

Computational Peridynamics

The International Center for Numerical Methods in Engineering (CINME)
Universitat Politècnica de Catalunya (UPC)

October 24 2011

Michael Parks

Computing Research Center
Sandia National Laboratories
Albuquerque, New Mexico

What is Peridynamics?

- Peridynamics is a nonlocal extension of classical solid mechanics that permits discontinuous solutions
- Peridynamic equation of motion (integral, nonlocal)

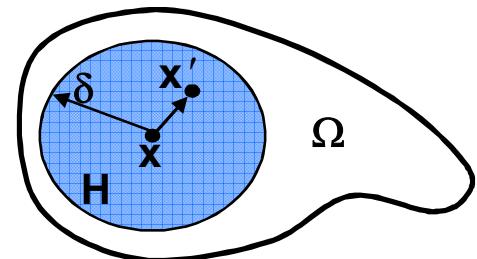
$$\rho \ddot{u}(x, t) = \int_H f(u' - u, x' - x) dV' + b(x, t)$$

"In peridynamics, cracks are part of the solution, not part of the problem."
- F. Bbaru

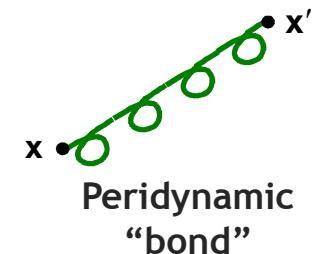
- Replace PDEs with integral equations
- No obstacle to integrating nonsmooth functions (fracture)
- Utilize same equation everywhere; cracks not "special"
- When bonds stretch too much, they break
- $f(\cdot, \cdot)$ is "force" function; contains constitutive model
- $f = 0$ for particles x, x' more than δ apart
(analogous to cutoff radius in molecular dynamics!)
- Peridynamics is "continuum form of molecular dynamics"

- Impact
 - Nonlocality
 - Larger solution space (fracture)
 - Length scales (multiscale material model)

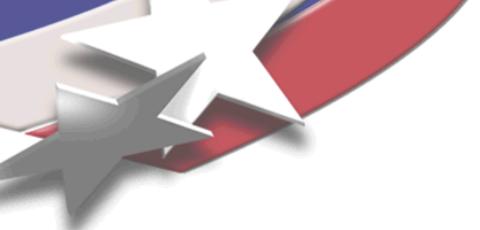
- Ancestors
 - Kröner, Eringen, Edelen, Kunin, Rogula, etc.



Peridynamic Domain



Peridynamic
"bond"



Local vs. Nonlocal Models

□ Local model:

- Contact force
- Exterior of circle imparts force to interior via surface
- Cauchy cut principle

□ Examples:

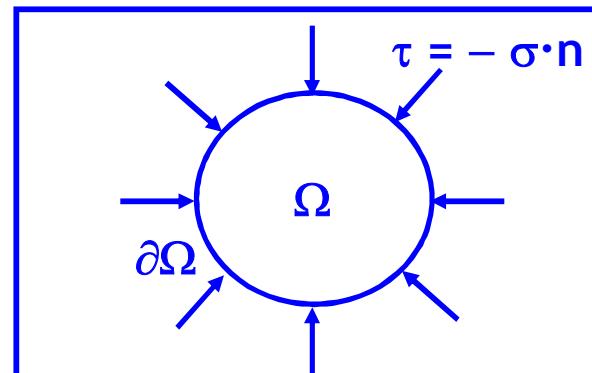
- Classical elasticity, etc.
- Any PDE-based model

□ Nonlocal model:

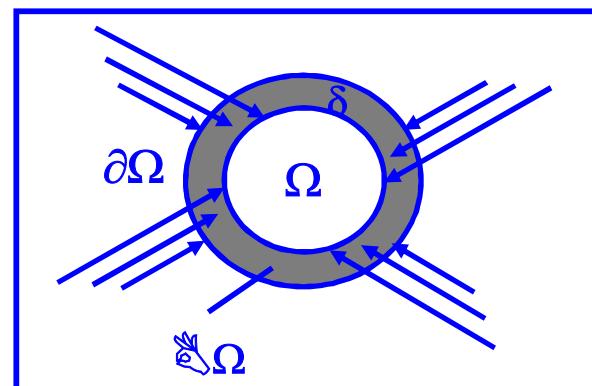
- Action-at-a-distance
- **Exterior of circle interacts directly with Ω in interior of circle**

□ Examples:

- Molecular dynamics
- Peridynamics



Local Interaction



Nonlocal Interaction

"It can be said that all physical phenomena are nonlocal. Locality is a fiction invented by idealists."

A. Cemal Eringen

Length Scales

- What does it mean to have a length scale?
 - What does it mean to be multiscale?
- Example #1: $\ddot{u}(x) = au''(x)$
 - Equation has no length scale; same dynamics at all scales
- Example #2: $\ddot{u}(x) = au''(x) + bu''''(x)$
 - Dimensional analysis gives that $\text{sqrt}(b/a)$ has units of length
 - Rescaling x can make first term dominant or second term dominant
 - Scaling of x changes behavior of equation
- Peridynamic horizon δ represents a *length scale*
 - Behavior (dynamics) of EOM vary with length scale
 - Exhibit desired physics on applied length scale
- Peridynamics provides desired dynamics at multiple length scales!
 - Rescaling space (equivalent to rescaling δ) provides transition from microscale to macroscale (classical) models!
- Connection between nonlocal models and higher-gradient models

Peridynamic Model (nonlocal)

$$\rho \ddot{u}(x, t) = \int_{-\delta}^{\delta} \frac{c}{|\varepsilon|} [u(x + \varepsilon, t) - u(x, t)] d\varepsilon$$

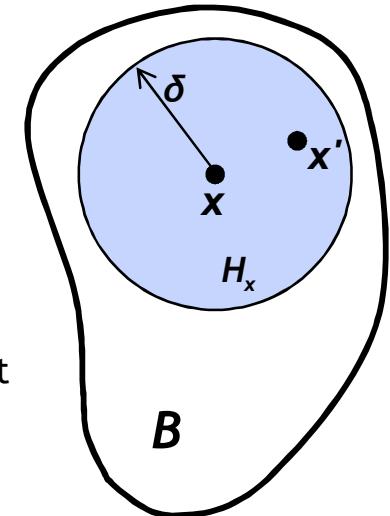
Taylor series

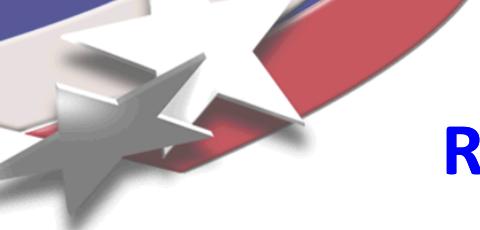
Higher-Gradient Model (weakly nonlocal)

$$\rho \ddot{u}(x, t) = K_a \left[\frac{d^2 u}{dx^2} + \frac{\delta^2}{24} \frac{d^4 u}{dx^4} + \frac{\delta^4}{1080} \frac{d^6 u}{dx^6} + \dots \right]$$

Local, Scale Invariant

$$\rho \ddot{u}(x, t) = K_a \frac{d^2 u}{dx^2}$$





Relationship with Classical Theory

- Assuming u sufficiently smooth, re-write integral equation using nonlocal stress tensor ν

$$\begin{aligned}\rho \ddot{u}(x, t) &= \int_{\mathcal{H}} f(u' - u, x' - x) dV' + b(x, t) \\ &= \nabla \cdot \nu(x, t) + b(x, t)\end{aligned}$$

Peridynamic stress tensor

- Nonlocal stress never needed in practice!
- If u sufficiently smooth, convergence to classical elasticity in limit as $\delta \rightarrow 0$

$$\rho \ddot{u}(x, t) = \nabla \cdot P(x, t) + b(x, t)$$

Piola-Kirchhoff stress tensor

- Peridynamics can be viewed as nonlocal extension of classical theory

*R.B. Lehoucq and S.A. Silling, *Force flux and the peridynamic stress tensor*, J. Mech. Phys. Solids, 56, pp. 1566-1577, 2008.

*S.A. Silling and R.B. Lehoucq, *Convergence of Peridynamics to Classical Elasticity Theory*, J. Elasticity, 93(1), pp. 13-37, 2008.

Part I Codes and Applications

Part II Discretizations and Numerical Methods

Part III Peridynamic Finite Elements

Part IV Nonlocal Substructuring

Peridynamic Codes

Peridigm (Open source, C++)

- Developers: Parks, Littlewood, Mitchell, Silling
- Intended as Sandia's primary open-source PD code
- Built upon Sandia's Trilinos Project (trilinos.sandia.gov)
- Massively parallel, Exodus mesh input, Multiple material blocks
- Explicit, implicit time integration
- State-based linear elastic, elastic-plasticity, viscoelastic models
- DAKOTA interface for UQ/optimization/calibration, etc.
(dakota.sandia.gov)

PDLAMMPS (Peridynamics-in-LAMMPS) (Open source, C++)

- Developers: Parks, Seleson, Plimpton, Silling, Lehoucq
- Particular discretization of PD has computational structure of molecular dynamics (MD)
- LAMMPS: Sandia's open-source massively parallel MD code (lammps.sandia.gov)
- First open-source PD code
- More info & user guide: www.sandia.gov/~mlparks

Peridynamics in Sierra/SolidMechanics (C++)

- Developer: Littlewood
- Sandia engineering analysis code

EMU (F90)

- Developer: Silling (www.sandia.gov/emu/emu.htm)
- Research code

Peridynamics via Agile Components

Software Quality Tools

Mailing Lists

Version Control

Build System

Testing (CTest)

Project Management

Issue Tracking

Wiki

UQ

Optimization

Error Estimation

Calibration

Visualization

Visualization Toolkit

Service Tools

Parallelization Tools

Data Structures (Epetra)

Load Balancing (Zoltan)

Analysis Tools

UQ (Stokhos)

Optimization (MOOCHO)

Services

Interfaces (Thyra)

Tools (Teuchos, TriUtils)

Field Manager (Phalanx)

DAKOTA Interface (TriKota)

Solver Tools

Iterative Solvers (Belos)

Direct Solvers (Amesos)

Nonlinear Solvers (NOX)

Eigen solvers (Anasazi)

Preconditioners (IFPack)

Multilevel (ML)

Sandia
National
Laboratories

Peridynamics-in-LAMMPS (PDLAMMPS)

□ Goals

- First **open source** peridynamic code (distributed with LAMMPS; lammps.sandia.gov)
- Provide (nonlocal) continuum mechanics simulation capability within MD code
- Leverage portability, fast parallel implementation of LAMMPS
(Stand on the shoulders of LAMMPS developers)

□ Capability

- Prototype microelastic brittle (PMB), Linear peridynamic solid (LPS) models
- Viscoplastic model
- General boundary conditions
- Material inhomogeneity
- LAMMPS highly extensible; easy to introduce new potentials and features
- More information & user's guide at
www.sandia.gov/~mlparks (Click on "software")

□ Papers

- M.L. Parks, P. Seleson, S.J. Plimpton, R.B. Lehoucq, and S.A. Silling, *Peridynamics with LAMMPS: A User Guide*, Sandia Tech Report SAND 2010-5549.
- M.L. Parks, R.B. Lehoucq, S.J. Plimpton, and S.A. Silling, *Implementing Peridynamics within a molecular dynamics code*, Computer Physics Communications 179(11) pp. 777-783, 2008.

