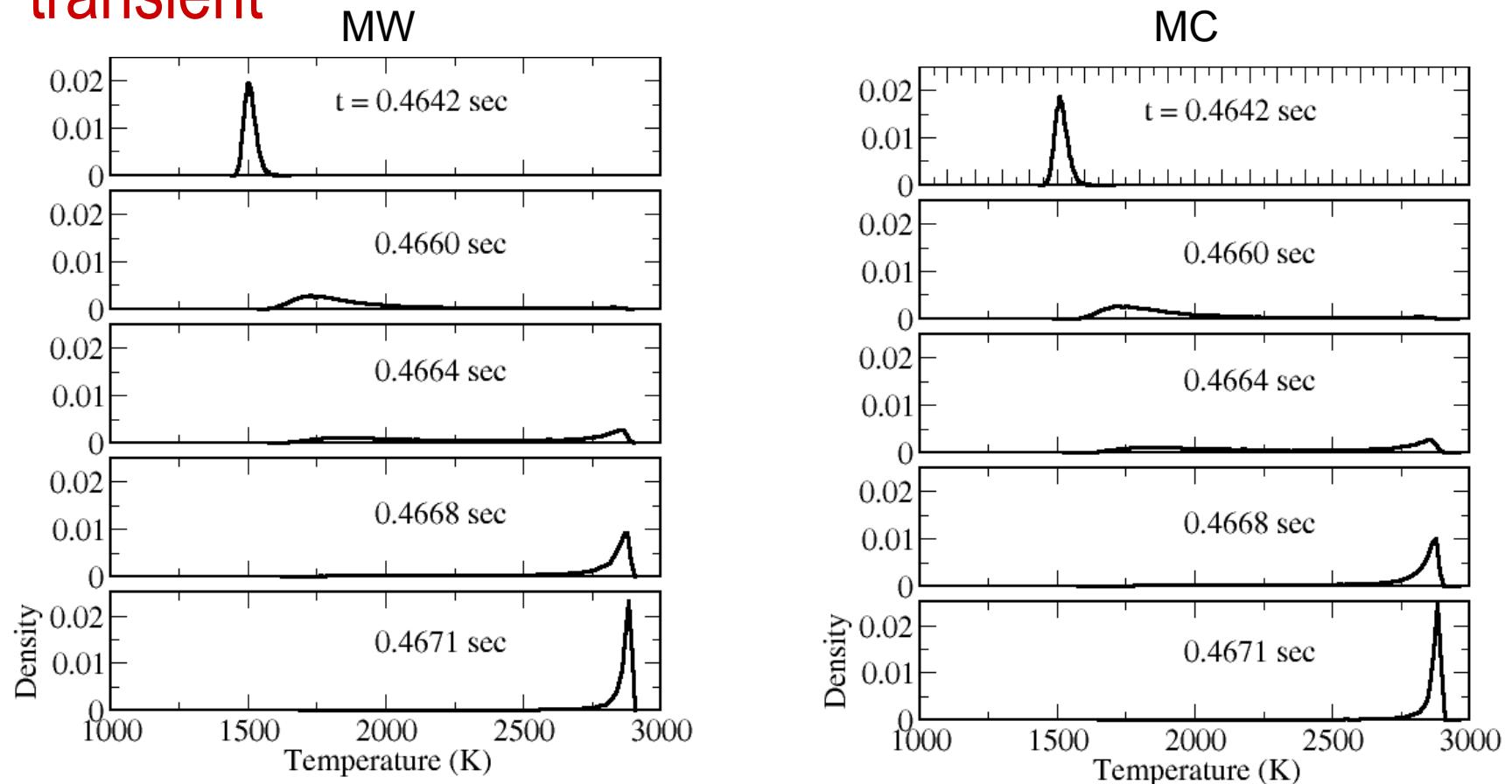
- 4<sup>th</sup> order multiwavelet PC, multiblock adaptive
- Max standard deviation in T about 400K for  $\chi = 0.03$

# Evolution of temperature PDFs during preheat phase



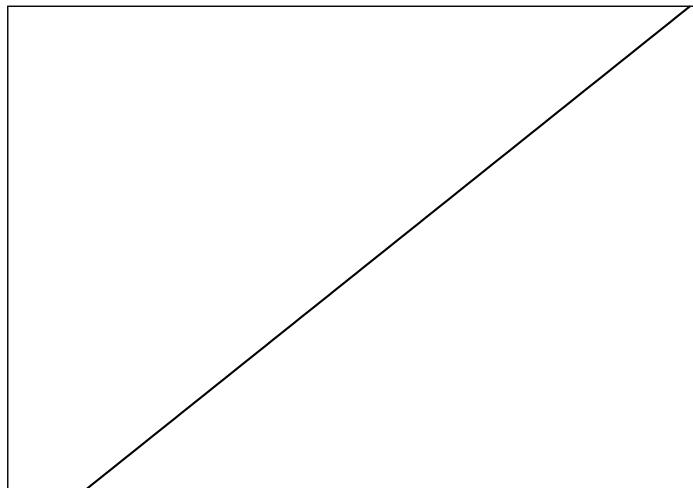
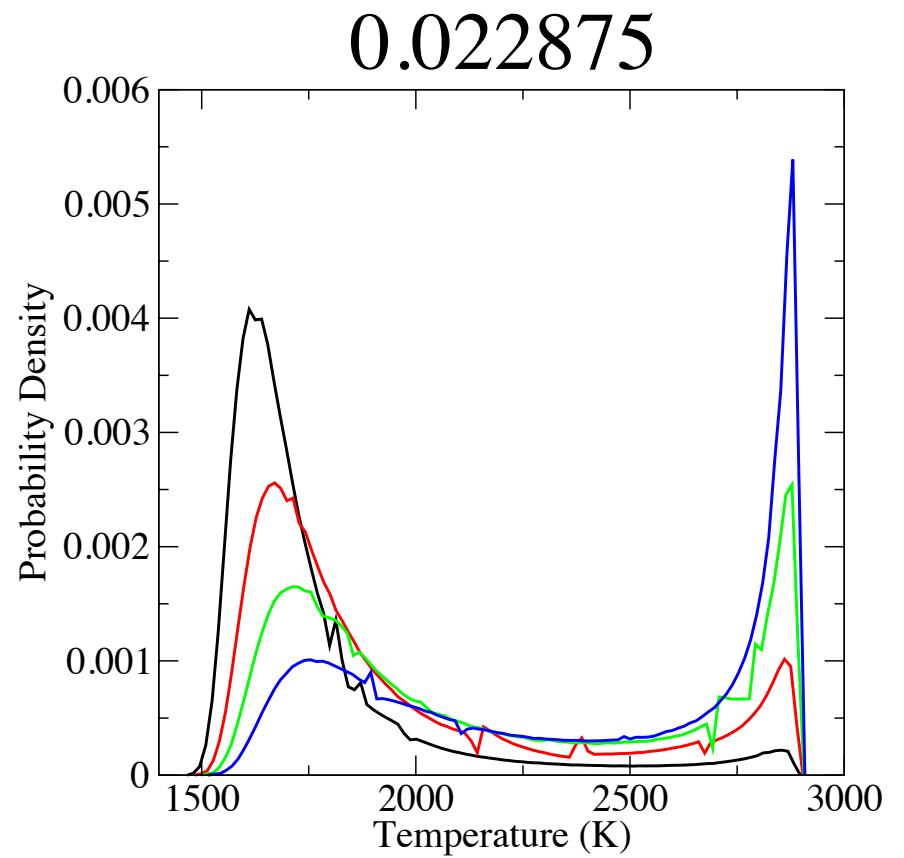
- Similar results from Monte Carlo (20K samples) as intrusive PC
- With time, uncertainty increases and high- $T$  tails get longer

