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Predictive simulations enable science based design 

•! Empirical design is inefficient and costly 
–! Trial and error does not work well for complex systems 

•! Experiments not always feasible or permissible 
–! Reliability of nuclear weapons 
–! Climate change mitigation approaches 

•! Predictive simulations provide insight into the underlying 
physics that drive complex systems 
–! Identification of key mechanisms 
–! Allows for rigorous optimization strategies 



Model validation requires targeted experiments 

DLR-A Flame: Red = 15,200!
Fuel: 22.1% CH4, 33.2% H2, 44.7% N2!

Coflow: 99.2% Air, 0.8% H2O!
Detailed Chemistry and Transport: 12-Step 

Mechanism (J.-Y. Chen, UC Berkeley)!

Experiment!

LES!

x/d = 10!

MEAN!
RMS!

Temperature!

Mixture Fraction!

Comparisons with 1D 
Raman/Rayleigh/CO-LIF 

line images (Barlow et al. )!

H2O Mass Fraction!

CO Mass Fraction!



Predictive simulation requires careful assessment of 
all sources of error and uncertainty 
•! Numerical errors 

–! Grid resolution 
–! Time step size 
–! Time integration order 
–! Spatial derivative order 

•! Epistemic uncertainty 
–! Initial and boundary conditions 
–! Model parameters 
–! Model equations 

•! Aleatory uncertainty / intrinsic variability 
–! Stochastic processes 
–! Sampling noise 



Governing equations 
 



Smagorinsky sub-grid scale model 
 



Dynamic modeling and reacting flows involve additional 
complexity 



UQ assesses confidence in model predictions and 
allows resource allocation for fidelity improvements 
•! Parameter inference 

–! Determine parameters from data 
–! Characterize uncertainty in inferred parameters 

•! Propagate input uncertainties through computational 
model 
–! Account for uncertainty from all sources 
–! Resolve coupling between sources 

•! Analysis 
–! Sensitivity analysis 
–! Attribution 

•! Enables model calibration, validation, selection, 
averaging 



Overview 
•! Introduction 
•! Basic methods for uncertainty quantification 

–! Representation of random variables 
–! Forward propagation 
–! Parameter inference 

•! Application to chemical kinetics 
•! Advanced uncertainty quantification topics 



Polynomial Chaos expansions offer compact 
representations of random variables 
•! Random variables are represented as (truncated) 

Polynomial Chaos (PC) expansions 

•! One-dimensional Gauss-Hermite PC 

•! Parameter with Gaussian distribution 
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Propagation of uncertainty 
•! Consider example ODE with uncertain parameter ! 

•! Represent both u and ! with PC expansions 

•! Additional uncertain parameters introduce new 
stochastic dimensions 

•! Intrusive and non-intrusive approaches for determining 
the PC coefficients uk 

du
dt
= f !,u( ) u t = 0( ) = u0

! = !k! kk=0

P
" !k known

u t( ) = uk t( )! kk=0

P
" uk t( )  unknown



Spectral intrusive propagation of uncertainty 
•! Substitute PC expansions for u and ! in the governing 

equation 
•! Perform Galerkin projection onto the PC basis functions 

–! System of equations for the PC coefficients uk(t) 

–! (P+1) coupled deterministic equations 



Substituting PC expansions into the governing equation 
yields deterministic equations for PC coefficients 
•! Example ODE with uncertain parameter ! 

•! Substitute PC expansions in the ODE 
 

•! Multiply by "k, take expectation and use orthogonality 

du
dt
= !u2 ! = !i! ii=0

P
" u t( ) = uj t( )! jj=0

P
"
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Spectral intrusive propagation in practice 
•! Pros 

–! Elegant 
–! One time solution of system of equations for the PC coefficients 

fully characterizes uncertainty in all variables at all times 
–! Tailored solvers can (potentially) take advantage of new 

hardware developments 

•! Cons 
–! Often requires re-write of the original code 
–! Reformulated system is factor (P+1) larger than the original 

system and can be challenging to solve 

•! Many efforts in the community to automate intrusive UQ 
–! UQToolkit http://www.sandia.gov/UQToolkit/ 
–! Sundance http://www.math.ttu.edu/~klong/Sundance/html/ 
–! Stokhos http://trilinos.sandia.gov/packages/stokhos/ 
–! # 



Non-intrusive or sampling-based propagation of 
uncertainty 

•! Do not require changes to the original solver code 
–! Used as black box to generate samples 

•! Two main categories 
–! Galerkin projection approaches 
–! Collocation approaches 



Non-intrusive spectral projection (NISP) for 
uncertainty propagation 
•! Obtain uk by direct projection onto PC basis 

•! Random sampling approach: 

–! Monte Carlo (MC), Latin Hypercube Sampling (LHS), # 
–! Convergence as  

•! Quadrature approach: 

–! Gauss-Hermite quadrature for uk exact with Nqp = P+1 if u is a 
polynomial of order P (one-dimensional) 

–! Evaluate u at Nqp quadrature points corresponding to different 
values of !($i) 
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Collocation approaches rely on interpolation 

•! Do not perform projection onto the basis functions 
•! Consider 
•! Sample parameter space  

•! Solve a system of equations for uk 

•! Many variants depending on location and number of 
sample points 
–! Generally more samples than PC coefficients 

u = g(!)