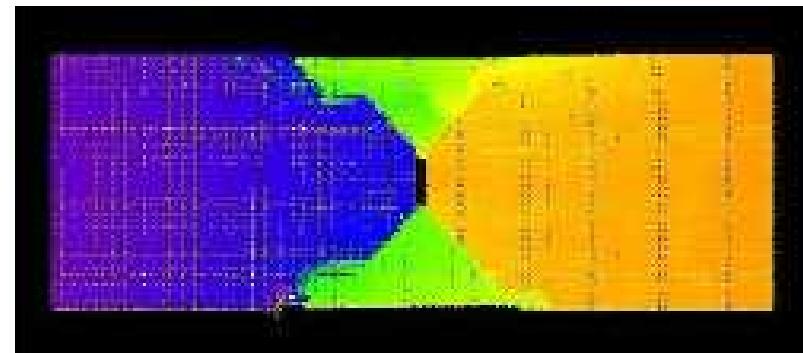
□ A *personal observation...*

- Time from starting implementation to running first experiment: Two weeks
- Time for same using XFEM, other approaches: ????
- Conclusion: Peridynamics is an expedient approach for fracture modeling

Some Applications...

- Splitting and fracture mode changes in fiber-reinforced composites*
- Fiber orientation between plies strongly influences crack growth

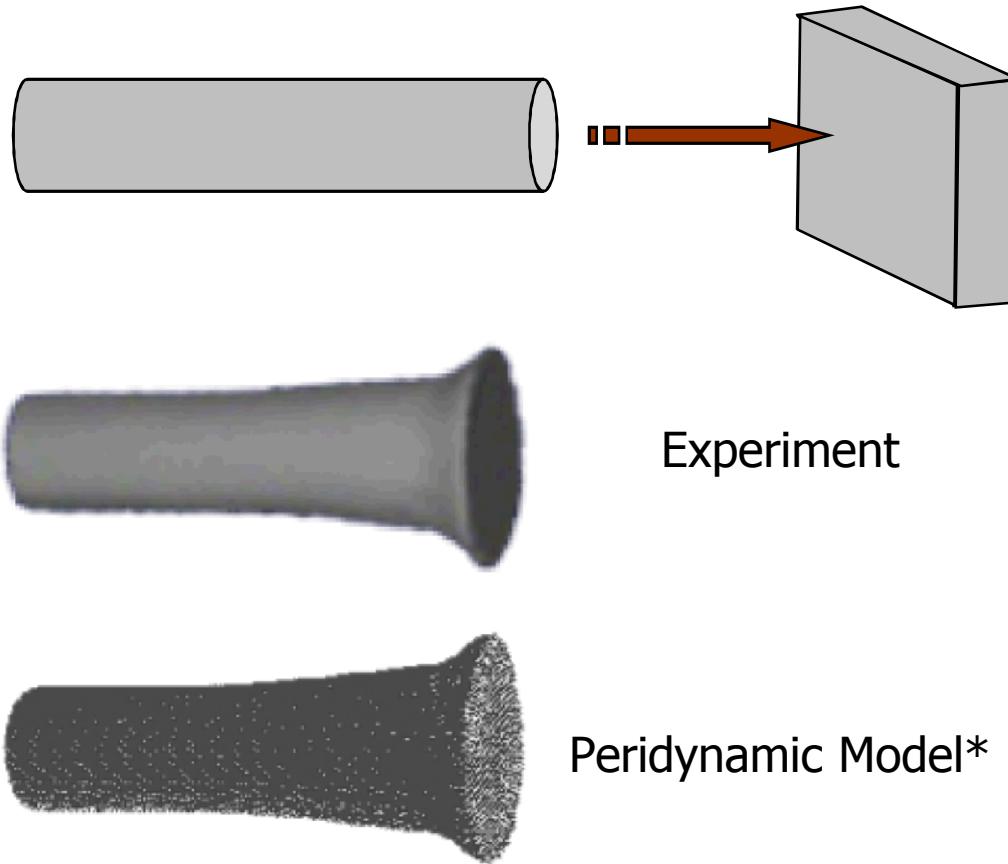
Typical crack growth in notched laminate
(photo courtesy Boeing)



Peridynamic Model

Some Applications...

- Taylor impact test of 6061-T6 aluminum*

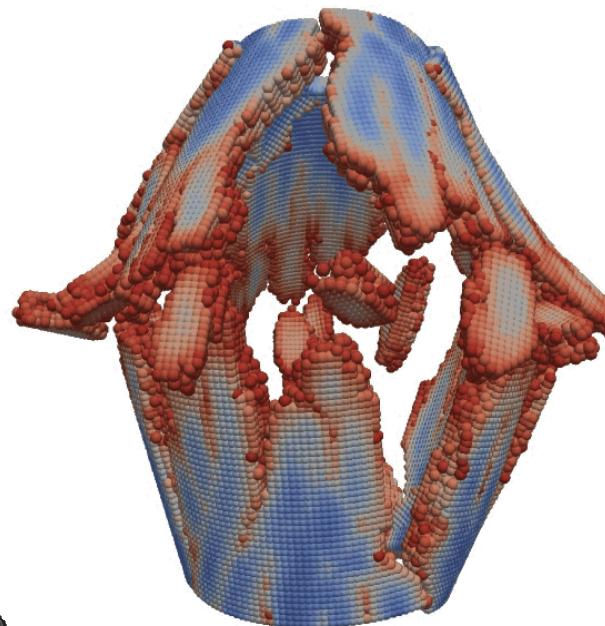


Some Applications...

□ Fragmenting Brittle Cylinder

□ Motivated by tube fragmentation experiments of Winter (1979), Vogler (2003)*

Before



After

Some Applications...

Fragmenting metal ring

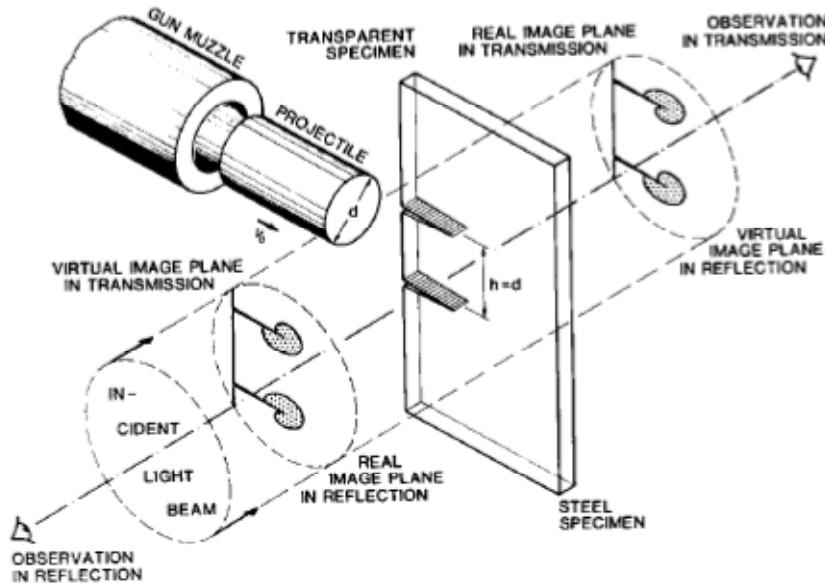
- Motivated by ring fragmentation experiments of Grady & Benson*
- Note regions of necking and failure
- Utilized new peridynamic plasticity model**

* D. Grady, D. Benson, Fragmentation of metal rings by electromagnetic loading, *Experimental Mechanics*, 23(4), pp. 393-400, 1983

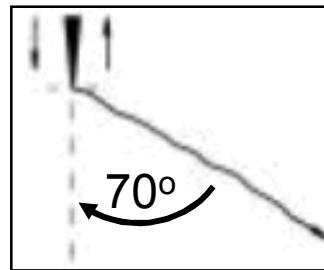
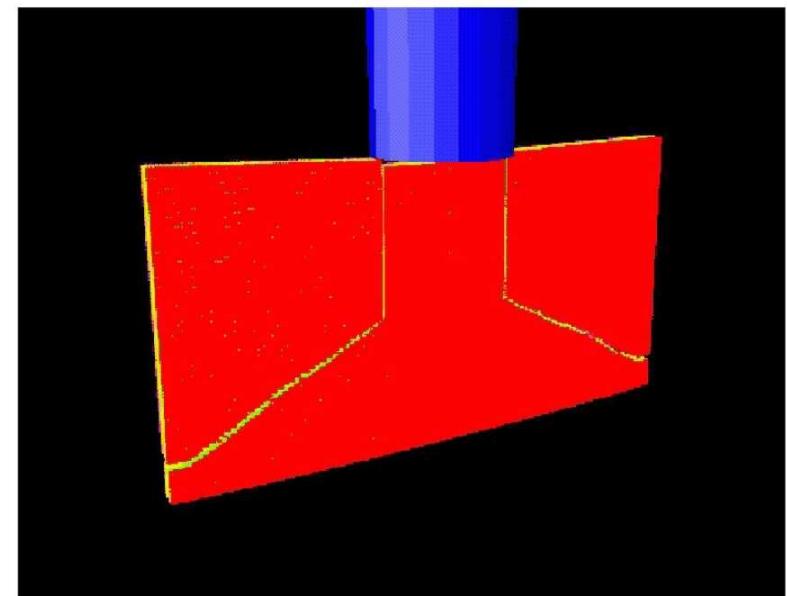
** J. Mitchell, A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics, SAND2011-3166, 2011.

Some Applications...

