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Humanity’s Top 10 Problems for the Next 50 Years
- Richard E. Smalley 2003
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Humanity’s Top 10 Problems for the Next 50 Years
- Richard E. Smalley 2003
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Breaking the Biological Barriers to Cellulosic Ethanol
A Joint Research Agenda

fuels Workshop
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Biomass Feedstocks
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Biofuels: A Solution to the Energy Problem?
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Cyanobacteria: An Evolutionary Perspective
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1. Photosynthesis: source of cellular energy (sunlight)

2. Carbon Fixation: carbon source = CO, (greenhouse gas)
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Why Cyanobacteria?

Transesterification
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Why Cyanobacteria?

Cyanobacteria

Genetic manipulation is difficult

Multiple membrane barriers

Genetic manipulation is straightforward

Naturally transformable (model strains)

Few genetic tools available

Genetic tools developed since 1980’s

Gene expression and gene knockouts
have proven to be difficult

Many successful examples of genetic
manipulation and multiple mutations
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Genetic Engineering: Tailor-design biocatalysts for fuel production
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Downstream Processing: Fuel Recovery

Eukaryotic Algae
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Why Not Cyanobacteria?

Possible Advantages of Cyanobacteria-Based Fuel

1. Fast growth rates compared to plants (similar to algae)
2. Harvest energy from sunlight (renewable)

3. Reduce greenhouse gas emissions (carbon fixation)

4

. Fuel secretion - simplified downstream processing and continuous

cultivation (reduced operational costs)
5. Potential for greater fuel production and other desirable traits for large
scale processing (genetic engineering)
* Prevent ‘escape’ of GMO’s
* Reduce contamination
« Improve rate of photosynthesis

* Increase light penetration

« Enhanced CO, uptake

« Temperature resistance
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Engineering Cyanobacteria for Biofuel Production

Amount

Fuel Product (/L) Cyanobacterium Reference
0.23 Synechococcus elongatus PCC 7942 Deng, 1999
Ethanol 0.55 Synechocystis sp. PCC 6803 Dexter, 2009

Synechocystis sp. PCC 6803; Anabaena sp.

~25 Algenol (2010 Patent)

PCC 7120

0.016 Synechococcus elongatus PCC 7942 Sakai, 1997
Ethylene

=5 Synechococcus elongatus PCC 7942 Takahama, 2003
Isobutyraldehyde / | 1.1/ .
Isobutanol 045 Synechococcus elongatus PCC 7942 Atsumi, 2009
Isoprene ~0.0005 | Synechocystis sp. PCC 6803 Lindberg, 2010

0.007 Synechocystis sp. PCC 6803; Kaczmarzyk, 2010

Synechococcus elongatus PCC 7942

Free fatty acids

0.141 Synechocystis sp. PCC 6803; Synthetic Genomics
' Synechococcus elongatus PCC 7942 (2009 Patent)
~ Synechococcus sp. PCC 7002; Joule Unlimited
Acllelics Bl Thermosynechococcus elongatus BP-1 (2010 Patent)
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Genetic Engineering of Cyanobacteria to Produce FFA

FFA
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FFA Production: Effect on Photosynthesis

Pulse Amplitude Modulation (PAM) Fluorescence
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FFA Production: Effect on Photosynthetic Pigments
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FFA Production: Effect on Photosynthetic Pigments

OD (normalized)
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Hyperspectral Confocal Fluorescence Imaging
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FFA Production: Effect on Thylakoid Membranes
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Table 1 Selected bioactivites of various saturated and unsaturated FFAs

FFA Toxicity

Activity

Fatty acid(s)

Key reference

Antimicrobial

Anti-algal

Antibacterial (Gram-negative)

Antibacterial (Gram-positive)

CR8:0, C10:0, C12:0

C18:4n-3

C18:1, C18:2, C18:4, C18:5, C20:4, C20:5,
C22:6

C18:2n-6, C18:3n-3

C16:0, C18:0, C18:1n-9, C18:2, C18:3n-3,
C20:5n-3, C22:6n-3

C16:0, Cl6:1n-7. Cl6:1n-7¢, Cl16:4n-3, C18:0,

CI8:In-9, C18:2n-6, C18:3n-3, C18:4n-3,
C20:0, C20:1n-9, C20:4n-6, C20:5n-3,
C22:0, C22:1n-9, C22:6n-3