# Evolution of temperature PDFs during ignition transient

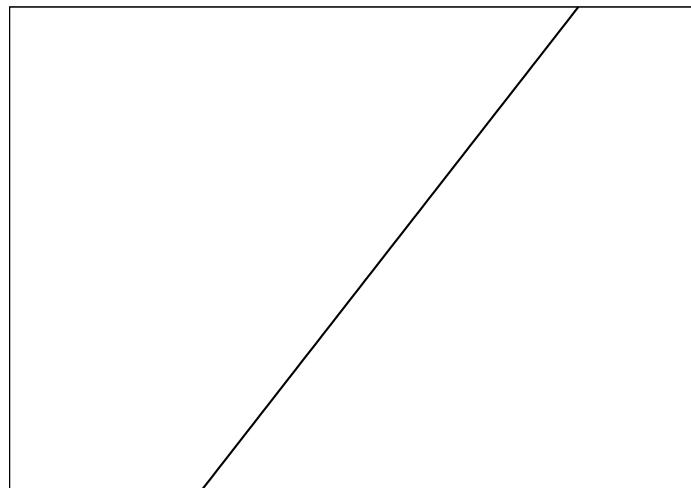
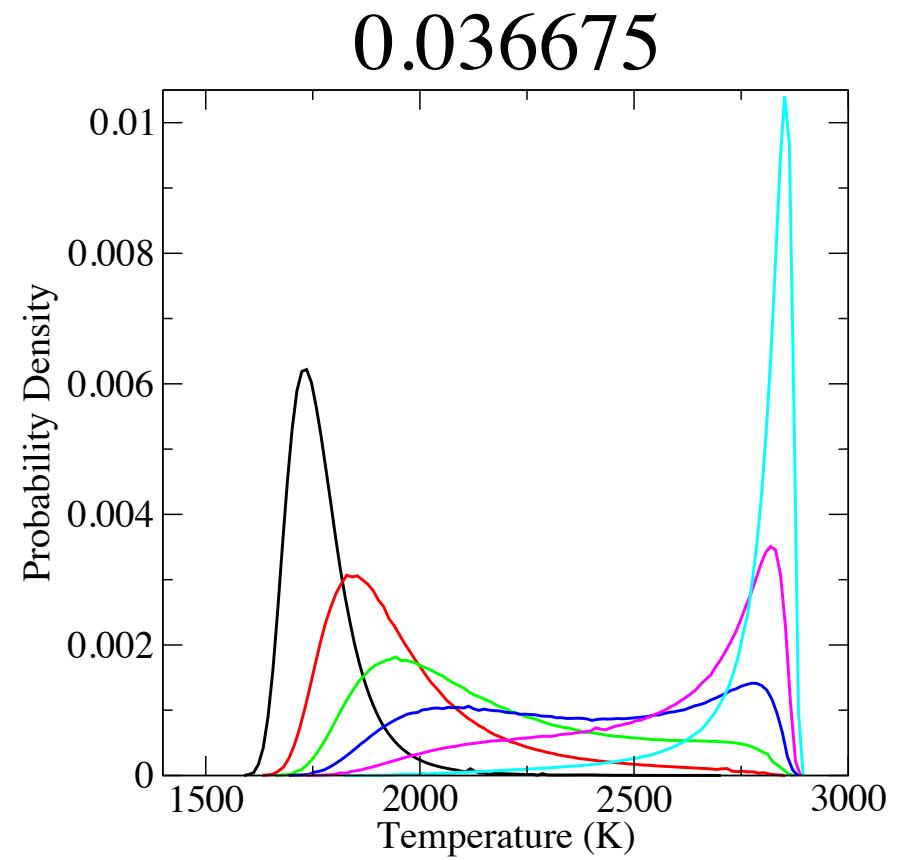


- Transition from unimodal to bimodal pdfs
- Leakage of probability mass from pre-heat PDF high- $T$  tail