!i = !k! k "i( )
k=0

P
"

ui = g !i( ) = uk ! k "i( )
k=0

P
"



Sampling-based approaches in practice 

•! Pros 
–! Easy to use as wrappers around existing codes 
–! Embarrassingly parallel 

•! Cons 
–! Most methods suffer severely from curse of dimensionality 

•! (Adaptive) sparse quadrature/collocation methods 

•! Sampling methods have found very, very widespread 
use in the community 
–! DAKOTA http://dakota.sandia.gov/ 

N = nd



Bayesian methods provide probabilistic framework for 
parameter inference 
•! Bayes rule 

 
 
•! Probabilistic framework 

–! Naturally handles uncertainties 
–! Posterior width indicates confidence in 

inferred information 
–! Can handle heterogeneous data sources 
–! Lends itself well to model comparison 

(Bayes factors) 

P ! |D ,M( )
posterior! "## $##

=
P D |! ,M( )

likelihood! "## $##
P ! |M( )

prior! "# $#

P D |M( )
evidence
% &# '#



Likelihood measures goodness-of-fit 

Compare experimental data                                  
 with computational model output  
 via measurement model   
 and instrument noise         
  
e.g., Gaussian assumption,  

•! Instrument noise and measurement model details often inferred as 
hyperparameters. 
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Posterior distribution generally sampled with Markov 
Chain Monte Carlo (MCMC) 

•! Basic Metropolis-Hastings algorithm 
–! Generate new sample %2 from 

Gaussian proposal distribution 
centered at current state %1 

•! Proposal distribution width 
determines mixing 

–! Compute 
 
 
 
 
–! Accept new sample with probability & 

•! Many variations / enhancements exist 

! =min 1,
p " 2 D,M( )
p "1 D,M( )

!

"
#
#

$

%
&
&



Overview 
•! Introduction 
•! Basic methods for uncertainty quantification 
•! Application to chemical kinetics 

–! Inference and propagation of reaction kinetics uncertainty 
–! Effect of correlation between inferred parameters 

•! Advanced uncertainty quantification topics 



Synthetic “experimental ignition data” generated from 
detailed chemistry model with added noise 
•! GRI 3.0 model for 

methane-air chemistry 
•! Ignition time versus 

initial temperature 
•! Multiplicative noise 

added 
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di = tig,i
GRI 1+!"i( )

!i ~N 0,1( )
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Global single-step irreversible chemical model is fitted 
to ignition data 
•! Model equations 

 
•! Infer 3-D parameter vector 

(ln A, ln E, ln ') 
•! Good mixing with adaptive 

MCMC when starting at 
Maximum Likelihood 
Estimate (MLE) 

CH4 + 2O2 !CO2 + 2H2O

R = CH4[ ] O2[ ]k f
k f = Aexp !E R0T( )



Calibrated global model fits the data well 
 

•! Marginal posterior (ln A, ln E) shows strong correlation 
between the inferred parameters 

•! Model both with one Gaussian random variable 
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Uncertainty in forward model predictions 

•! 4th order multiwavelet PC, multiblock adaptive 
•! Max standard deviation in T about 400K for ( = 0.03 

Means Standard Deviations 



Evolution of temperature PDFs during preheat phase 

•! Similar results from Monte Carlo (20K samples) as 
intrusive PC 

•! With time, uncertainty increases and high-T tails get longer 



Evolution of temperature PDFs during ignition 
transient 

•! Transition from unimodal to bimodal pdfs 
•! Leakage of probability mass from pre-heat PDF high–T 

tail 

MW MC 



Correlation slope between uncertain parameters has a 
strong effect on predicted ignition transient uncertainty 
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Correlation slope between uncertain parameters has a 
strong effect on predicted ignition transient uncertainty 
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Correlation slope between uncertain parameters has a 
strong effect on predicted ignition transient uncertainty 
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Overview 
•! Introduction 
•! Basic methods for uncertainty quantification 
•! Application to chemical kinetics 
•! Advanced uncertainty quantification topics 

–! Model validation 
–! Surrogate models 
–! High-dimensional systems 
–! Discontinuities / non-linearities 
–! Data free inference 



Model validation approaches 
•! Model sanity checks: 

–! Posterior predictive check 

•! Compare posterior predictions of quantities of interest versus 
existing/new data sets 

•! Perform cross-validation 
–! Model discrepancy terms 

•! Discover structural deficiencies in forward model 
•! Enrich model until model discrepancy term small enough 

•! Model comparison and plausibility 
–! How adequate is the model for the given dataset, irrespective of 

model parameters? 