C20:4n-6

C10:0, C12:0
C10:0, C12:0, C14:0, C16:1

C15:0, Cl16:0, C17:0, C18:0, C18:1. C18:4,
C20:4, C20:5, C22:0, C22:4; C22:5

C8:0, C10:0, C12:0, C14:0, C16:0,
C18:0,C18:1. Cl18:2; Cl18:3

C10:0, C12:0, C14:0, C14:1, C16:0,
Cl6:1::C18:1, €18:2; €183

C&0; €940..C10:0, C11:0; €12:0,.¢13:0,
C14:0, Cl14:1n-5, Cl16:1n-7, C16:1n-7t,
CIR:2n-6, C18:3n-3, C18:3n-6, C20:1n-9,
C20:3n-6, C20:3n-3, C20:4n-6, C22:2n-6,
C22:3n-3, C20:4n-6, C22:6n-3

Cl6:1n-10

C15:0, C18:1, C18:4, C20:4, C20:5,
C22:0,0C22:4,.C22:5

23 Desbois AP and Smith VJ. (2010) Appl. Microbiol. Biotechnol.. 85: 1629-1642.

MeceGrattan et al. (1976)
Kakisawa et al. (1988)
Arzul et al. (1995)

Ikawa et al. (1997)
Wu et al. (2006)

Alamsjah et al. (2008)

Knapp and Melly (1986)
Bergsson et al. (1998)
Bergsson et al. (1999)
BenkendorfT et al. (2005)

Galbraith et al. (1971)
Kabara et al. (1972)

Feldlaufer et al. (1993)

Wille and Kydonieus (2003)

Benkendorff et al. (2005)
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FFA Toxicity: Effect of Saturated FFA
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FFA Toxicity: Effect of Unsaturated FFA
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Unsaturated FFA
(linolenic acid)

Oxidation of Unsaturated FFA
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Physiological Effects Caused by Genetic Engineering?

FFA
Synechococcus elongatus PCC 7942 A
P i 2N
/cl ! AN
/ \\\
I
1 002 3 PGA —— PEP —> PYR FFA T

| o
! RuBP l T >l< L
N Calvin cell and |
i1 Cycle Acetyl-CoA —— acyl-ACP — thylakoid 1
\ / \ membranes 1]

§

| : FGP TCA cycle carotenoids 1
|

! PPP ——| ™= co, T
1! Glc —> cell wall T
1! glycogen amino acids h

nucleic acids
\ chlorophyll 1]
\ phycobiliproteins 7/

— . - o . . . o O e O O T O T D B B B B B M M B B e e e e e e e

7942: Wild type
SEO1: Knockout of acyl-ACP synthetase

SEO02: Knockout of acyl-ACP synthetase; expression of thioesterase (‘tesA from E. coli) __|

== ) Sandia
National
2 laboratories

27



Changes in FA Composition of Membranes
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3. Sarcina M, Tobin MJ, Mullineaux CW. (2001) J. Biol. Chem. 276(50): 46830-4.
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Cell Death and Reactive Oxygen Species
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Coll NS, Epple P, Dangl JL. (2011) Cell Death & Differentiation. 18: 1247-56.




RNA-seq

Is FFA-induced cell death regulated by a programmed cell death mechanism?

Are there any natural defense mechanisms to cope with increased ROS?

Are there any active transporters involved in the export of FFA?

FFA production is highest in the stationary phase; how is this

regulated?

» Possible correlation with high lipid production in eukaryotic algae

under stress
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Packer A, Li Y, Andersen T, Hu Q, Kuang Y, Sommerfeld M. (2011) Bioresource Technology. 102: 111-7.
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FFA Biosynthesis Genes from the Green Alga:

Chlamydomonas reinhardtii

1: acetyl-CoA carboxylase
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Fat1 from Chlamydomonas reinhardtii

FFA production
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Cyanobacteria: Toxicity of Biofuels

Cyanobacterial strains:

*  Synechococcus elongatus PCC 7942
*  Synechocystis sp. PCC 6803

»  Synechococcus sp. PCC 7002
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Conclusions and Future Work

Conclusions

» Engineered cyanobacteria are promising candidates for biofuel production

» Characterization and an understanding of the effects of genetic manipulation
are essential for strain development

« Saturated fatty acids are advantageous for biodiesel production
« SFA does not affect cell growth, pigments, or photosynthesis
« SFA have greater oxidative stability

Future work

« |dentify an acyl-ACP thioesterase for the preferential release of SFA

* Investigate the physiological effects of other biodiesel precursors (i.e. long
chain alkanes or alcohols)

 Additional metabolic engineering to enhance production of biodiesel feedstock
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Adaptive Evolution: FFA Tolerance

% Dead Cells

w
U

w
=

N
Ul

N
o

[N
Ul

10

SYTOX Staining

-8-/942

| —-&=SEO2
| =A-SEO2a

100

200 300 400 500

Time (h)

% ROS(+) Cells

~l
o

(o]
o

w
o

B
o

w
o

o]
o

[y
o

o

ROS Staining

| —4=SEO2
| —A-5E02a

-8-7942

600




