

1 **Hydrometeorological sensitivities of net ecosystem carbon dioxide**
2 **and methane exchange of an Amazonian palm swamp peatland**

3
4 T.J. Griffis^{1*}, D.T. Roman², J.D. Wood³, J. Deventer^{1,4}, L. Fachin⁵, J. Rengifo⁵, D. Del Castillo⁵, E.
5 Lilleskov⁶, R. Kolka², R.A. Chimner⁷, J. del Aguila⁵, C. Wayson⁸, K. Hergoualc'h⁹, J. M. Baker¹⁰, H.
6 Cadillo-Quiroz¹¹ and D.M. Ricciuto¹²

7
8 ¹Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA; ²USDA Forest Service –
9 Northern Research Station Grand Rapids, MN, USA; ³School of Natural Resources, University of Missouri, Columbia,
10 MO, USA; ⁴University of Goettingen, Bioclimatology, Goettingen, Germany; ⁵Instituto de Investigaciones de la
11 Amazonia Peruana, Iquitos, Peru; ⁶USDA Forest Service, Houghton, Michigan, USA; ⁷Michigan Technological
12 University, Houghton, Michigan, USA; ⁸USDA Forest Service, International Programs, Washington, D.C., USA;
13 ⁹Center for International Forest Research, Jalan, Situgede, Indonesia, and ¹⁰USDA-ARS and University of Minnesota,
14 Saint Paul, MN, USA, ¹¹Arizona State University, Tempe, AZ, USA; ¹²Oak Ridge National Lab, TN, USA.

15
16
17
18
19
20
21
22
23
24
25 *corresponding author

26
27 Timothy J. Griffis
28 Dept. of Soil, Water, and Climate
29 University of Minnesota-Twin Cities
30 timgriffis@umn.edu

42 **Abstract**

43 Tropical peatlands are a major, but understudied, biophysical feedback factor on the atmospheric
44 greenhouse effect. The largest expanses of tropical peatlands are located in lowland areas of
45 Southeast Asia and the Amazon basin. The Loreto Region of Amazonian Peru contains ~63,000
46 km² of peatlands. However, little is known about the biogeochemistry of these peatlands, and in
47 particular, the cycling of carbon dioxide (CO₂) and methane (CH₄), and their responses to
48 hydrometeorological forcings. To address these knowledge gaps, we established an eddy
49 covariance (EC) flux tower in a natural palm (*Mauritia flexuosa* L.f.) swamp peatland near Iquitos,
50 Peru. Here, we report ecosystem-scale CO₂ and CH₄ flux observations for this Amazonian palm
51 swamp peatland over a two-year period in relation to hydrometeorological forcings. Seasonal and
52 short-term variations in hydrometeorological forcing had a strong effect on CO₂ and CH₄ fluxes.
53 High air temperature and vapor pressure deficit (VPD) exerted an important limitation on
54 photosynthesis during the dry season, while latent heat flux appeared to be insensitive to these
55 climate drivers. Evidence from light-response analyses and flux partitioning support that
56 photosynthetic activity was downregulated during dry conditions, while ecosystem respiration
57 (RE) was either inhibited or enhanced depending on water table position. The cumulative net
58 ecosystem CO₂ exchange indicated that the peatland was a significant CO₂ sink ranging from -465
59 (-279 to -651) g C m⁻² y⁻¹ in 2018 to -462 (-277 to -647) g C m⁻² y⁻¹ in 2019. The forest was a
60 CH₄ source of 22 (20 to 24) g C m⁻² y⁻¹, similar in magnitude to other tropical peatlands and larger
61 than boreal and arctic peatlands. Thus, the annual carbon budget of this Amazonian palm swamp
62 peatland appears to be a major carbon sink under current hydrometeorological conditions.