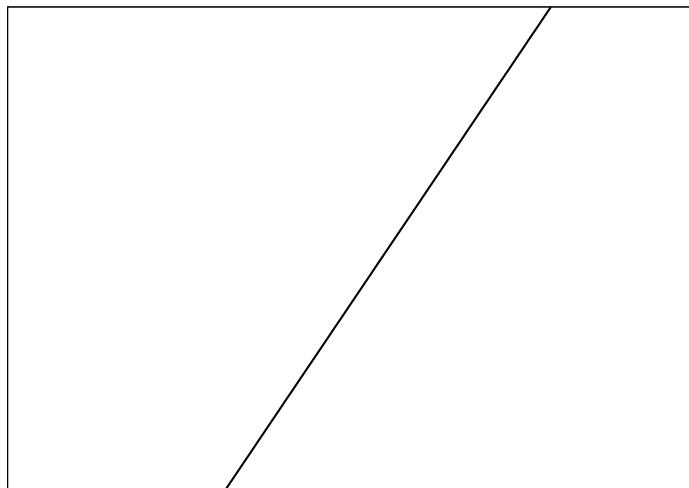
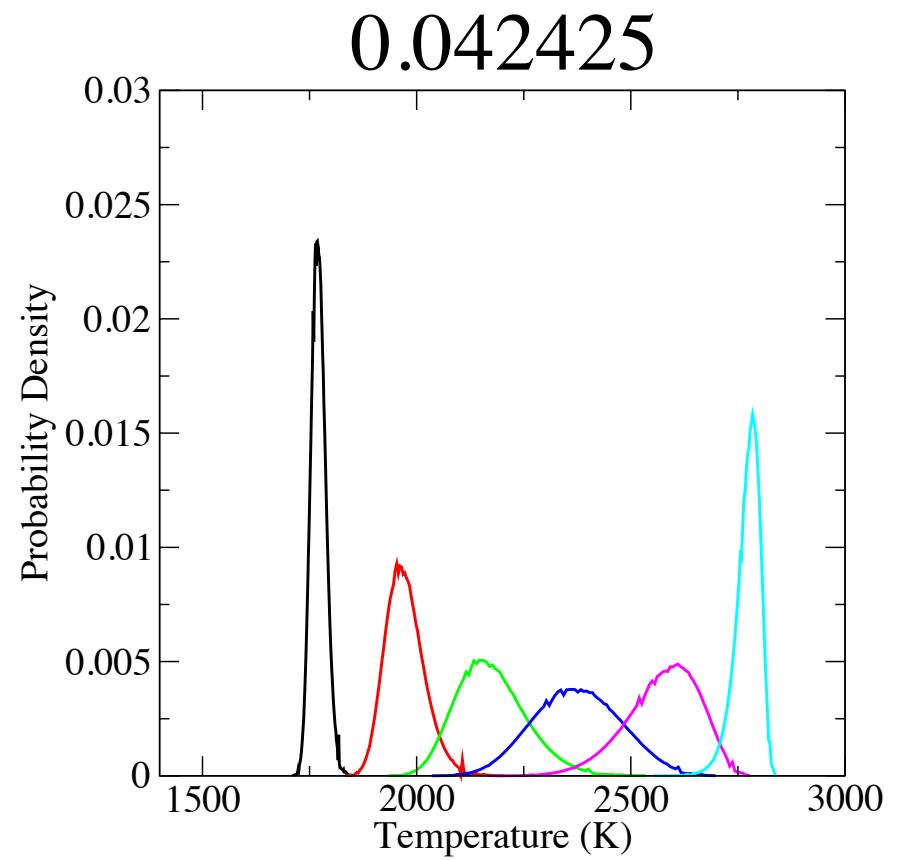
Correlation slope between uncertain parameters has a strong effect on predicted ignition transient uncertainty



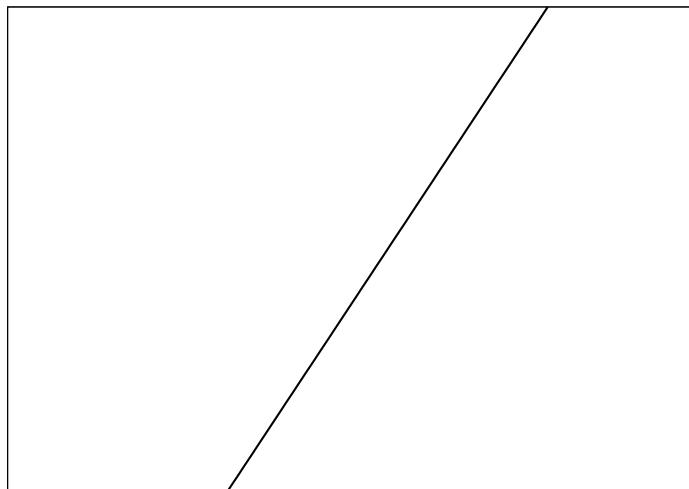
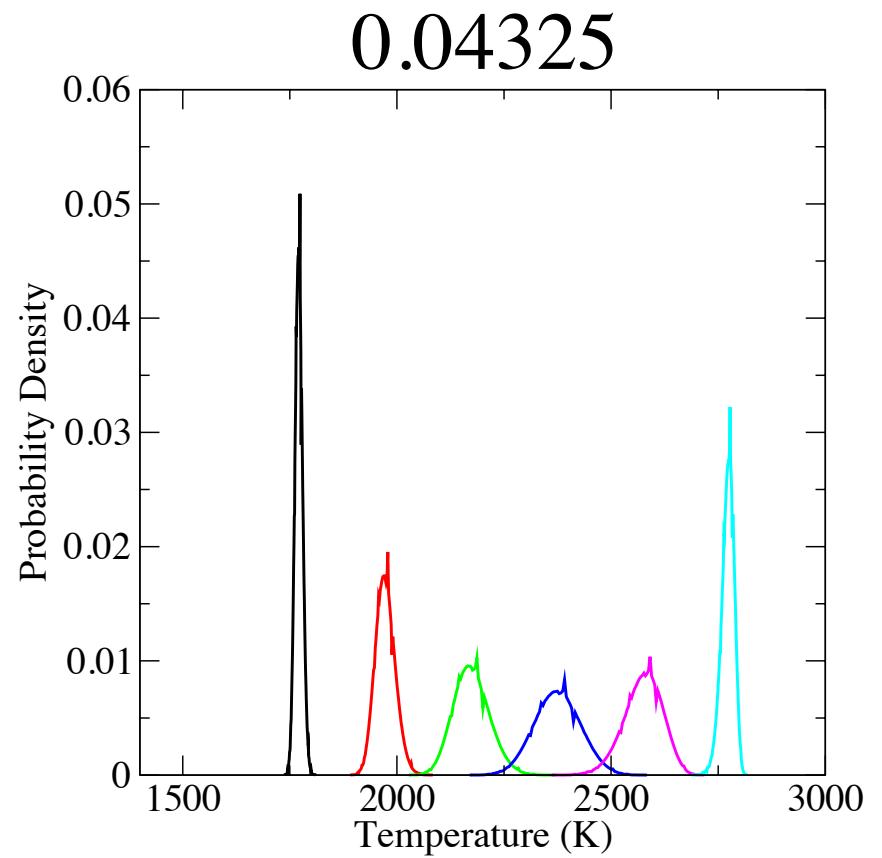
Correlation slope between uncertain parameters has a strong effect on predicted ignition transient uncertainty