- Dynamic fracture in steel (Kalthoff & Winkler, 1988)
- Mode-II loading at notch tips results in mode-I cracks at 70° angle
- Peridynamic model reproduces the 70° crack angle*



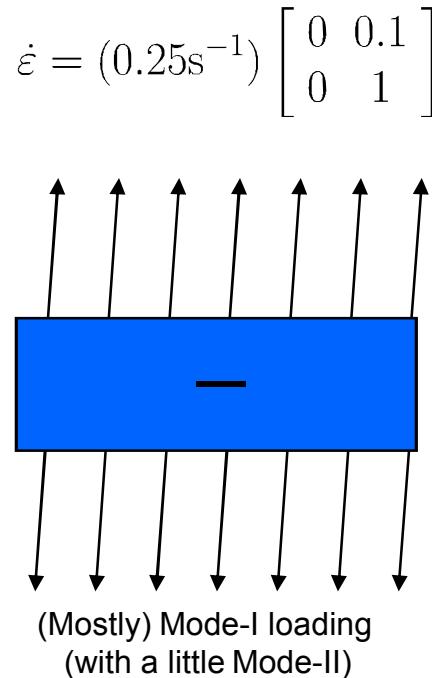
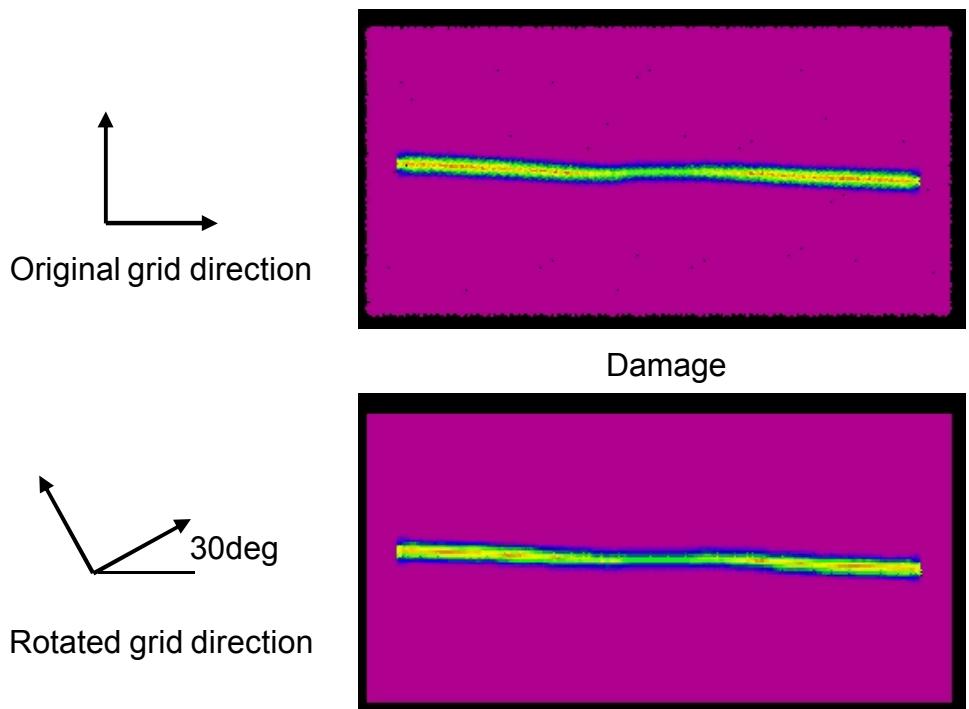
Experimental
Results



Peridynamic Model

Some Applications...

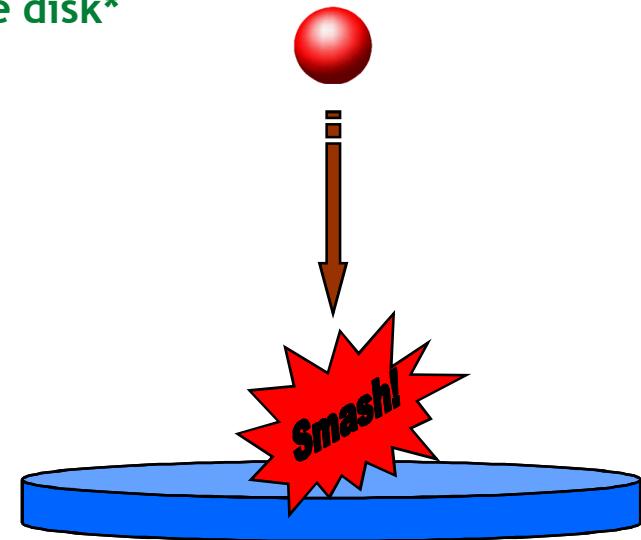
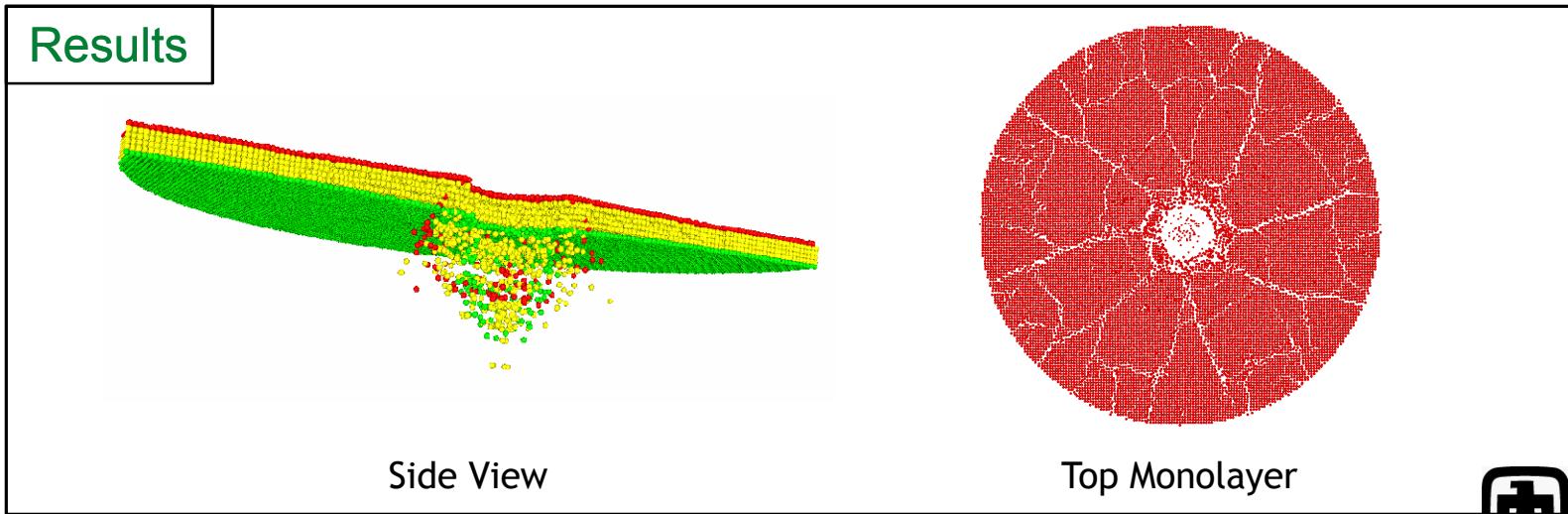
- Discrete peridynamic model exhibits mesh-independent crack growth
- Plate with a pre-existing defect is subjected to prescribed boundary velocities
- Crack growth direction depends continuously on loading direction



- Nonlocal network of bonds in many directions allows cracks to grow in any direction.

Some Applications...

- Example Simulation: Hard sphere impact on brittle disk*
- Spherical Projectile
 - Diameter: 0.01 m
 - Velocity: 100 m/s
- Target Disk
 - Diameter: 0.074 m,
 - Thickness: 0.0025 m
 - Elastic modulus: 14.9 Gpa
 - Density: 2200 kg/m³
- Discretization
 - Mesh spacing: 0.005 m
 - 100,000 particles
 - Simulation time: 0.2 milliseconds



Some Applications...

□ Example Simulation: Failure of Nanofiber Network*

□ Nanofiber networks

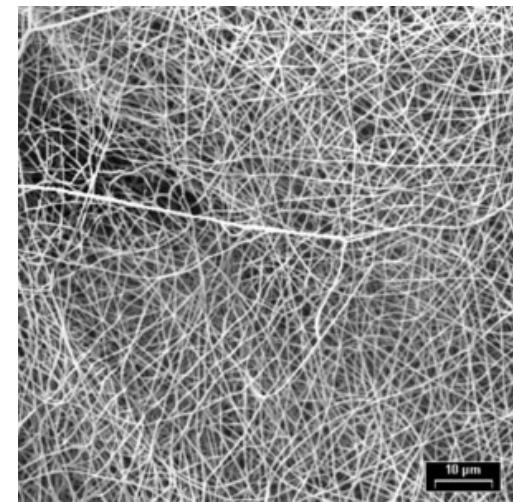
- Large surface area to volume ratio
- High axial strength and extreme flexibility
- Used in composites, protective clothing, catalysis, electronics, chemical warfare defense

□ Numerical Model

- 400 nm x 400 nm x 10 nm
- Biaxial strain induces failure
- PD PMB material model (augmented for van der Walls forces)

□ Findings**

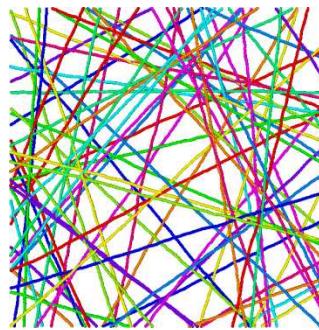
- van der Walls important for strength and toughness
- Heterogeneity in bonds strength increases toughness, ductility



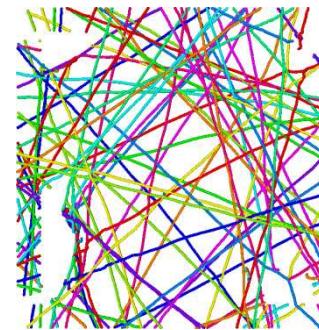
Nanofiber Network

(http://www.me.wpi.edu/MTE/current_projects.htm)