63

64

65 **1. Introduction**

66 Tropical peatlands are long-term carbon dioxide (CO₂) sinks, representing about 88.6 Pg of soil
67 carbon or nearly 20% of global peat carbon (Leifeld and Menichetti, 2018; Page et al., 2011).
68 However, they are also a methane (CH₄) source (Frankenberg et al., 2005; Pangala et al., 2017;
69 Saunois et al., 2017), representing an important biophysical feedback on Earth's radiative forcing
70 (Kirschke et al., 2013). Furthermore, when they are disturbed, and especially when drained for
71 agriculture, they can become a major CO₂ source (Lilleskov et al., 2019). It is important, therefore,
72 to understand the role that intact tropical peatlands play in terms of their net biogeochemical
73 forcing on climate.

74 There is evidence for an increase in global CH₄ mixing ratios (i.e. 6.7 ppb/year from 2009 to 2013
75 and 7.5 ppb/year from 2014 to 2017) with a pronounced increase in equatorial zones (*Nisbet et al.*,
76 2016; 2019). Global top-down and ¹³C isotope analyses suggest that this increasing trend has
77 largely been driven by changes in natural biogenic sources in response to warmer and wetter
78 tropical conditions (Nisbet et al., 2016; Saunois et al., 2017). However, large uncertainties persist
79 in these source estimates because of a lack of CH₄ observations in the tropics (Knox et al., 2019;
80 Saunois et al., 2020, 2017), and it is difficult to rule out other factors such as increased
81 anthropogenic emissions or decreased CH₄ sink strength (Montzka et al., 2011; Schaefer et al.,
82 2016).

83 The CO₂ budgets for Amazonian forests have been reported to range from large sinks (Grace et
84 al., 1995; Hutyra et al., 2007; Kiew et al., 2018; Malhi et al., 1998) to large sources (Hutyra et al.,
85 2007; Saleska et al., 2003) depending on forest type, disturbance history, climate, and
86 methodological approaches related to eddy covariance (EC) data filtering and gap-filling. Some
87 key patterns that have emerged indicate that the net uptake of CO₂ can either increase or decrease

88 during the dry (“greening”) season (Hutyra et al., 2007; Malhi et al., 1998; Restrepo-Coupe et al.,
89 2013) and that some systems can switch to an annual source resulting from increased ecosystem
90 respiration (RE) during the wet season (Saleska et al., 2003). The majority of these previous studies
91 have examined the CO₂ budgets of evergreen forests growing on mineral soils. To our knowledge,
92 there have been no EC-based studies that have examined the CO₂ or CH₄ budget of palm swamp
93 peatlands, or any peatland, within the Amazonian basin. There is an important need, therefore, for
94 increasing capacity for direct CO₂ and CH₄ flux observations to improve process understanding
95 and to reduce the uncertainties of CO₂ and CH₄ budgets in Amazonian peatlands. Quantifying and
96 understanding the energy balance characteristics of these systems is also needed to help diagnose
97 and model how hydrometeorological forcings influence their carbon budgets.

98 The largest expanses of tropical peatlands are located in lowland areas of Southeast Asia, the
99 Congo Basin, and the Amazon basin (Dargie et al., 2017; Gumbrecht et al., 2017; Page et al., 2011).
100 The Loreto Region of Amazonian Peru is comprised of about 63,000 km² of peatlands within the
101 Pastaza-Marañon Foreland Basin (PMFB) (Draper et al., 2014). However, the extent of low
102 elevation peatlands in Peru has only recently been documented, and little is known about their
103 biogeochemistry and ecophysiology. To help address these knowledge gaps, we established an EC
104 flux tower in a low disturbance palm swamp peatland in the Quistococha Forest Park (AmeriFlux
105 Site PE-QFR, <https://ameriflux.lbl.gov/sites/siteinfo/PE-QFR>), near Iquitos, Peru in spring 2017
106 in collaboration with the Instituto de Investigaciones de la Amazonia Peruana (IIAP). The
107 objectives of this current research were to: 1) Present the first measurements of energy fluxes and
108 net ecosystem CO₂ and CH₄ exchange from an Amazonian palm swamp peatland; 2) Examine how
109 the biophysical controls and magnitudes of these fluxes differ from other Amazonian forests; and

110 3) Assess if these ecosystems have a net radiative cooling effect on climate when considering the
111 contemporary CO₂ and CH₄ balance and global warming potentials (GWP).