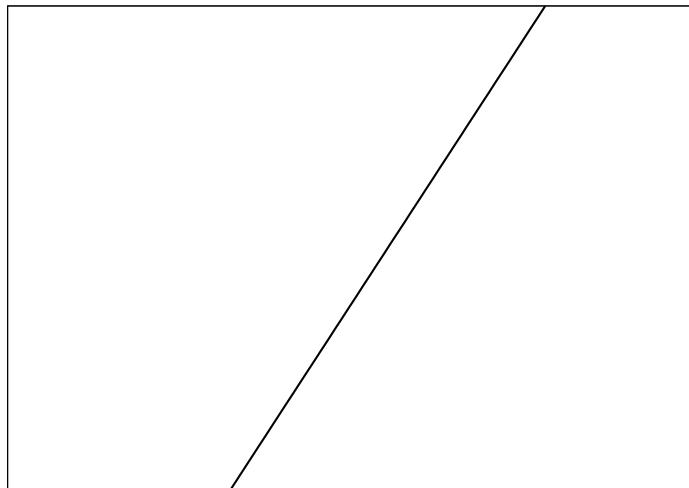
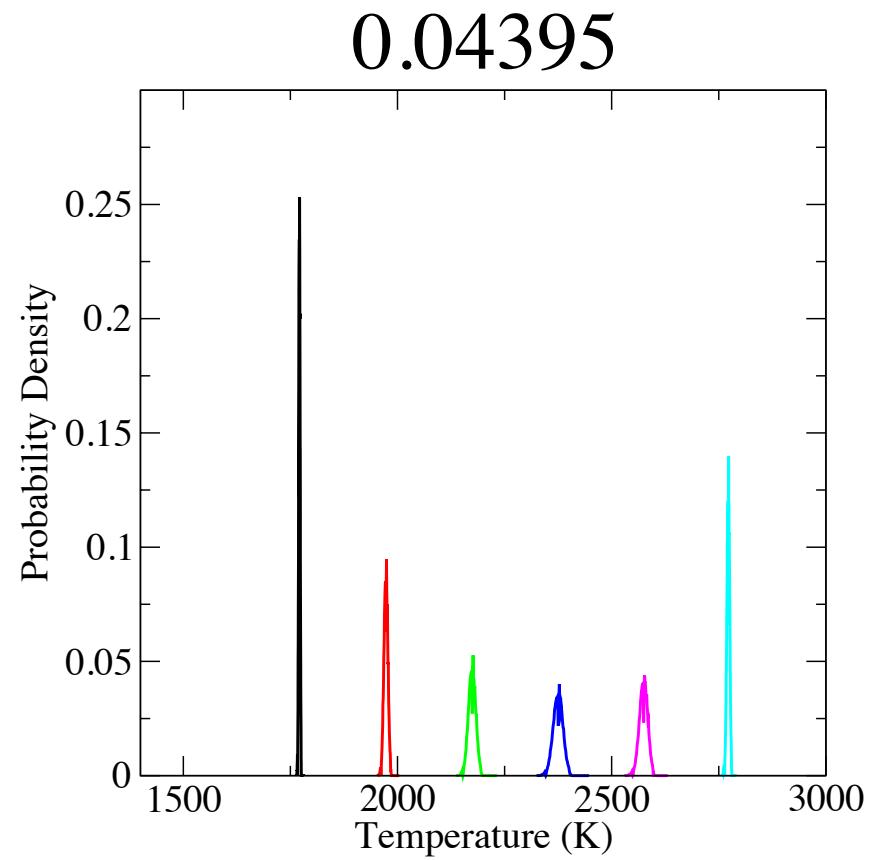
Correlation slope between uncertain parameters has a strong effect on predicted ignition transient uncertainty