P d D,M( ) = P d !,D,M( )P ! D,M( )d!!

di = fi m !( )+"m !( )( )+# i $



Model evidence term combines goodness-of-fit and 
model complexity  

•! Likelihood marginalized 
over all parameters 

•! Represents Ockham’s 
razor 

P D |M( ) = P D |! ,M( )! P ! |M( )d!

Relative entropy or information gain 
between prior and posterior   



Model comparison is based on model evidence term 

•! Model Selection: evidence ratio (Bayes Factor) 
 
 

 
•! Model Averaging: based on plausibility for robust predictions 

Beck and Yuen (2004), Cheung et al (2011). 
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Polynomial Chaos (PC) as a cheap surrogate model 
 
•! Input parameter 

•! Model output 

are, e.g., Legendre orthogonal polynomials 

•! PC modes           can be found by!
o! orthogonal projection !

!! simulate the model at specific parameter values (quadrature) !
!! fails for noisy model outputs!

o! Bayesian inference !
!! works with any set of model simulations !
!! robust with respect to noisy outputs!
!! leads to random PC modes, i.e. stochastic surrogate model !
!! BUT, good accuracy may require prohibitively many simulations 



Some outstanding challenges in UQ 

•! High-dimensional systems 
–! (Adaptive) sparse quadrature rules 
–! Dimensionality reduction methods 

•! Discontinuities or strong 
non-linearities 
–! Make global PC expansions fail 
–! Domain or data decomposition 
–! Infer parameterization of discontinuity and represent smooth 

function on both sides 

•! Data to infer full probabilistic description of model inputs 
often not available 
–! Mean and standard deviation may be only thing known 
–! Use Data-Free-Inference (DFI) to determine full distribution  
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Summary 

•! UQ is an essential component of predictive simulations 
–! Assess confidence in model predictions 
–! Resource allocation for fidelity improvement 

•! Many mature approaches available for propagating 
uncertainties through computational models 

•! Accurate characterization of the input uncertainties is 
essential 
–! Joint distribution between inputs needed 

•! Model comparison approaches are emerging 
•! Many challenges remain 
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Ockham's Razor 
 

Relative entropy  
or  

information gain between 
prior and posterior   

Model Evidence balances data fit and model complexity,  
i.e. penalizes against overfitting 



Non-intrusive spectral projection (NISP) to obtain 
Polynomial Chaos representation for observables 
•! Observable is statistical property y = <f(X(!))> 
•! (Truncated) Polynomial Chaos (PC) expansions 

spectrally represent dependence on uncertain inputs ! 

•! Basis functions " are orthogonal polynomials in standard 
random variables # allowing Galerkin projections 

•! Sparse quadrature needed for high-dimensional systems 
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Bayesian methods offer a probabilistic framework well 
suited to infer PC coefficients from noisy data 

•! Assume uniformly distributed priors 
•! Gaussian likelihood 

–! With ' estimated from Central Limit Theorem or inferred 
•! Posterior is explored using Markov Chain Monte Carlo 

sampling 
–! Maximum a posteriori (MAP) parameter estimate used 

–! Width of posterior shows confidence in inferred parameters for 
given amount of data 

•! Generate data by sampling system at locations of 
sparse quadrature points 

( ) ( ) ( )!
PriorLikelihoodPosterior

ccc pDpDp
"#$"#$

! { }NiiyD 1==

( )Dp cc cargmaxMAP =



Karhunen-Loève (KL) decomposition expands X in 
terms of the eigenfunctions of its covariance function 

–! Xk(t) : orthonormal eigenfunctions of the covariance function 
–! !k : corresponding eigenvalues 
–! $k : uncorrelated, zero-mean, unit-variance random variables 
–! Covariance function obtained from sampled system trajectories 
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Uncertain and stochastic dynamical systems 

•! Two types of uncertainty 
–! Reducible (epistemic): can be reduced by additional or better 

measurements 
–! Irreducible (aleatory): due to inherent stochasticity in the system 

•! Some examples 
–! Reaction rate constants in combustion mechanism 
–! Physical property values in a solid mechanics problem 
–! Turbulent eddies around an airplane wing 
–! Small scale variabilities (weather) in a global circulation model 
–! Chemical reactions between a small number of molecules 

•! Uncertainty Quantification (UQ) propagates 
characterized uncertainties through system model 

•! Sensitivity analysis determines influence of each 
parameter on the observables of interest 



Stochastic processes can be represented in PC form 
using a Karhunen-Loève decomposition 
•! For example: random variability in a temperature 

boundary condition 
•! Model random variability as: 
•! Assume stochastic process has autocorrelation function 

•! g(x,%) is written in terms of the eigenfunctions Ck(x) of 
the autocorrelation function C using a Karhunen-Loève 
decomposition 
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