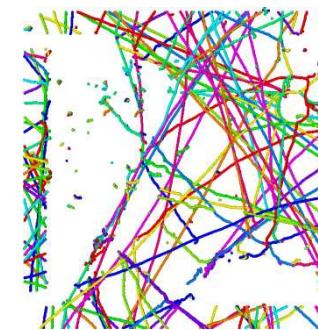
Results



t=0; 0% strain



t=30 ns; 17.6% strain



t=50 ns; 29.4% strain

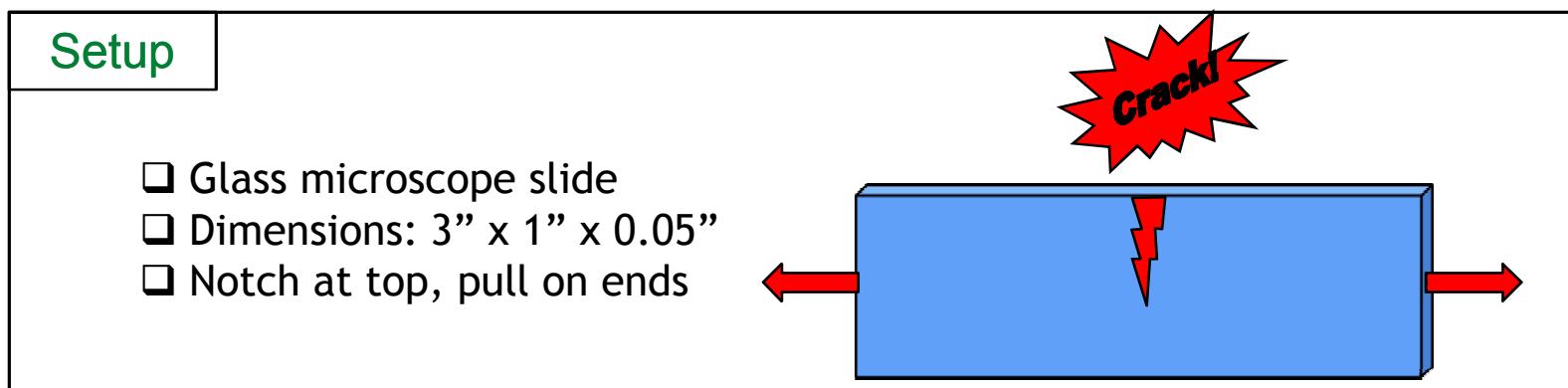
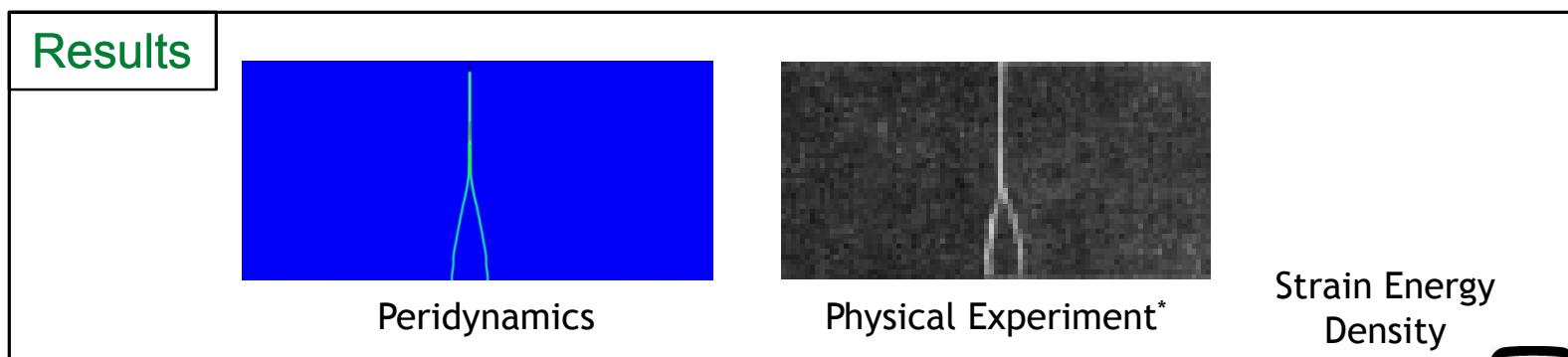
* E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling, and O. Weckner, Peridynamics for multiscale materials modeling, in SciDAC 2008, Seattle, Washington, July 13-17, 2008, vol. 125 of Journal of Physics: Conference Series, (012078) 2008.

** F. Bobaru, Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofiber networks: a peridynamic approach, Modelling Simul. Mater. Sci. Eng., 15 (2007), pp. 397-417.

Some Applications...

- Example simulation: **Dynamic brittle fracture in glass**
 - Joint with Florin Bobaru, Youn-Doh Ha (Nebraska), & Stewart Silling (SNL)

- **Soda-lime glass plate (microscope slide)**
 - Dimensions: 3" x 1" x 0.05"
 - Density: 2.44 g/cm³
 - Elastic Modulus: 79.0 Gpa
- **Discretization (finest)**
 - Mesh spacing: 35 microns
 - Approx. 82 million particles
 - Time: 50 microseconds (20k timesteps)



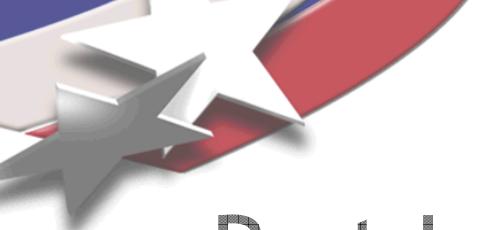
Some Applications...

- ❑ Dawn (LLNL): IBM BG/P System
 - ❑ 500 teraflops; 147,456 cores
- ❑ Part of Sequoia procurement
 - ❑ 20 petaflops; 1.6 million cores
- ❑ Discretization (finest)
 - ❑ Mesh spacing: 35 microns
 - ❑ Approx. 82 million particles
 - ❑ Time: 50 microseconds (20k timesteps)
 - ❑ 6 hours on 65k cores
- ❑ Largest peridynamic simulations in history

Dawn at LLNL

Weak Scaling Results

# Cores	# Particles	Particles/Core	Runtime (sec)	T(P)/T(P=512)
512	262,144	4096	14.417	1.000
4,096	2,097,152	4096	14.708	0.980
32,768	16,777,216	4096	15.275	0.963



Part I

Codes and Applications

Part II

Discretizations and Numerical Methods

Part III

Peridynamic Finite Elements

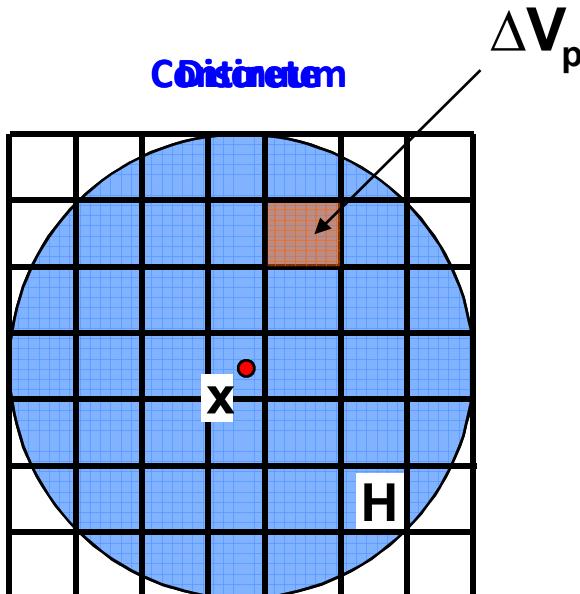
Part IV

Nonlocal Substructuring

Discretizing Peridynamics

□ Spatial Discretization

- Approximate integral with sum*
- Midpoint quadrature
- Piecewise constant approximation

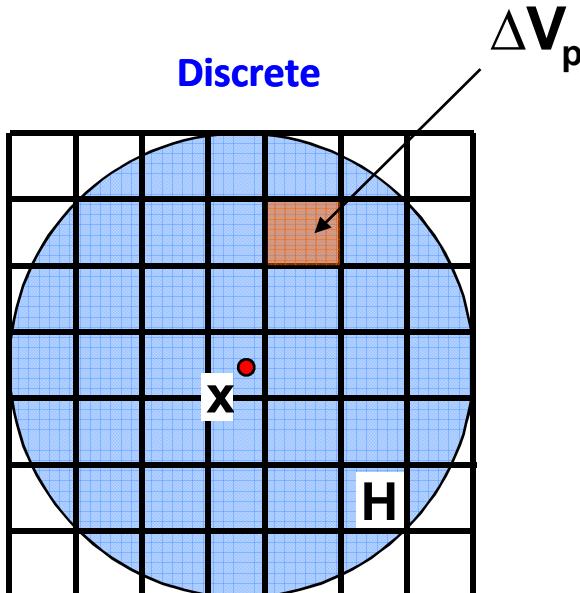


$$\sum_{p \in H} f(u(x'_p, t) - u(x, t), x'_p - x) \Delta V_p$$

Discretizing Peridynamics

□ Spatial Discretization

- Approximate integral with sum*
- Midpoint quadrature
- Piecewise constant approximation



$$\sum_p f(u(x_p, t) - u(x_i, t), x_p - x_i) \Delta V_p$$

□ Temporal Discretization

- Explicit central difference in time

$$\ddot{u}(x, t) \approx \ddot{u}_i^n = \frac{u_i^{n+1} - 2u_i^n + u_i^{n-1}}{\Delta t^2}$$

- Velocity-Verlet

$$v_i^{n+1/2} = v_i^n + \left(\frac{\Delta t}{2m} \right) f_i^n$$

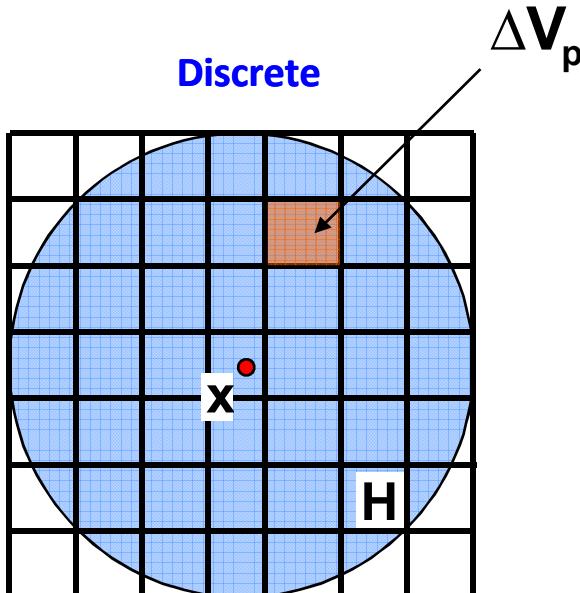
$$u_i^{n+1} = u_i^n + (\Delta t) v_i^{n+1/2}$$

$$v_i^{n+1} = v_i^{n+1/2} + \left(\frac{\Delta t}{2m} \right) f_i^{n+1}$$

Discretizing Peridynamics

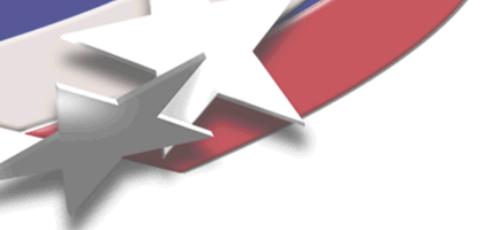
□ Spatial Discretization

- Approximate integral with sum*
- Midpoint quadrature
- Piecewise constant approximation



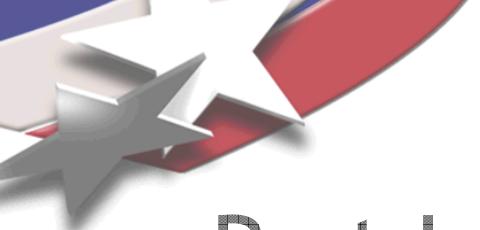
$$\sum_p f(u(x_p, t) - u(x_i, t), x_p - x_i) \Delta V_p$$

- This approach is sometimes called the “EMU” numerical method (Silling)



Discretizing Peridynamics

- This approach is simple but expedient. What more can we do?
- Temporal discretization
 - Implicit time integration (Newmark-beta method, etc.)
- Spatial discretization (strong form)
 - Midpoint quadrature (EMU method)
 - Gauss quadrature*
- Spatial discretization (weak form)
 - Nonlocal Galerkin finite elements (1D)*
 - Nonlocal integration-by-parts*
 - Nonlocal mass & stiffness matrices, force vector*
- Let's explore Peridynamic finite elements...



Part I

Codes and Applications

Part II

Discretizations and Numerical Methods

Part III

Peridynamic Finite Elements

Part IV

Nonlocal Substructuring

Why is Conditioning Important?