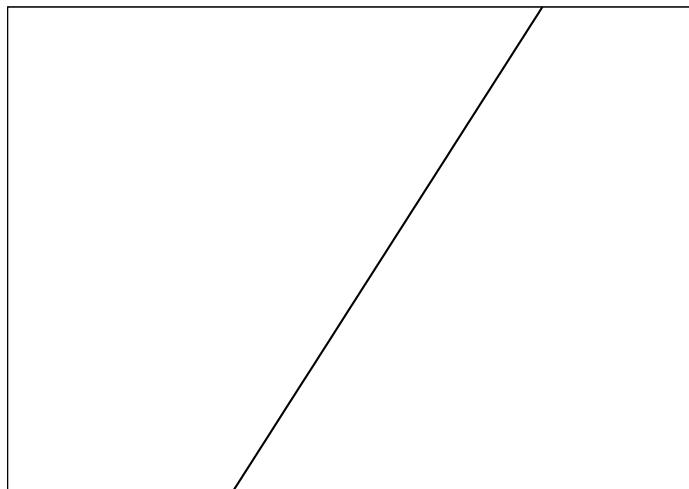
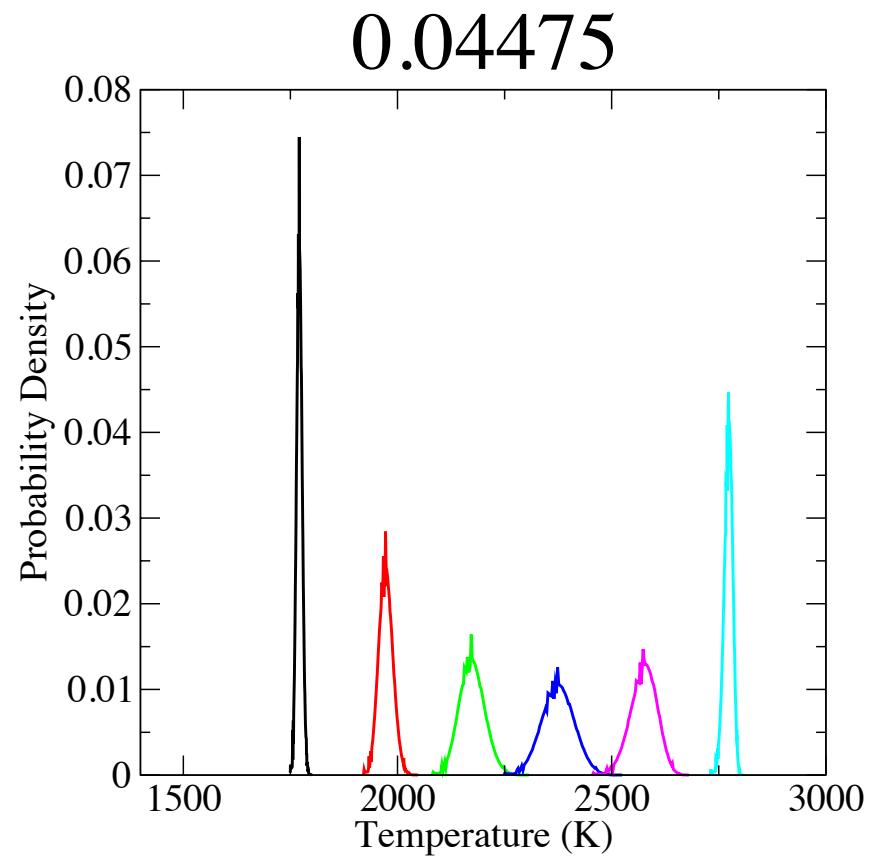
Correlation slope between uncertain parameters has a strong effect on predicted ignition transient uncertainty



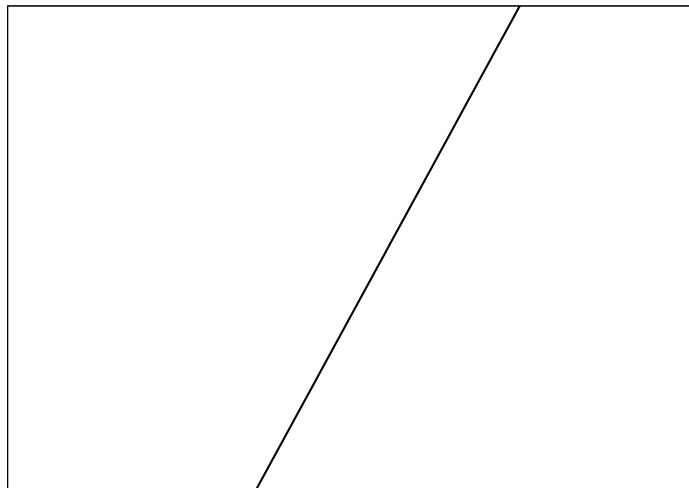
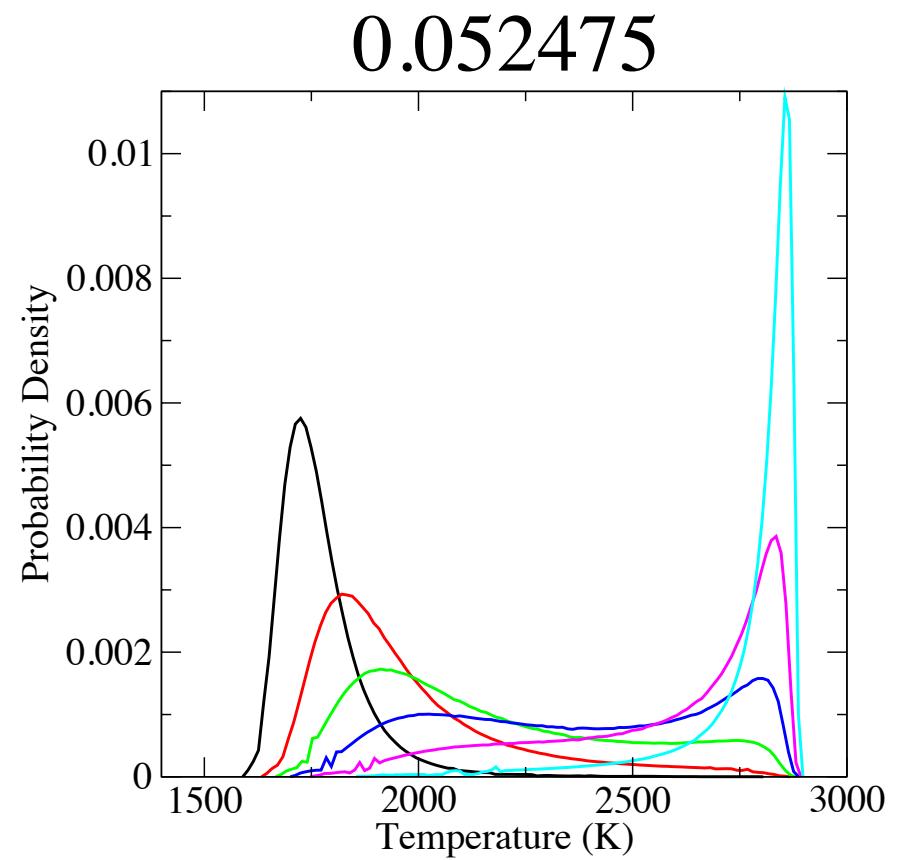
Correlation slope between uncertain parameters has a strong effect on predicted ignition transient uncertainty



