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results
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Multi-scale machine and application model

for (int i=0; i<nblocks-1; i++) {
std::vector<sstmac::mpiapi::mpirequest_t> reqs;
// Begin non-blocking left shift of A blocks
sstmac::mpiapi::mpirequest_t req;
mpi()->isend(blocksize, datatype, myleft,

tag, world, req);
reqs.push_back(req);
mpi()->irecv(blocksize, datatype, myright,

tag, world, req);
reqs.push_back(req);
// Likewise for B shifting down ...
// Simulate computation with current blocks
compute_api()->compute(instructions);
mpi()->waitall(reqs, statuses);}

// Finish last block
compute_api()->compute(instructions);

Correctly identify causal 
relationships

• Network topology
• Node configuration
• Noise/imbalance
• Bandwidth
• Latency
• Resource contention
Test changes to application, middleware, or 
resource management
• Reordering code blocks, scheduling 

effects, etc. 

Relevance/impact of  CECDC coarse-grained simulation efforts
Tightly Coupled Cores Nodes

Network Application

Play “what if” games
• Implementation effects for 

communication routines
• Infinite performance in some components 

to stress others.
Test novel programming models
• Fault-tolerant or fault-oblivious execution 

models
• Alternatives to MPI, parallel runtime 

designs
• Mixed programming models



SST/macro is driven with trace
files or a skeleton application

• Replay application traces in SST/macro

• Provide a skeleton application to the simulator
– Implemented with lightweight threads

– Allows extreme scale/application concept exploration

void sampleapp::run() {
sstmac::mpicomm world = mpi()->comm_world();    
sstmac::timestamp start = mpi()->init();
const mpiid root(0);
mpi()->bcast(1, sstmac::mpitype::mpi_double,

root, world);
sstmac::timestamp done = mpi()->finalize();}

SST/macroSST/macro



DUMPI:  The MPI tracer
• PMPI link-time library for trace file generation
• Full fingerprints for all MPI-2 functions
• Can add annotations
• Can selectively control profiling

– Globally/statically with configuration file
– Locally/dynamically with function calls

• Writes a (reasonably compact) binary trace file
• Negligible runtime overhead
• Reasonably portable C code

libdumpilibdumpi commoncommon libundumpilibundumpi
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Example of  data output by DUMPI

(converted using dumpi2ascii)

MPI_Allgatherv entering at walltime 1274314439.744512000,        \
cputime 0.201756000 seconds in thread 0.

int commsize=16

int sendcount=1024

MPI_Datatype sendtype=14 (MPI_DOUBLE)

int recvcounts[16]=[1024, 1024, 1024, 1024, 1024, 1024, 1024,    \
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024]

int displs[16]=[0, 1024, 2048, 3072, 4096, 5120, 6144, 7168,     \
8192, 9216, 10240, 11264, 12288, 13312, 14336, 15360]

MPI_Datatype recvtype=14 (MPI_DOUBLE)

MPI_Comm comm=2 (MPI_COMM_WORLD)

MPI_Allgatherv returning at walltime 1274314439.749554000,       \
cputime 0.202159000 seconds in thread 0.



Skeleton Apps in Fortan/C/C++

• Native messaging library interfaces

• Minor modification to run under SST/Macro

– Replace native header 

– Rename main() 

• Compute blocks and memory allocation abstracted out by hand or using ROSE compiler

• Use preprocessor to maintain single source



Unified skeleton and mini-application

Rename main

Include SST/macro header

Abstract out computation

Avoid large data allocations

program main

#ifdef SSTMAC_SKELETON
subroutine skeleton_main()

#else 
program main

#endif

#include <mpi.h>

#ifdef SSTMAC_SKELETON
#  include <sstmac/mpif.h>
# include <sstmac/processor.h>
#else 
#  include <mpif.h>
#endif

#ifdef SSTMAC_SKELETON
sstmac_compute(param);

#else 
call do_computation(data)

#endif

call do_computation(data)

array = new double[ndata];

#ifdef SSTMAC_SKELETON
array = 0;

#else 
array = new double[ndata];

endif



ASCR Execution Models Projects

• Goal: demonstrate ability to quantify impact of  execution model 
choice on performance, power, etc. Develop methodology for 
execution model co-design.

• Three projects:
– Study limitations of  current execution models (ISI/LBNL)
– “Top-down” study of  execution model co-design: Develop 

definitions and formalism for execution models. Study full 
applications and model performance. (PNNL/IU)

– “Bottom-up” study of  execution model co-design: Use simulation 
to evaluate execution models and design applications 
(SNL/LBNL/IU)

• AMR will be initial app for all projects
– Challenging problem for exascale
– Directly relevant to Combustion ECDC
– Hope to heavily leverage the CECDC work 