112 **2. Methodology**

113 **2.1. Research site**

114 The study site is located in the equatorial Amazon in a natural protected forest park named
115 Quistococha, 10 km southwest of Iquitos city in the Loreto Region of Peru. The park is
116 administrated by the Office of Tourism of the Regional Government (DIRCERTUR) and is an
117 official scientific research area for IIAP. The EC flux tower (42 m) is located at 73° 19' 08.1" W;
118 3° 50' 03.9" S, and 104 m above sea level, within a natural low disturbance palm swamp peatland
119 that is part of the park. The tower location and the flux footprint climatology (Kljun et al., 2015)
120 are shown in Figure 1. We note that fetch is inadequate for northerly wind flow and these data
121 have been filtered according to quality control assessments (described below). The flux footprint
122 generally represents a pristine natural tropical peatland, but does include some potential influence
123 where forest degradation is taking place (Figure 1). Bhomia et al., (2019) have quantified some
124 areas of disturbance near the site as medium impact. Here, *Mauritia flexuosa* have been cut for
125 their fruits and woody trees have been cleared, leading to differences in forest structure and
126 composition compared to the pristine areas. Two disturbance areas have been well documented in
127 the Bhomia et al., (2019) study. First, there is a disturbed area located approximately 1 km SSW
128 of the tower and more than 400 m from the flux footprint 80% isopleth. Second, there is an area
129 of disturbance located NE of the tower, which is adjacent to the lake and, consequently, has been
130 filtered according to our flux footprint QA/QC procedures.

131 Palaeoecological studies indicate that peat began to form at this site about 2200 to 2300 years
132 before present (BP), and the current vegetation community was established about 400 years BP

133 (Roucoux et al., 2013). The tree density and basal area for the study site is approximately $1846 \pm$
134 335 trees ha^{-1} and $19.4 \pm 2.8 \text{ m}^2 \text{ ha}^{-1}$, respectively for stems with diameter at breast height (DBH)
135 greater than 10 cm (Bhomia et al., 2019). The major palm type, ranked by stem density and basal
136 area, is *Mauritia flexuosa* L.f. (21.3 m height on average), which represents about 65% of the total
137 palm basal area at this site (Bhomia et al., 2019; Roucoux et al., 2013). The next most important
138 tree species within Quistococha, ranked according to stem density, include *Tabebuia insignis*,
139 *Hevea nitida*, *Mauritiella armata*, and *Fabaceae* sp. (Bhomia et al., 2019; Roucoux et al., 2013).
140 The peatlands in the Quistocochia study area range from oligotrophic to minerotrophic because
141 they are seasonally or intermittently inundated by floodwater from the major rivers (Draper et al.
142 2014; Lähteenoja et al., 2009a; Finn et al., 2020). Total aboveground and belowground biomass
143 carbon stocks are estimated at $97.7 \pm 15 \text{ Mg C ha}^{-1}$ and $24.9 \pm 4.1 \text{ Mg C ha}^{-1}$, respectively (Bhomia
144 et al., 2019). The vegetation at this site is broadly representative of the Pastaza-Marañon basin,
145 where *M. flexuosa* is the dominant palm species, and is under significant anthropogenic pressure
146 within the region for its valuable source of fruits, with destructive harvest reducing population
147 density in unprotected forests (Hergoualc'h et al., 2017).

148
149 The peat layer thickness varies from 1.92–2.45 m (Bhomia et al., 2019; Lähteenoja et al., 2009b)
150 with a total soil C pool of $\sim 740 \text{ Mg C ha}^{-1}$. Overall, the average ecosystem carbon stock, including
151 soil, litter, debris, and vegetation, for Quistococha is approximately $876.9 \pm 108.5 \text{ Mg C ha}^{-1}$
152 (Bhomia et al., 2019). The historical average soil carbon accumulation for these peatlands,
153 estimated from peat inventories and carbon dating, is approximately $74 \pm 15 \text{ g C m}^{-2} \text{ y}^{-1}$ over the
154 past 2300 years (Lähteenoja et al., 2009b).