- What is the condition number of a matrix?

$$\kappa(A) = \|A\| \cdot \|A^{-1}\|$$

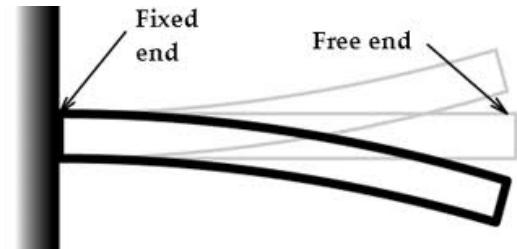
- Why do we care?

- Condition number dictate convergence rates of linear solvers
- Condition numbers dictate the accuracy of computed solution
- Rule of thumb:
If $\kappa(A) = 10^{16-d}$, then computed solution has d digits of accuracy.

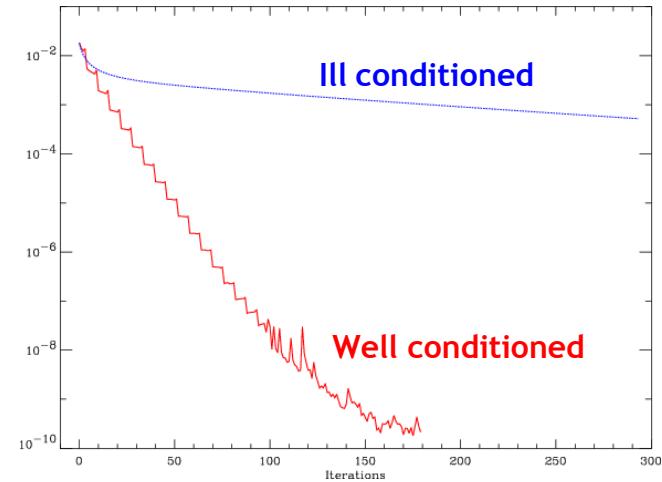
If $\kappa(A) = 10^{16}$, expect zero digits of accuracy!

- Old saying: “**You get the answer you deserve...**”

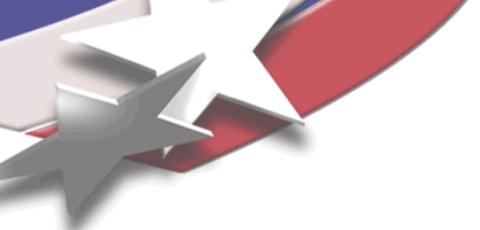
- Driving motivation for effective preconditioners



Cantilevered beam



Convergence curves for optimal Krylov methods



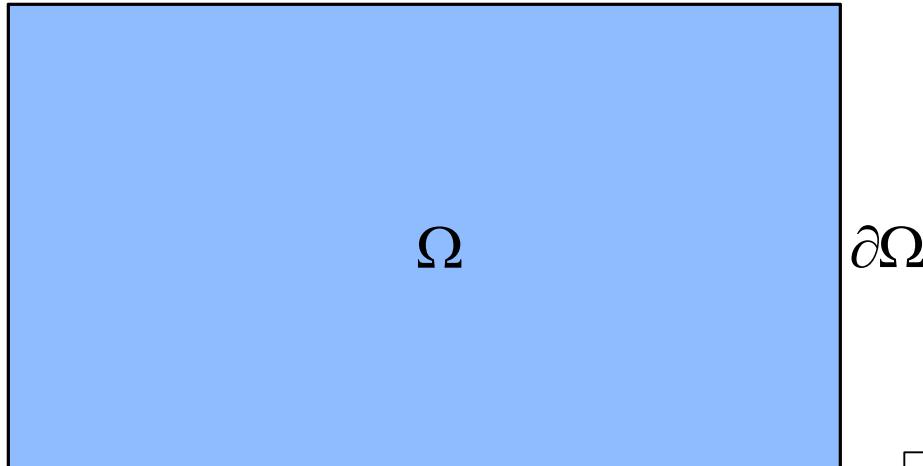
Why is Conditioning Important?

- Why do I care about condition numbers of peridynamic models?
 - First step towards **scalable** preconditioners
 - First step towards effective utilization of leadership class supercomputers for peridynamic simulations
- New component in nonlocal modeling is peridynamic horizon δ
 - How does δ affect the conditioning?
 - Develop preconditioners/solvers optimized for nonlocal models at extreme scales
- DOE current computing platforms
 - Jaguar (ORNL)
 - 2.595 petaflops (~2.5 quadrillion calculations per second)
 - 224,162 cores

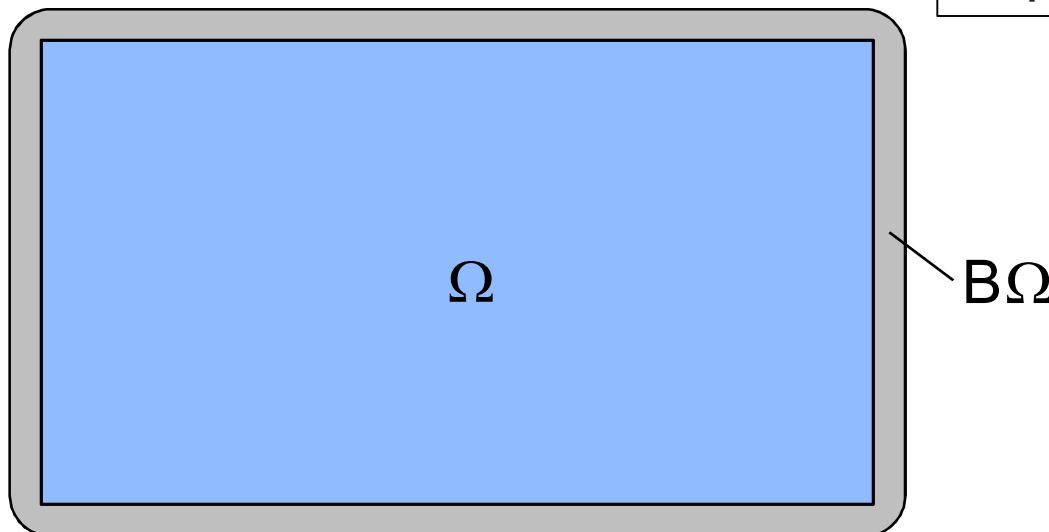
- US Department of Energy future computing platforms
 - **Exaflop machines by 2018**

Nonlocal Boundaries

- Classical domain and boundary: $\bar{\Omega} = \Omega \cup \partial\Omega$



- Nonlocal domain and boundary: $\bar{\Omega} = \Omega \cup B\Omega$



Nonlocal Weak Form

- EMU/PDLAMMPS discretize strong form of equation (like finite differences)
- What about nonlocal finite elements?
- Prototype operator

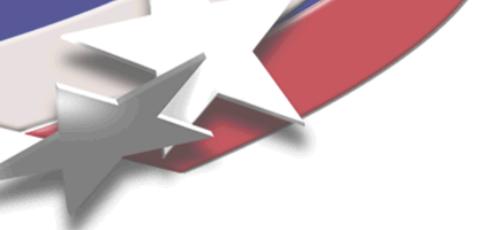
$$\mathcal{L}\{u\}(x) = - \int_{\bar{\Omega}} C(x, x') [u(x') - u(x)] dx' \quad \begin{aligned} C(x, x') &= C(x', x) \\ C(x, x') &= 0 \text{ if } \|x - x'\| > \delta \end{aligned}$$

- Need nonlocal weak form* → Multiply by test function and “integrate by parts”

$$\begin{aligned} a(u, v) &= - \int_{\bar{\Omega}} \int_{\bar{\Omega}} C(x, x') [u(x') - u(x)] v(x) dx' dx \\ &= \frac{1}{2} \int_{\bar{\Omega}} \int_{\bar{\Omega}} C(x, x') [u(x') - u(x)] [v(x') - v(x)] dx' dx \end{aligned}$$

- Compare with local Poisson operator

$$-\nabla^2 u(x) \longrightarrow \frac{1}{2} \int \nabla u \cdot \nabla v \, dx$$



Nonlocal Quadrature

- Review: Local Quadrature
 - One integral required
 - Compute products of *gradients* of shape functions and apply Gauss quadrature
 - Gradient *drops* polynomial order
(lower order quadrature scheme required)
- Nonlocal Quadrature
 - **Two** integrals required
 - Compute products of differences of shape functions and integrate
 - No gradient → higher polynomial order (higher order quadrature needed)
 - Nonlocality generates substantially more work over each element
 - Discontinuous integrands a challenge for quadrature routines (more later...)

$$a(u, v) = \frac{1}{2} \int \nabla u \cdot \nabla v \, dx$$

$$a(u, v) = - \iint_{\bar{\Omega} \bar{\Omega}} C(x, x') [u(x') - u(x)] v(x) dx' dx$$

$$= \frac{1}{2} \iint_{\bar{\Omega} \bar{\Omega}} C(x, x') [u(x') - u(x)] [v(x') - v(x)] dx' dx$$

- Integration by parts is standard in local (classical) FEM.

Spectral Equivalence

- For simplicity, assume

$$C(x, x') = \chi_\delta(x - x') \equiv \begin{cases} 1 & \text{if } \|x - x'\| \leq \delta \\ 0 & \text{otherwise} \end{cases}$$

“Canonical”
Kernel Function

- Principal Theorem*

$$\lambda_1(\bar{\Omega})\delta^{d+2} \leq \frac{a(u, u)}{\|u\|_{L_2(\bar{\Omega})}} \leq \lambda_2(\bar{\Omega})\delta^d \quad u \in L_{2,0}(\bar{\Omega})$$

- Let K be a finite element discretization of $a(u, u)$. Then,

$$\kappa(K) \sim \mathcal{O}(\delta^{-2})$$

- This is not tight!

- Consider $\lim \delta \rightarrow 0$. Cond # estimate $\rightarrow \infty$, true $\kappa(K) \rightarrow h^{-2}$.
- Condition number not mesh independent (bound is mesh independent).
- In practice, observe **very** weak mesh dependence.
- Bound descriptive when $h < \delta$.
- Alternative approach: Zhou & Du[†]

- Dominant length scale in nonlocal model set by δ .

- Contrast with local model, where length scaled introduced by h

*B. Aksoylu and M.L. Parks, *Variational Theory and Domain Decomposition for Nonlocal Problems*. Applied Mathematics and Computation, 217, pp. 6498-6515, 2011.

[†]K. Zhou, Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Num. Anal., 48(5), pp. 1759–1780, 2010.

[†]Q. Du and K. Zhou. Mathematical analysis for the peridynamic nonlocal continuum theory. Mathematical Modelling and Numerical Analysis, 2010. doi:10.1051/m2an/2010040.

Nonlocal Weak Form – 1D

□ Let $\Omega = (0,1)$, $\mathcal{E}\Omega = [-\delta,0] \cup [1, \delta]$.

