@ _'f OMBLUSTION EXASCATLI

CO-DES | SATENEE | R

SST/macro

Coarse-grained Hardware/Software
Architecture Stmulation

Y
(=
R0

& OAK . — i £X A
'l - AK Sandia STANFORD 2
’ mnm‘ﬁlﬂg}gﬁ ‘5‘4”"'?=I" \RL# @ e S % UNIVERSITY [t

SST/macro Team Members

Joe Kenny — Application liaison and
application models, DUMPI trace library

Gilbert Hendry — Stmulator S/W and
machine models

Khachik Sargsyan — Uncertainty
quantification of architecture simulation
results

Curtis Janssen — speaker

2 ok AK - - ' XAg
e > ¥=¢. a1m=1 OAK =0 Swdo (&) STANFORD IXF*As
L‘ - .I“,PS,:&IETP{’ ';;A’ MNR=L *‘\l{ IDGE [\"__3‘1__] e %‘J R UNIVERSITY \T’ (9

Multi-scale machine and application model

for (int i=0; i<nblocks-1; i++) {
std::vector iapi::mpireq _t>regs;
// Begin non-blocking left shift of A blocks
sstmac::mpiapi::mpirequest_treq;
mpi()->isend(blocksize, datatype, myleft,

tag, world, req);

regs.push_back(req);
mpi()->irecv(blocksize, datatype, myright,

tag, world, req);
regs.push_back(req);
// Likewise for B shifting down ...
// Simulate computation with current blocks
_api() i i
mpi()->waitall(regs, statuses);}

_api()

Network Application
Tightly Coupled Cores Nodes
Correctly identify causal Play “what if”’ games

relationships * Implementation effects for

* Network topology communication routines
* Node configuration * Infinite performance in some components
* Noise/imbalance to stress others.
* Bandwidth Test novel programming models
 Latency « Fault-tolerant or fault-oblivious execution
* Resource contention models
Test changes to application, middleware, or » Alternatives to MPI, parallel runtime
resource management designs
* Reordering code blocks, scheduling * Mixed programming models

effects, etc.

-

_ -~ |
crecced] a Lok 7% Ao= OAK Sandia STANFORD 3IEXAs
. \L\‘ u‘ ; "”""‘ﬂlgm ";ié”l?:!- ‘RIDGE @] s R UNIVERSITY (4

e AT TR —— [—rY e —

SST/macro 1s driven with trace
files or a skeleton application

* Replay application traces in SST/macro

« Provide a skeleton application to the simulator
— Implemented with lightweight threads

void sampleapp::run() {

sstmac::mpicomm world = mpi()->comm_world();
sstmac::timestamp start = mpi()->init();

const mpiid root(0);

mpi()->bcast(1, sstmac::mpitype::mpi_double,

root, world);
sstmac::timestamp done = mpi()->finalize();}

— Allows extreme scale/application concept exploration

a P i) -
sl-ra‘l\;\' | . =, G=¢ - ()c\l\ Smrha E STANFORD 1“4‘4‘.‘ @
L |2 LosAamos SPNREL ¥rince (g, CGr R SIANRY 5° 4

CreTr |
EnuEve.Lan SN

DUMPI: The MPI tracer

* PMPI link-time library for trace file generation
» Full fingerprints for all MPI-2 functions
* (Can add annotations

* Can selectively control profiling
— Globally/statically with configuration file
— Locally/dynamically with function calls

» Writes a (reasonably compact) binary trace file
* Negligible runtime overhead
* Reasonably portable C code

libdumpi common libundumpi
PMPI bindings Ml]\?/IIPf{ltyr;'e id?éltifi?ffs
Type mapping nction identifiers '
Call tree tracing Tralsg file IO Parsing of trace files
(gcc/1cc) 1mers
Performance counters

Pt - ’ ? XAg
5 lmame dawem ¥R, @E. Gr R Uy Y O
L_‘ ' !:9%&'5.!3395 .\'\?;-::’hl?-- :RJIDI(’L m Laboratories R UNIVERSITY \T/ 'v""

ENT, TR0

Example of data output by DUMPI

(converted using dumpi2ascii)

MPI_Allgatherv entering at walltime 1274314439.744512000, \
cputime 0.201756000 seconds in thread 0.

int commsize=16
int sendcount=1024
MPI_Datatype sendtype=14 (MPI_DOUBLE)

int recvcounts[16]=[1024, 1024, 1024, 1024, 1024, 1024, 1024, \
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024]

int displs[16]=[0, 1024, 2048, 3072, 4096, 5120, 6144, 7168, \
8192, 9216, 10240, 11264, 12288, 13312, 14336, 15360]

MPI1_Datatype recvtype=14 (MPl|_DOUBLE)
MPI_Comm comm=2 (MPI_COMM_WORLD)

MPI_Allgatherv returning at walltime 1274314439.749554000, \
cputime 0.202159000 seconds in thread 0.

- Y
..... o] A | @ = |, OAK =\ Sondi 9 STANFORD 3%%As @
i_ v !_’\9!':&'_?1'!}9!: ';;,g:’ Me=L \l{ I.”.('I (EEIH'. P @E‘J R UNIVERSITY n (L

. 0%

Skeleton Apps in Fortan/C/C++

* Native messaging library interfaces
* Minor modification to run under SST/Macro
— Replace native header
— Rename main()
« Compute blocks and memory allocation abstracted out by hand or using ROSE compiler
» Use preprocessor to maintain single source

- A = _ _ . EXA
| p L T OAK Sand : STANFORD 3EXAs @
el [ClotAlamos o BMREL ¥Ripce o R GUNSE Sy @

AT R4S

Unified skeleton and mini-application

Rename main #ifdef SSTMAC_SKELETON
subroutine skeleton_main()

program main :’> #else
program main

#endif

Include SST/macro header ,
#ifdef SSTMAC_SKELETON

include <sstmac/mpif.h>
#include <mpi.h> |:'> # include <sstmac/processor.h>

#else

include <mpif.h>

#endif

Abstract out computation
#ifdef SSTMAC_SKELETON

sstmac_compute(param);

; #else
call do_computation(data) :[> call do_computation(data)
#endif

Avoid large data allocations
#ifdef SSTMAC_SKELETON

array = 0;
array = new double[ndata]; :'> #else
array = new double[ndata];

endif

Pa =] _
tlll'l-\-l\;\- i . =, @-é’ - ()c\l\ Sandia k& H'I \ \ }l)R I) fd“s @
ey | Clolaamos f BMREL ¥R MER., G R OSSN S

%,

ASCR Execution Models Projects

Goal: demonstrate ability to quantify impact of execution model
choice on performance, power, etc. Develop methodology for
execution model co-design.
Three projects:

— Study limitations of current execution models (ISI/LBNL)

— “Top-down” study of execution model co-design: Develop
definitions and formalism for execution models. Study full
applications and model performance. (PNNL/IU)

— “Bottom-up” study of execution model co-design: Use simulation
to evaluate execution models and design applications
(SNL/LBNL/IU)

AMR will be 1nitial app for all projects
— Challenging problem for exascale
— Directly relevant to Combustion ECDC
— Hope to heavily leverage the CECDC work

P

i & :
=" e NR= OAK () i 3 STANFORD EXAs @
| losAamos o BMNREL ¥rince (), Cr R SN 8§°

W