155

156 The mean annual air temperature and precipitation for the Puerto Almendras Ordinary Weather
157 Station (6 km from the EC tower site), Iquitos (2003–2017) were 27.2 °C and 2753.2 mm,
158 respectively (Servicio Nacional de Meteorología e Hidrología del Perú, 2019). The site is
159 characterized by a wet season (typically February to April) with minimum and maximum air
160 temperatures of 22.9 °C and 31.8 °C, respectively, and a dry season (typically August to
161 September) with minimum and maximum air temperature of 22.5 °C and 32.7 °C, respectively.
162 Precipitation during the wet and dry seasons is typically 810 mm and 545 mm, respectively. The
163 water table position is often located above the soil surface during the latter part of the wet season
164 (i.e. 80 to 150 cm in May and June) and rarely drops below a level of 20 cm from the soil surface
165 (Hergoualc'h et al., 2020; Kelly et al., 2017). Although the site is characterized by a dry season
166 (reduced precipitation) we note that during this study that soil water availability was non-limiting.

167 **2.2. Micrometeorological measurements**

168 Eddy covariance flux measurements of energy, water vapor, CO₂ and CH₄ were established in
169 January 2017. However, CH₄ flux measurements during 2017 and 2018 were made sporadically
170 due to sensor failure related to a manufacturer defect. Furthermore, a lightning strike in early 2017
171 caused substantial damage to the instrumentation and major data loss. Consequently, we focus our
172 analyses on the period January 1, 2018 to December 31, 2019 for **energy** and CO₂ fluxes and
173 January 1, 2019 to December 31, 2019 for CH₄ fluxes.

174 The EC system consists of open-path analyzers for CH₄ (LI-7700, LI-COR Inc., Lincoln, NE,
175 USA) and CO₂ (LI-7500, LI-COR Inc.) with turbulence measured using a 3D ultrasonic
176 anemometer (CSAT3, Campbell Scientific Inc. Logan, UT, USA) mounted at 40 m above the
177 ground (about 20 m above the mean canopy height). In February 2019, a new LI-7700 was installed
178 at the site to improve the reliability of the CH₄ flux measurements. A datalogger (CR5000,

179 Campbell Scientific Inc., Logan UT, USA) was used to record data from the EC sensors that were
180 sampled at a rate of 10 Hz. Our group has tested and evaluated the long-term (3.5 years)
181 performance of the LI-7700 analyzer in comparison to a closed-path system (TGA100A, Campbell
182 Scientific Inc.) at a sub-boreal peatland site (Deventer et al., 2019), and found good agreement in
183 half-hourly fluxes and excellent agreement on annual budgets. Here, we apply the same flux
184 processing strategies performed by Deventer et al. (2019).

185

186 Raw 10 Hz data were processed and block-averaged to half-hourly fluxes using the EC approach
187 (Baldocchi et al., 1988). We used custom software developed in MATLAB (The Mathworks Inc.,
188 Natick, MA, USA) for raw data processing and flux calculations (Deventer et al., 2019; Wood et
189 al., 2017) and followed the recent ICOS (Integrated Carbon Observation System) guidelines for
190 CO₂ and H₂O flux calculations (Sabbatini et al., 2018) and CH₄ flux calculations (Nemitz et al.,
191 2018). Raw data quality checks included completeness of the dataset, amplitude resolution, and
192 dropouts. Further, the raw data (not including CH₄) were de-spiked and time lags between wind
193 velocity and scalar measurements were compensated for by maximizing the covariance. Spectral
194 corrections for high-pass (Moncrieff et al., 2006) and low-pass (Fratini et al., 2012) filtering and
195 lateral sensor separation (Horst and Lenschow, 2009) were applied. Half-hour wind vectors and
196 fluxes were rotated into the natural wind coordinate system using a two-dimensional rotation
197 (Tanner and Thurtell, 1969; Morgenstern et al., 2004). The Webb-Pearman-Leuning (WPL) terms
198 were applied to compensate for the effects of sensible (*H*) and latent heat (*LE*) fluxes on measured
199 CO₂ and CH₄ density fluctuations (Webb et al., 1980). Spectroscopic corrections were also applied
200 to the CH₄ open-path measurements (McDermitt et al., 2011). A correction associated with sensor-
201 path heat exchange (i.e. ‘sensor self-heating’) of the CO₂/H₂O open-path analyzer was computed