□ $u=0$ on $\mathcal{E}\Omega$

□ Let $C(x, x') = \begin{cases} 1 & \text{if } \|x - x'\| \leq \delta \\ 0 & \text{otherwise} \end{cases}$

□ Weak form becomes

$$a(u, v) = - \int_{-\delta}^{\delta} \int_{x-\delta}^{x+\delta} [u(x') - u(x)] v(x) dx' dx$$

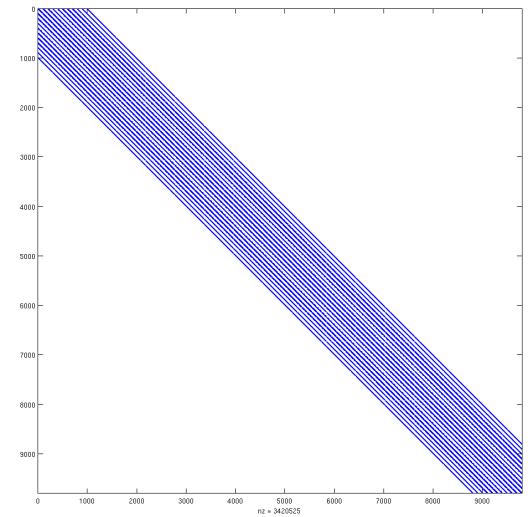
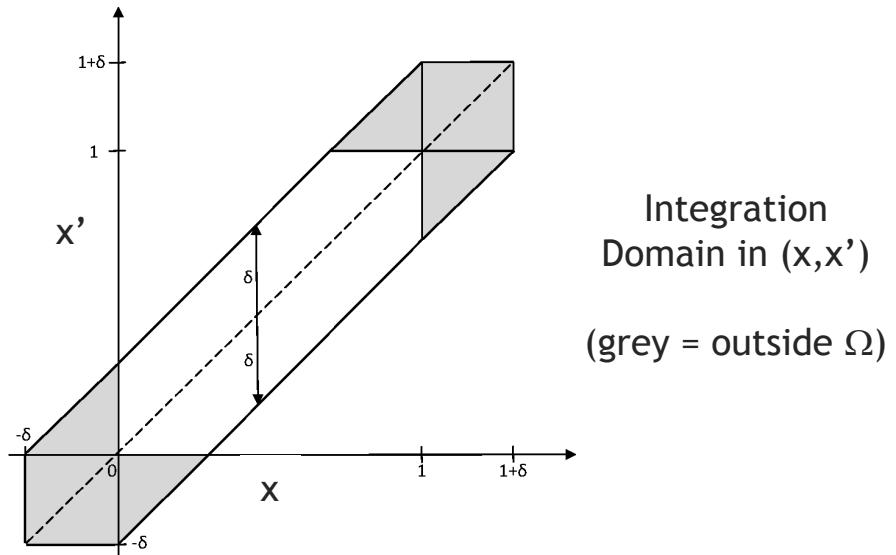
□ Numerical Study

- PW constant and PW linear SFs
- Hold δ constant, vary h
- Hold h constant, vary δ

Stiffness Matrix
Sparsity Pattern

2D Model

(10,000 unknowns,
3.4M nnz)



Nonlocal Finite Elements and Conditioning – 1D

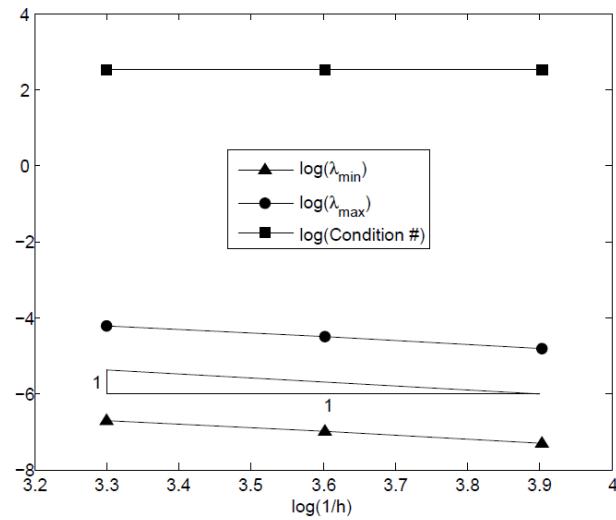
□ Observations: $\kappa(K) \sim O(\delta^{-2})$, only weak h -dependence

(a) Constant δ , vary h .

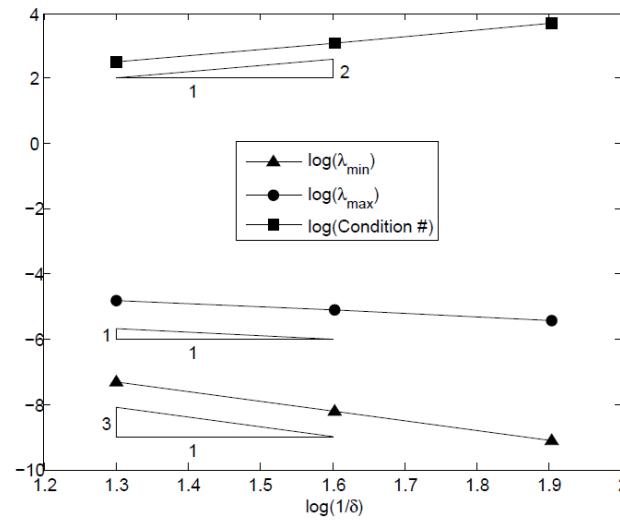
$1/h$	$1/\delta$	Piecewise Constant Shape Functions			Piecewise Linear Shape Functions		
		λ_{\min}	λ_{\max}	Condition #	λ_{\min}	λ_{\max}	Condition #
2000	20	1.94E-07	6.07E-05	3.13E+02	1.94E-07	6.07E-05	3.13E+02
4000	20	9.69E-08	3.04E-05	3.13E+02	9.69E-08	3.04E-05	3.14E+02
8000	20	4.84E-08	1.52E-05	3.14E+02	4.84E-08	1.52E-05	3.14E+02

(b) Constant h , vary δ .

$1/h$	$1/\delta$	Piecewise Constant Shape Functions			Piecewise Linear Shape Functions		
		λ_{\min}	λ_{\max}	Condition #	λ_{\min}	λ_{\max}	Condition #
8000	20	4.84E-08	1.52E-05	3.15E+02	4.84E-08	1.52E-05	3.14E+02
8000	40	6.24E-09	7.61E-06	1.22E+03	6.24E-09	7.60E-06	1.22E+03
8000	80	7.92E-10	3.80E-06	4.80E+03	7.91E-10	3.80E-06	4.80E+03



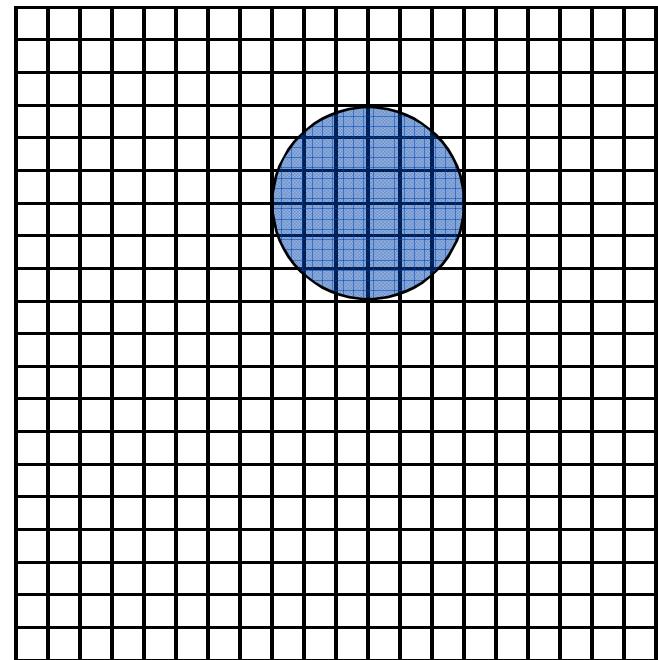
(a) Constant δ , vary h .



(b) Constant h , vary δ .

Nonlocal Weak Form – 2D

- Let $\Omega = (0,1) \times (0,1)$, $\mathcal{L}\Omega = [-\delta, 0] \cup [1, \delta]$.
- $u=0$ on $\mathcal{L}\Omega$
- Let $C(x, x') = \begin{cases} 1 & \text{if } \|x - x'\| \leq \delta \\ 0 & \text{otherwise} \end{cases}$
- Weak form requires quadruple quadrature
- Integrand discontinuous!
 - Gauss quadrature not accurate
 - Adaptive quadrature (expensive)
 - Break up integral into many separate integrals where integrand continuous over each subregion
- Numerical Study
 - PW constant SFs
 - Hold δ constant, vary h
 - Hold h constant, vary δ



Nonlocal Finite Elements and Conditioning – 2D

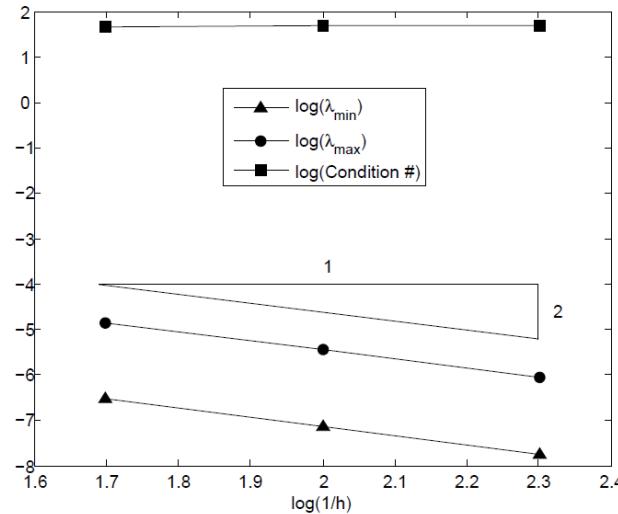
- Observations: $\kappa(K) \sim O(\delta^{-2})$, only weak h -dependence

(a) Constant δ , vary h .

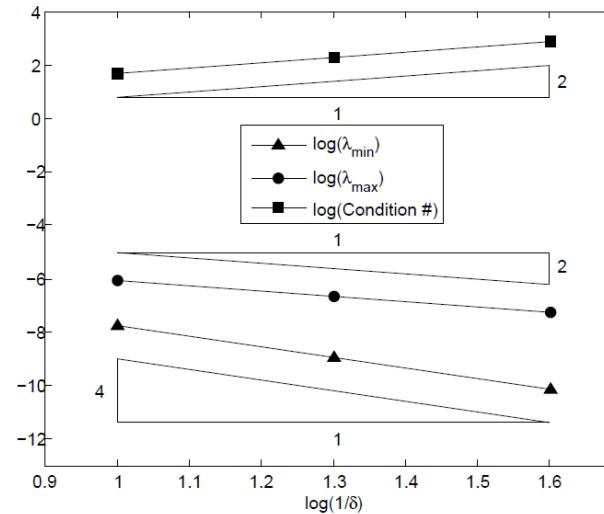
$1/h$	$1/\delta$	λ_{\min}	λ_{\max}	Condition #
50	10	2.95E-07	1.40E-05	4.77E+01
100	10	7.11E-08	3.54E-06	4.97E+01
200	10	1.75E-08	8.86E-07	5.05E+01

(b) Constant h , vary δ .