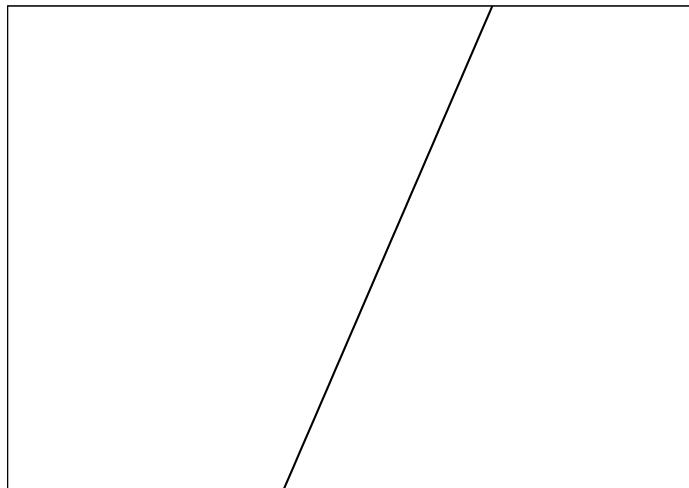
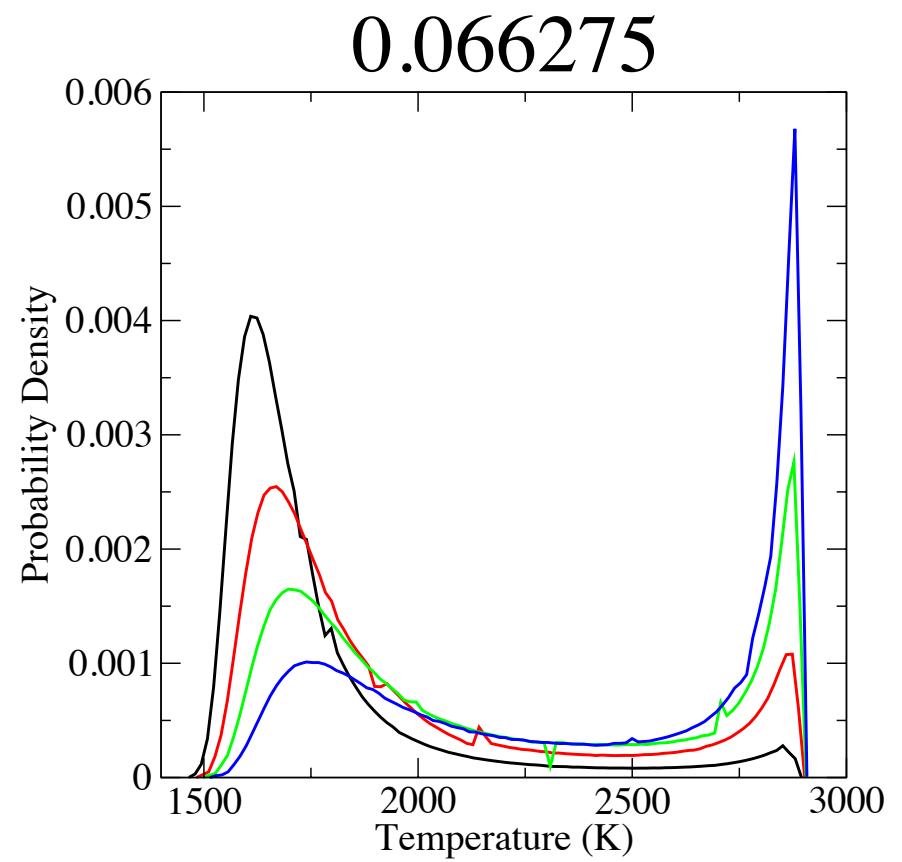
Correlation slope between uncertain parameters has a strong effect on predicted ignition transient uncertainty



Correlation slope between uncertain parameters has a strong effect on predicted ignition transient uncertainty



Correlation slope between uncertain parameters has a strong effect on predicted ignition transient uncertainty



# Overview

- Introduction
- Basic methods for uncertainty quantification
- Application to chemical kinetics
- **Advanced uncertainty quantification topics**
  - Model validation
  - Surrogate models
  - High-dimensional systems
  - Discontinuities / non-linearities
  - Data free inference

# Model validation approaches

- *Model sanity checks:*

- Posterior predictive check

$$P(d|D, M) = \int P(d|\theta, D, M)P(\theta|D, M)d\theta$$

- Compare posterior predictions of quantities of interest versus existing/new data sets
    - Perform cross-validation
  - Model discrepancy terms

$$d_i = f_i(m(\theta) + \delta_m(\theta)) + \sigma_i \varepsilon$$

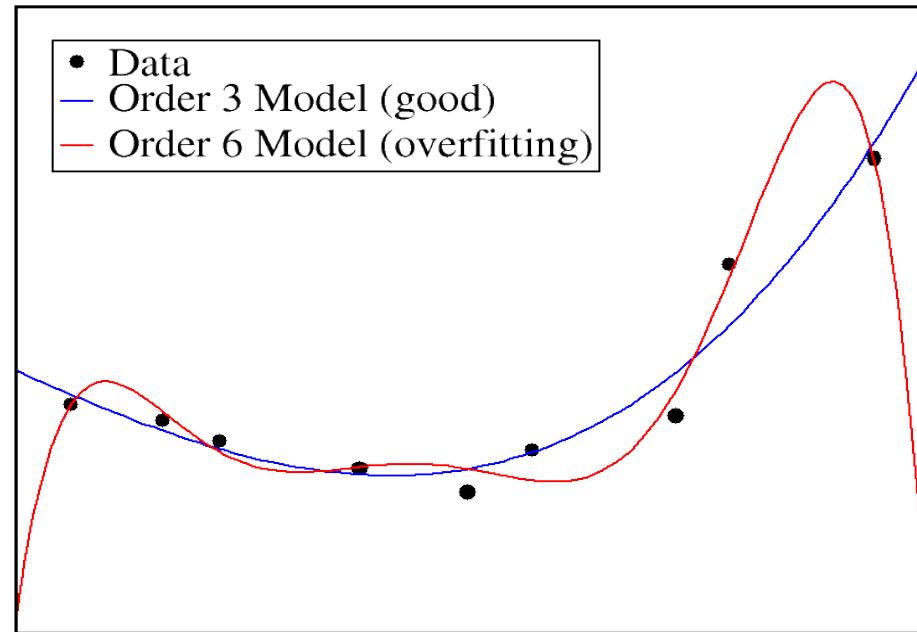
- Discover structural deficiencies in forward model
    - Enrich model until model discrepancy term small enough

- *Model comparison and plausibility*

- How adequate is the model for the given dataset, irrespective of model parameters?