202 following Burba et al., (2008). A single-level storage flux term was calculated and summed with
203 the turbulent fluxes to estimate net ecosystem exchange of energy, CO₂ and CH₄ following
204 Morgenstern et al., (2004) (Figure S1). We observed very similar diel patterns of storage to that
205 described in Morgenstern et al., (2004) and a similar ratio of storage flux to eddy flux for CO₂.

206 Flux QA/QC was based on sensor diagnostics, wind direction, as well as low friction velocity (u^*).
207 Periods of sensor malfunction were identified by sensor diagnostic values, as well as low signal
208 strength of the open-path gas analyzers (RSSI<10 for LI-7700, and AGC>90 for the LI-7500). A
209 wind direction filter (WD>320° or WD<70°) was applied to eliminate periods when the flux
210 footprint was influenced by the nearby lake. Periods of low u^* were removed by applying an annual
211 threshold ($u^* = 0.082 \text{ m s}^{-1}$) that was determined using the REddyProc package, which
212 implemented the moving point detection method (Papale et al., 2006). After applying these QA/QC
213 procedures, the time series of half-hourly fluxes for net ecosystem CO₂ exchange (CO₂ NEE), *LE*
214 and *H* were de-spiked following the methods of Papale et al. (2006), while the CH₄ flux (NEE
215 CH₄) time series was filtered following Taylor et al., (2018) by removing any points outside of 2
216 standard deviations of the overall mean.

217 Following these QA/QC procedures, the data retention was approximately 28% and 44% for
218 energy, 23% and 36% for CO₂, and 0% and 26% for CH₄ in 2018 and 2019, respectively. The 0%
219 retention in 2018 for CH₄ was caused by sensor failure.

220 Gap-filling of CO₂ fluxes was performed to estimate annual budgets following the look-up table
221 method based on the approach of Reichstein et al. (2005) and were implemented in the REddyProc
222 package. The uncertainty in the annual totals resulting from data losses and gap-filling was
223 determined using a Monte-Carlo strategy (Griffis et al., 2003). Here, we artificially increased the

224 amount of missing observations by randomly removing 5%, 10%, 15%, and 20% of the valid data
225 and repeated this process 500 times per year. The uncertainty in cumulative NEE increased from
226 about 13% to 40% as we increased data loss from 5% to 20%, respectively. We also observed a
227 slight increase in the cumulative carbon uptake as a function of the amount of missing data (Figure
228 S2 and Table S1).

229 We provide CO₂ NEE budget estimates with and without the sensor self-heating corrections
230 applied because there is considerable debate regarding its application (Deventer et al., 2020). The
231 annual CH₄ NEE budget was estimated using two approaches: 1) by fitting a skewed Laplace
232 distribution to the half-hourly observations for each month and then extrapolating these monthly
233 mean fluxes to an annual budget; and 2) by using an artificial neural network (ANN) modeling
234 approach to replace missing or invalid observations following Deventer et al., (2019).

235 The partitioning of CO₂ NEE into gross primary productivity (GPP) and ecosystem respiration
236 (RE) was performed using the REddyProc package (Wutzler et al., 2018). Here we use the
237 micrometeorological sign convention for NEE (i.e. a negative flux indicates a net ecosystem sink)
238 where NEE = RE – GPP. The REddyProc package employs the Lasslop et al. (2010) approach,
239 which utilizes a hyperbolic light-response curve to model RE from the daytime CO₂ NEE data
240 (Falge et al., 2001). This algorithm accounts for vapor pressure deficit (VPD) limitation on
241 photosynthesis following (Körner, 1995) and uses modeled RE to account for the temperature
242 dependency of respiration (Lloyd and Taylor, 1994).