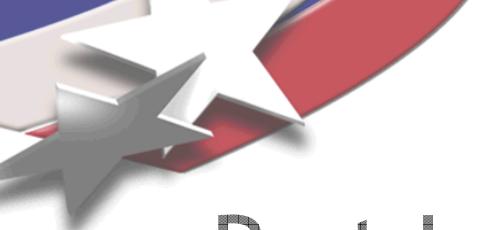
$1/h$	$1/\delta$	λ_{\min}	λ_{\max}	Condition #
200	10	1.75E-08	8.86E-07	5.05E+01
200	20	1.17E-09	2.22E-07	1.90E+02
200	40	7.63E-11	5.50E-08	7.21E+02



(a) Constant δ , vary h .



(b) Constant h , vary δ .



Part I

Codes and Applications

Part II

Discretizations and Numerical Methods

Part III

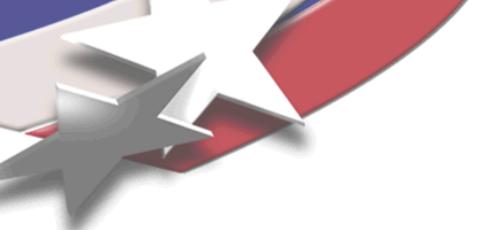
Peridynamic Finite Elements

Part IV

Nonlocal Substructuring

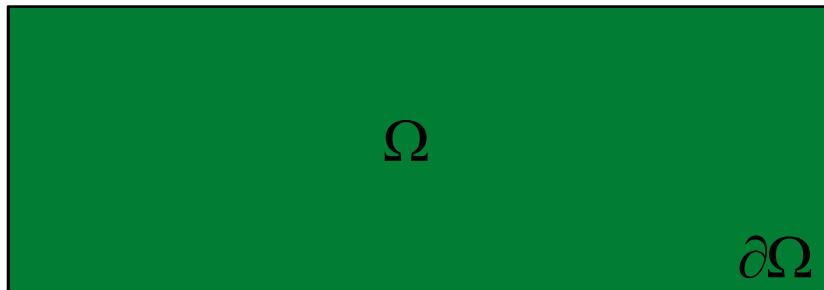
Why is Domain Decomposition (DD) Important?

- ❑ DD is the mathematical and computational technology allowing us to map our problems onto parallel computers
- ❑ Cut problem into pieces, assign each piece to a core.
- ❑ Example: $-\nabla^2 u(x) = f(x)$
 - ❑ Standard DD approach: $\kappa \approx (Hh)^{-1}$
 - ❑ h = mesh size, H = subdomain size
 - ❑ As # cores increases, H decreases, κ increases!
 - ❑ **Not scalable!**
- ❑ Ideal preconditioner
 - ❑ $\kappa \approx O(1)$
- ❑ Scalable preconditioner (weak scalability)
 - ❑ $\kappa \approx O((1+\log(H/h))^2)$
- ❑ **Nonlocal domain decomposition theory is critical path to effective utilization of leadership class supercomputers for peridynamic modeling and simulation.**



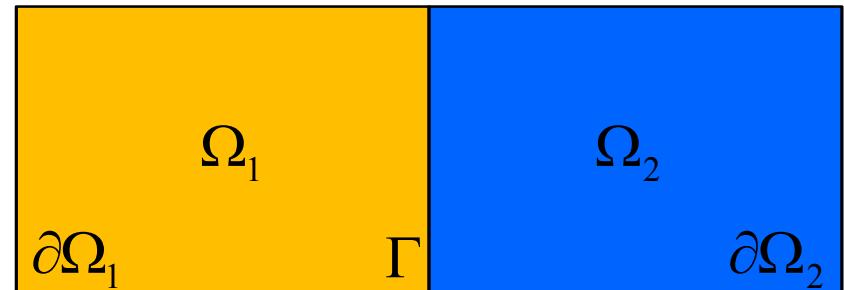
Review: Classical Substructuring

- One, two domain strong formulations



$$-\nabla^2 u(x) = f \quad \text{in } \Omega$$

$$u = 0 \quad \text{on } \partial\Omega$$



$$-\nabla^2 u_1(x) = f \quad \text{in } \Omega_1 \quad -\nabla^2 u_2(x) = f \quad \text{in } \Omega_2$$

$$u_1 = 0 \quad \text{on } \partial\Omega_1$$

$$u_2 = 0 \quad \text{on } \partial\Omega_2$$

One domain and two domain
formulations equivalent

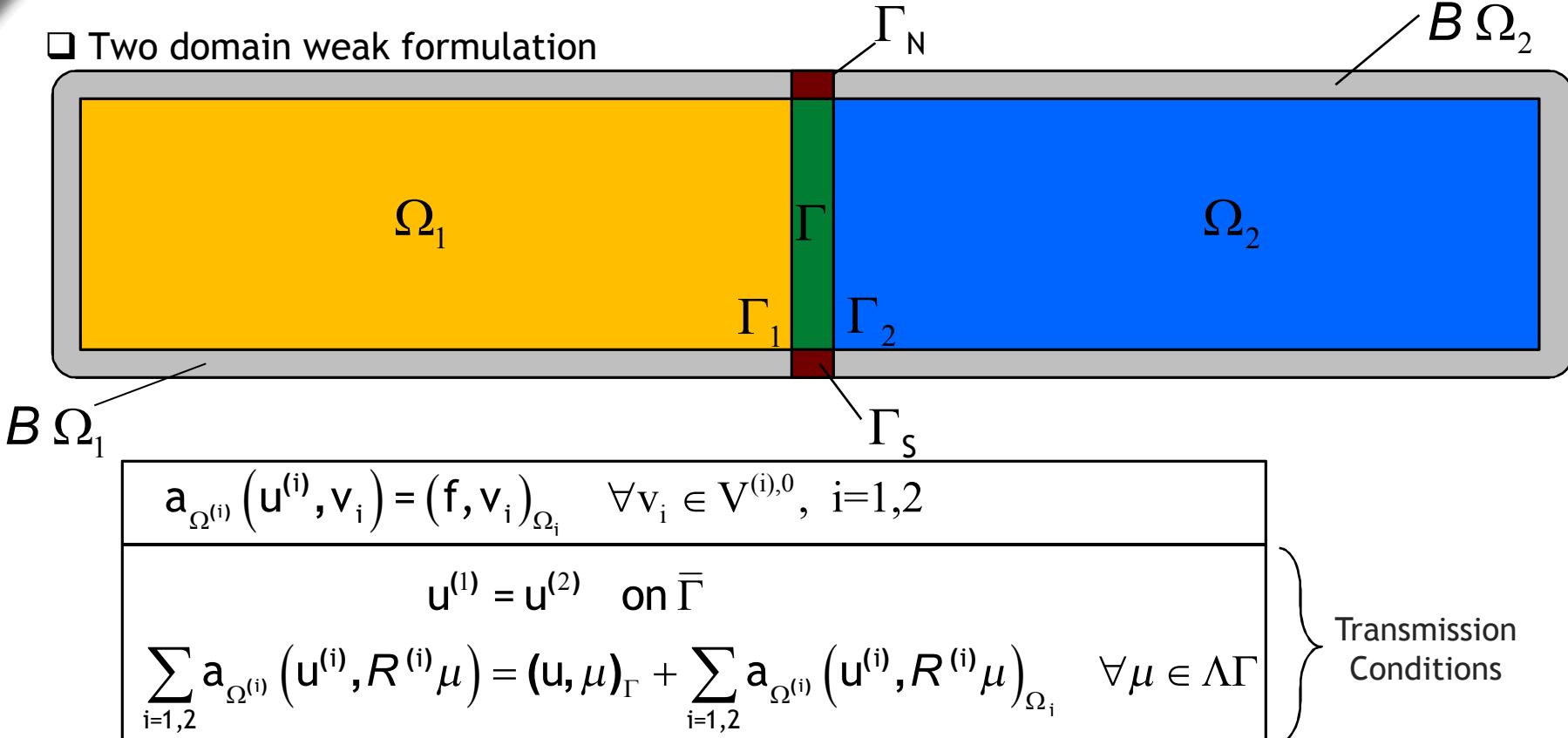
(assuming f sufficiently regular)

$$\begin{aligned} u_1 &= u_2 \quad \text{on } \Gamma \\ \frac{\partial u_1}{\partial n} &= -\frac{\partial u_2}{\partial n} \quad \text{on } \Gamma \end{aligned}$$

Transmission Conditions

Nonlocal Domain Decomposition

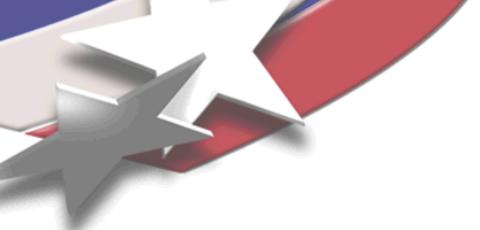
□ Two domain weak formulation



$$a_{\Omega^{(i)}}(u^{(i)}, v_i) = a_{\Omega_i}(u^{(i)}, v_i) + a_{\Gamma}(u, v)$$

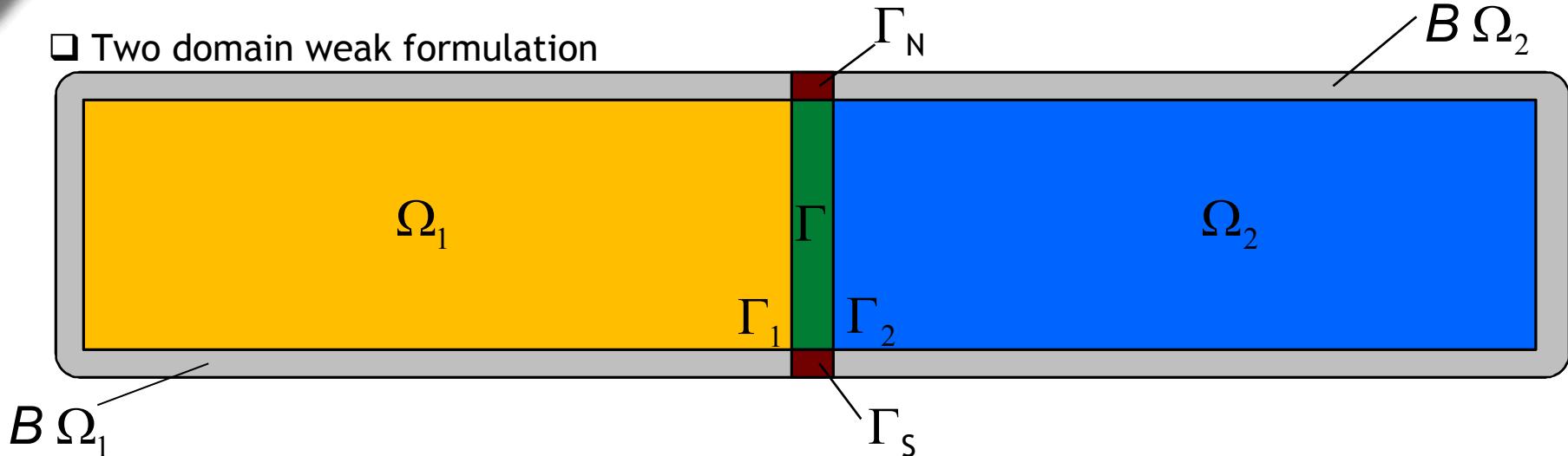
$$a_{\Omega_i}(u, v) = - \int_{\Omega_i} \left\{ \int_{\Omega^{(i)} \cup B\Omega^{(i)}} \chi_{\delta}(x - x') [u(x') - u(x)] dx' \right\} v(x) dx'$$

$$a_{\Gamma}(u, v) = - \int_{\Gamma} \left\{ \int_{\bar{\Omega}} \chi_{\delta}(x - x') [u(x') - u(x)] dx' \right\} v(x) dx'$$



