
SST/macro

Coarse-grained Hardware/Software
Architecture Simulation

SAND2011-6769P

SST/macro Team Members

• Joe Kenny – Application liaison and
application models, DUMPI trace library

• Gilbert Hendry – Simulator S/W and
machine models

• Khachik Sargsyan – Uncertainty
quantification of architecture simulation
results

• Curtis Janssen – speaker

Multi-scale machine and application model

for (int i=0; i<nblocks-1; i++) {
std::vector<sstmac::mpiapi::mpirequest_t> reqs;
// Begin non-blocking left shift of A blocks
sstmac::mpiapi::mpirequest_t req;
mpi()->isend(blocksize, datatype, myleft,

tag, world, req);
reqs.push_back(req);
mpi()->irecv(blocksize, datatype, myright,

tag, world, req);
reqs.push_back(req);
// Likewise for B shifting down ...
// Simulate computation with current blocks
compute_api()->compute(instructions);
mpi()->waitall(reqs, statuses);}

// Finish last block
compute_api()->compute(instructions);

Correctly identify causal
relationships

• Network topology
• Node configuration
• Noise/imbalance
• Bandwidth
• Latency
• Resource contention
Test changes to application, middleware, or
resource management
• Reordering code blocks, scheduling

effects, etc.

Relevance/impact of CECDC coarse-grained simulation efforts
Tightly Coupled Cores Nodes

Network Application

Play “what if” games
• Implementation effects for

communication routines
• Infinite performance in some components

to stress others.
Test novel programming models
• Fault-tolerant or fault-oblivious execution

models
• Alternatives to MPI, parallel runtime

designs
• Mixed programming models

SST/macro is driven with trace
files or a skeleton application

• Replay application traces in SST/macro

• Provide a skeleton application to the simulator
– Implemented with lightweight threads

– Allows extreme scale/application concept exploration

void sampleapp::run() {
sstmac::mpicomm world = mpi()->comm_world();
sstmac::timestamp start = mpi()->init();
const mpiid root(0);
mpi()->bcast(1, sstmac::mpitype::mpi_double,

root, world);
sstmac::timestamp done = mpi()->finalize();}

SST/macroSST/macro

DUMPI: The MPI tracer
• PMPI link-time library for trace file generation
• Full fingerprints for all MPI-2 functions
• Can add annotations
• Can selectively control profiling

– Globally/statically with configuration file
– Locally/dynamically with function calls

• Writes a (reasonably compact) binary trace file
• Negligible runtime overhead
• Reasonably portable C code

libdumpilibdumpi commoncommon libundumpilibundumpi

MPI type identifiers
MPI function identifiers

Trace file IO
Timers

Performance counters

MPI type identifiers
MPI function identifiers

Trace file IO
Timers

Performance counters

PMPI bindings
Type mapping

Call tree tracing
(gcc/icc)

PMPI bindings
Type mapping

Call tree tracing
(gcc/icc)

Parsing of trace filesParsing of trace files

Example of data output by DUMPI

(converted using dumpi2ascii)

MPI_Allgatherv entering at walltime 1274314439.744512000, \
cputime 0.201756000 seconds in thread 0.

int commsize=16

int sendcount=1024

MPI_Datatype sendtype=14 (MPI_DOUBLE)

int recvcounts[16]=[1024, 1024, 1024, 1024, 1024, 1024, 1024, \
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024]

int displs[16]=[0, 1024, 2048, 3072, 4096, 5120, 6144, 7168, \
8192, 9216, 10240, 11264, 12288, 13312, 14336, 15360]

MPI_Datatype recvtype=14 (MPI_DOUBLE)

MPI_Comm comm=2 (MPI_COMM_WORLD)

MPI_Allgatherv returning at walltime 1274314439.749554000, \
cputime 0.202159000 seconds in thread 0.

Skeleton Apps in Fortan/C/C++

• Native messaging library interfaces

• Minor modification to run under SST/Macro

– Replace native header

– Rename main()

• Compute blocks and memory allocation abstracted out by hand or using ROSE compiler

• Use preprocessor to maintain single source

Unified skeleton and mini-application

Rename main

Include SST/macro header

Abstract out computation

Avoid large data allocations

program main

#ifdef SSTMAC_SKELETON
subroutine skeleton_main()

#else
program main

#endif

#include <mpi.h>

#ifdef SSTMAC_SKELETON
include <sstmac/mpif.h>
include <sstmac/processor.h>
#else
include <mpif.h>
#endif

#ifdef SSTMAC_SKELETON
sstmac_compute(param);

#else
call do_computation(data)

#endif

call do_computation(data)

array = new double[ndata];

#ifdef SSTMAC_SKELETON
array = 0;

#else
array = new double[ndata];

endif

ASCR Execution Models Projects

• Goal: demonstrate ability to quantify impact of execution model
choice on performance, power, etc. Develop methodology for
execution model co-design.

• Three projects:
– Study limitations of current execution models (ISI/LBNL)
– “Top-down” study of execution model co-design: Develop

definitions and formalism for execution models. Study full
applications and model performance. (PNNL/IU)

– “Bottom-up” study of execution model co-design: Use simulation
to evaluate execution models and design applications
(SNL/LBNL/IU)

• AMR will be initial app for all projects
– Challenging problem for exascale
– Directly relevant to Combustion ECDC
– Hope to heavily leverage the CECDC work