# Model evidence term combines goodness-of-fit and model complexity

- Likelihood marginalized over all parameters
- Represents Ockham's razor



$$P(D|M) = \int P(D|\theta, M) P(\theta|M) d\theta$$

$$\log P(D|M) = \overbrace{\int P(\theta|D, M) \log P(D|\theta, M) d\theta}^{\text{average posterior fit}} - \overbrace{\int P(\theta|D, M) \log \frac{P(\theta|D, M)}{P(\theta|M)} d\theta}^{\text{model complexity penalty}}$$

Relative entropy or information gain between prior and posterior

## Model comparison is based on model evidence term

- Model Selection: evidence ratio (Bayes Factor)

$$BF = \frac{P(D | M_1)}{P(D | M_2)}$$

- Model Averaging: based on plausibility for robust predictions

$$M = \{M_i, i = 1, \dots, N_M\}$$

$$P(M_i | D) \propto P(D | M_i) P(M_i)$$

$$P(q | D, M) = \sum_{i=1}^{N_M} P(q | D, M_i) P(M_i | D)$$

Beck and Yuen (2004), Cheung *et al* (2011).

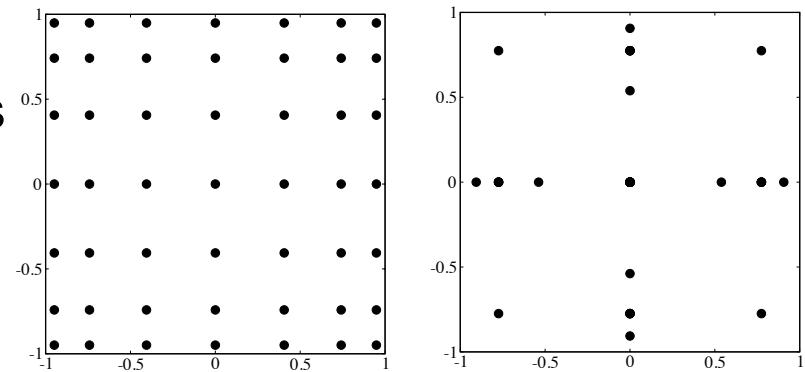
# Polynomial Chaos (PC) as a cheap surrogate model

- Input parameter  $\theta = \theta_0 + \theta_1 \xi \quad \xi \in [-1, 1]$
- Model output  $m(\theta) \approx \sum_k m_k \Psi_k(\xi)$ 

$\Psi_k(\xi)$  are, e.g., Legendre orthogonal polynomials
- PC modes  $m_k$  can be found by
  - orthogonal projection
    - simulate the model at specific parameter values (quadrature)
    - fails for noisy model outputs
  - Bayesian inference
    - works with any set of model simulations
    - robust with respect to noisy outputs
    - leads to random PC modes, i.e. stochastic surrogate model
    - BUT, good accuracy may require prohibitively many simulations

# Some outstanding challenges in UQ

- **High-dimensional systems**
  - (Adaptive) sparse quadrature rules
  - Dimensionality reduction methods
- **Discontinuities or strong non-linearities**
  - Make global PC expansions fail
  - Domain or data decomposition
  - Infer parameterization of discontinuity and represent smooth function on both sides
- **Data to infer full probabilistic description of model inputs often not available**
  - Mean and standard deviation may be only thing known
  - Use Data-Free-Inference (DFI) to determine full distribution



# Summary

- UQ is an essential component of predictive simulations
  - Assess confidence in model predictions
  - Resource allocation for fidelity improvement
- Many mature approaches available for propagating uncertainties through computational models
- Accurate characterization of the input uncertainties is essential
  - Joint distribution between inputs needed
- Model comparison approaches are emerging
- Many challenges remain

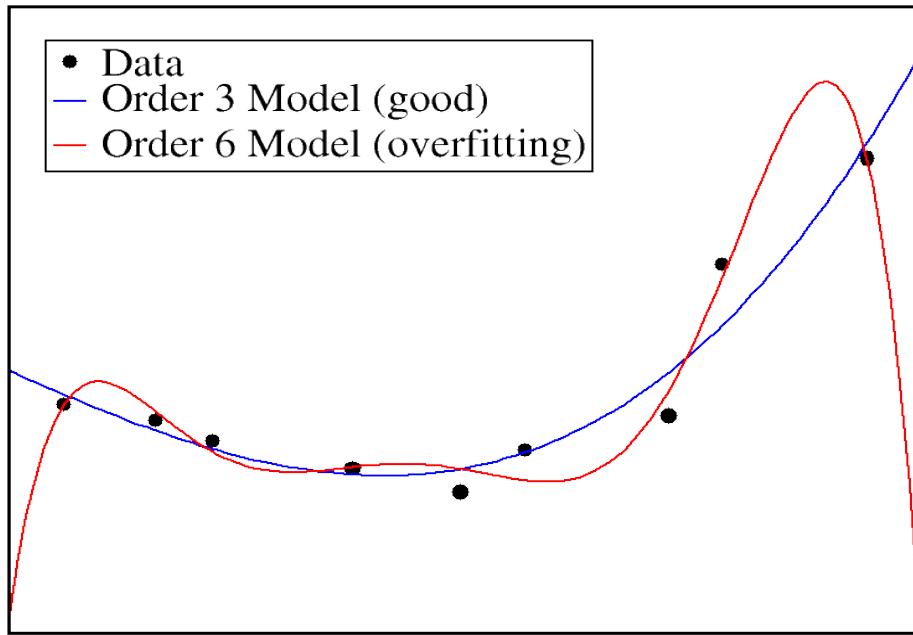
# Acknowledgments

- Collaborators on UQ projects
  - At Sandia
    - Habib Najm, Khachik Sargsyan, Robert Berry, Cosmin Safta, Maher Salloum, Helgi Adalsteinsson, Philippe Pebay
  - At other institutions
    - Omar Knio (JHU), Youssef Marzouk (MIT), Roger Ghanem (USC), Olivier Le Maître (LIMSI), Kevin Long (TTU)
- Key sponsors
  - DOE Advanced Scientific Computing Research
  - SNL Lab Directed Research and Development program