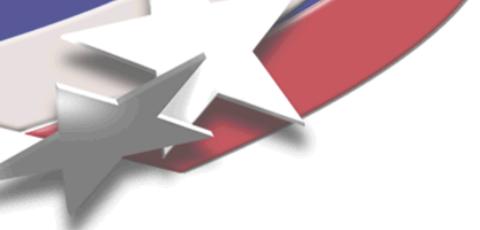
Nonlocal Domain Decomposition

- Two domain weak formulation



- Differences from classical (local) DD

- Interface region is volumetric (of width δ) to decompose domains
- Flux balance transmission condition also contains governing equation for interface region



Nonlocal Domain Decomposition

- Linear algebraic representation unchanged (interpretation different)
- Stiffness matrix takes familiar block arrowhead form

$$Ku = \begin{bmatrix} K_{11} & 0 & K_{13} \\ 0 & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{\Gamma\Gamma} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_{\Gamma} \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_{\Gamma} \end{bmatrix}$$

- Schur complement

$$S_{\Gamma}u_{\Gamma} = \tilde{f} \quad S_{\Gamma} = S^{(1)} + S^{(2)}$$

$$S^{(i)} = K_{\Gamma\Gamma}^{(i)} - K_{\Gamma i} (K_{ii})^{-1} K_{i\Gamma} \quad i=1,2$$

$$\tilde{f} = f_{\Gamma} - K_{\Gamma 1} (K_{11})^{-1} f_1 - K_{\Gamma 2} (K_{22})^{-1} f_2$$

1D Problem

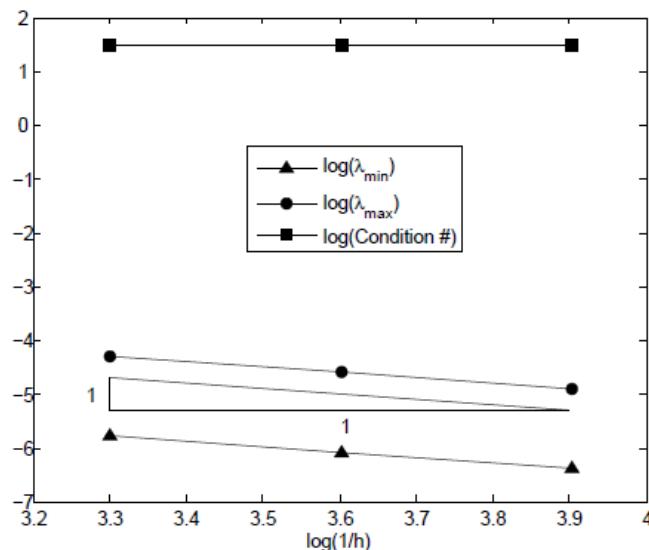
- Observations: $\kappa(S) \sim O(\delta^{-1})$, only weak h -dependence

(a) Fixed δ , vary h .

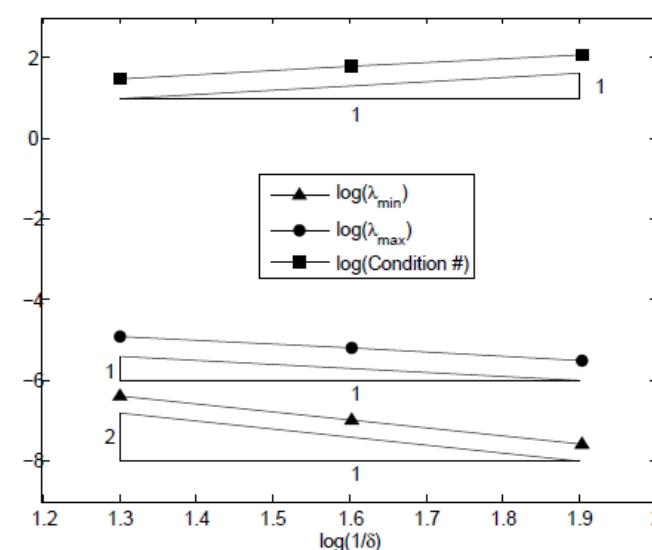
$1/h$	$1/\delta$	Piecewise Constant Shape Functions			Piecewise Linear Shape Functions		
		λ_{\min}	λ_{\max}	Condition #	λ_{\min}	λ_{\max}	Condition #
2000	20	1.64E-06	5.01E-05	3.06E+01	1.63E-06	4.97E-05	3.04E+01
4000	20	8.21E-07	2.50E-05	3.05E+01	8.21E-07	2.49E-05	3.03E+01
8000	20	4.12E-07	1.25E-05	3.04E+01	4.12E-07	1.25E-05	3.03E+01

(b) Fixed h , vary δ .

$1/h$	$1/\delta$	Piecewise Constant Shape Functions			Piecewise Linear Shape Functions		
		λ_{\min}	λ_{\max}	Condition #	λ_{\min}	λ_{\max}	Condition #
8000	20	4.12E-07	1.25E-05	3.04E+01	4.12E-07	1.25E-05	3.03E+01
8000	40	1.03E-07	6.26E-06	6.07E+01	1.03E-07	6.23E-06	6.04E+01
8000	80	2.57E-08	3.13E-06	1.22E+02	2.57E-08	3.11E-06	1.21E+02



(a) Constant δ , vary h .



(b) Constant h , vary δ .

2D Problem

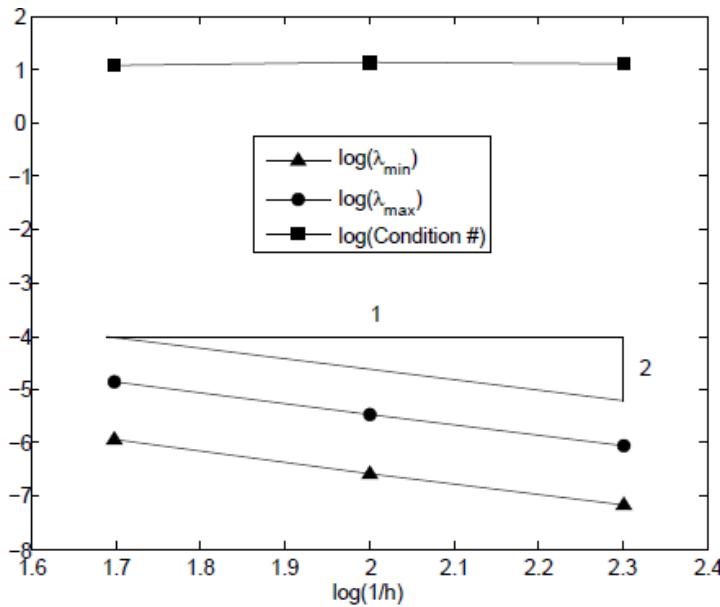
- Observations: $\kappa(S) \sim O(\delta^{-1})$, only weak h -dependence

(a) Constant δ , vary h .

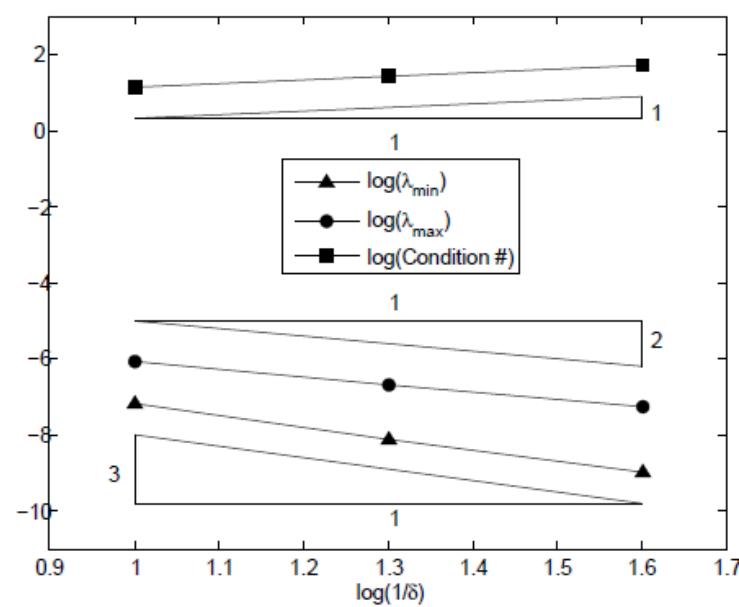
$1/h$	$1/\delta$	λ_{\min}	λ_{\max}	Condition #
50	10	1.14E-06	1.38E-05	1.21E+01
100	10	2.57E-07	3.48E-06	1.36E+01
200	10	6.61E-08	8.70E-07	1.32E+01

(b) Constant h , vary δ .

$1/h$	$1/\delta$	λ_{\min}	λ_{\max}	Condition #
200	10	6.61E-08	8.70E-07	1.32E+01
200	20	7.87E-09	2.18E-07	2.77E+01
200	40	1.09E-09	4.51E-08	4.96E+01



(a) Constant δ , vary h .



(b) Constant h , vary δ .

Summary

- ❑ Review of peridynamics; Relationship with classical theory
- ❑ Codes & Applications
 - ❑ Peridigm PDLAMMPS, Peridynamics in Sierra/Solid Mechanics EMU
 - ❑ Fracture, fragmentation, failure
- ❑ Discretizations & Numerical Methods
 - ❑ Particle-like discretization of strong form
- ❑ Peridynamic Finite Elements
 - ❑ Nonlocal weak forms
 - ❑ Conditioning results
- ❑ Peridynamic Domain Decomposition
 - ❑ Nonlocal Schur Complement
 - ❑ Conditioning results
- ❑ Codes, Papers: www.sandia.gov/~mlparks, mlparks@sandia.gov
- ❑ Thank you!