# References

# Supplementary Material

# Ockham's Razor



Relative entropy  
or  
information gain between  
prior and posterior

$$\log P(D|M) = \overbrace{\int P(\theta|D, M) \log P(D|\theta, M) d\theta}^{\text{average posterior fit}} - \overbrace{\int P(\theta|D, M) \log \frac{P(\theta|D, M)}{P(\theta|M)} d\theta}^{\text{model complexity penalty}}$$

Model Evidence balances data fit and model complexity,  
i.e. penalizes against overfitting

# Non-intrusive spectral projection (NISP) to obtain Polynomial Chaos representation for observables

- Observable is statistical property  $y = \langle f(\mathbf{X}(\boldsymbol{\lambda})) \rangle$
- (Truncated) Polynomial Chaos (PC) expansions spectrally represent dependence on uncertain inputs  $\boldsymbol{\lambda}$

$$y(\boldsymbol{\theta}) \approx \sum_{k=0}^P c_k \Psi_k(\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \dots, \boldsymbol{\eta}_{N_{\text{dim}}}) \quad P+1 = \frac{(N_{\text{dim}} + N_{\text{ord}})!}{(N_{\text{dim}}! N_{\text{ord}}!)}$$

- Basis functions  $\Psi$  are orthogonal polynomials in standard random variables  $\boldsymbol{\eta}$  allowing Galerkin projections

$$c_k = \frac{\langle y(\boldsymbol{\lambda}(\boldsymbol{\eta})) \Psi_k(\boldsymbol{\eta}) \rangle}{\langle \Psi_k^2 \rangle} = \frac{\int y(\boldsymbol{\lambda}(\boldsymbol{\eta})) \Psi_k(\boldsymbol{\eta}) p(\boldsymbol{\eta}) d\boldsymbol{\eta}}{\langle \Psi_k^2 \rangle} = \frac{\sum_i w_i y(\boldsymbol{\lambda}(\boldsymbol{\eta}_i)) \Psi_k(\boldsymbol{\eta}_i)}{\langle \Psi_k^2 \rangle}$$

- Sparse quadrature needed for high-dimensional systems

Bayesian methods offer a probabilistic framework well suited to infer PC coefficients from noisy data

$$\underbrace{p(\mathbf{c}|D)}_{\text{Posterior}} \propto \underbrace{p(D|\mathbf{c})}_{\text{Likelihood}} \underbrace{p(\mathbf{c})}_{\text{Prior}} \quad D = \{y_i\}_{i=1}^N$$

- Assume uniformly distributed priors
- Gaussian likelihood
  - With  $\sigma$  estimated from Central Limit Theorem or inferred
- Posterior is explored using Markov Chain Monte Carlo sampling
  - Maximum a posteriori (MAP) parameter estimate used

$$\mathbf{c}^{\text{MAP}} = \operatorname{argmax}_{\mathbf{c}} p(\mathbf{c}|D)$$

- Width of posterior shows confidence in inferred parameters for given amount of data
- Generate data by sampling system at locations of sparse quadrature points

Karhunen-Loève (KL) decomposition expands  $X$  in terms of the eigenfunctions of its covariance function

$$C(t_1, t_2) = \langle (X(t_1, \theta) - \bar{X}(t_1))(X(t_2, \theta) - \bar{X}(t_2)) \rangle$$

$$= \sum_{k=1}^{\infty} \lambda_k X_k(t_1) X_k(t_2)$$

$$\int_{T_0}^{T_1} C(t_1, t_2) X_k(t_1) dt_1 = \lambda_k X_k(t_2)$$

$$X(t, \theta) = \bar{X}(t) + \sum_{k=1}^{\infty} \sqrt{\lambda_k} X_k(t) \xi_k \quad t \in [T_0, T_1]$$

- $X_k(t)$  : orthonormal eigenfunctions of the covariance function
- $\lambda_k$  : corresponding eigenvalues
- $\xi_k$  : uncorrelated, zero-mean, unit-variance random variables
- Covariance function obtained from sampled system trajectories

# Uncertain and stochastic dynamical systems

- Two types of uncertainty
  - Reducible (epistemic): can be reduced by additional or better measurements
  - Irreducible (aleatory): due to inherent stochasticity in the system
- Some examples
  - Reaction rate constants in combustion mechanism
  - Physical property values in a solid mechanics problem
  - Turbulent eddies around an airplane wing
  - Small scale variabilities (weather) in a global circulation model
  - Chemical reactions between a small number of molecules
- Uncertainty Quantification (UQ) propagates characterized uncertainties through system model
- Sensitivity analysis determines influence of each parameter on the observables of interest

## Stochastic processes can be represented in PC form using a Karhunen-Loève decomposition

- For example: random variability in a temperature boundary condition
- Model random variability as:  $T = T_0 \times [1 + g(x, \theta)]$
- Assume stochastic process has autocorrelation function

$$C(|x_1 - x_2|) = \sigma_g^2 \exp(-|x_1 - x_2|/L_c)$$

- $g(x, \theta)$  is written in terms of the eigenfunctions  $C_k(x)$  of the autocorrelation function  $C$  using a Karhunen-Loève decomposition

$$g(x, \theta) = \langle g \rangle + \sum_{k=1}^{\infty} \sqrt{\lambda_k} C_k(x) \xi_k \Rightarrow g(x, \theta) \approx \sum_{k=0}^{N_{KL}} g_k(x) \Psi_k(\theta)$$