243 Supporting hydrometeorological measurements included net radiation (NR-lite, Kipp and Zonen,
244 B.V., Delft, The Netherlands), solar radiation (LI-200R, LI-COR Inc.), photosynthetically active
245 radiation (LI-190R, LI-COR, Inc.), air temperature and relative humidity (HMP45C, Campbell

246 Scientific Inc.), precipitation (TE-525L, Texas Electronics Dallas, TX, USA), soil volumetric
247 water content (CS616, Campbell Scientific Inc.), measured at a soil depth of 10 cm and soil heat
248 flux (HFP01-L, Hukseflux Inc., Delft, Netherlands) measured at a soil depth of 10 cm. Water table
249 position was measured using a HOBO-U20 water level data logger (Onset Computer Corporation,
250 Bourne, MA, USA), which was deployed 1 m below the soil surface within a plot 500 meters
251 northwest of the tower.

252 **3. Results and Discussion**

253 **3.1. Hydrometeorology and phenology**

254 A distinguishing hydrometeorological feature between 2018 and 2019 was the duration and
255 intensity of the dry season (Figure 2). In 2018, the dry season was characterized by monthly
256 precipitation totals less than 140 mm over the period June through October. In 2019, the dry season
257 was limited in duration to August through September. Total precipitation in 2018 was 3032.9 mm
258 (10.2 mm/d and 4.4 mm/d for the wet and dry seasons, respectively) and 2943.9 mm in 2019 (10.1
259 mm/d and 3.5 mm/d for the wet and dry seasons, respectively), which exceeded the average for
260 the most recent 15-year period (2003 to 2017) at Iquitos. This site is characterized by a stable
261 thermal environment at seasonal to annual time scales. The mean annual air temperatures in 2018
262 and 2019 were 25.6 °C and 25.7 °C, respectively. The mean seasonal peak-to-trough amplitude of
263 daily average air temperature was approximately 1.5 °C (Figure 2). During the wet and dry seasons,
264 the mean air temperatures were remarkably similar at 26.0 °C and 26.1 °C and 25.6 °C and 26.2 °C
265 for 2018 and 2019, respectively. The mean annual air temperature in both years was about 1.5 °C
266 lower compared to the recent 15-year period for Iquitos.

267 Leaf area index (LAI) from the Moderate Resolution Imaging Spectroradiometer (MODIS,
268 MCD15A2H Version 6) (DAAC, 2018; Myneni et al., 2015) showed seasonality that followed
269 wet/dry season patterns (Figure 3 and Figure S3). The mean annual LAI (\pm 1 standard deviation)
270 in 2018 and 2019 was 3.9 (\pm 0.8) and 4.90 (\pm 0.8), respectively, which is slightly lower than the
271 5-year mean LAI of 4.1 (\pm 0.5). Note that some of the short-term variability in LAI is likely caused
272 by the effects of weather conditions on the MODIS LAI retrieval. LAI typically reached 4 to 5 at
273 the end of the wet period (around day of year, DOY, 100), with a pronounced seasonal peak of
274 about 5 during the dry period (~DOY 250). The mean LAI during the 2018 wet and dry seasons
275 was 3.2 ± 0.6 , 4.4 ± 0.9 , respectively; while in 2019, mean wet and dry season LAI was 3.7 ± 0.8 ,
276 5.0 ± 0.4 , respectively. The higher LAI observed during the dry season was statistically significant
277 ($p < 0.01$) according to a two-sample t-test. Similar patterns, magnitudes, and seasonal amplitudes
278 of LAI have been reported previously in the Amazon and are thought to be driven by net leaf
279 abscission during the wet season followed by net leaf flushing during the dry season (Huete et al.,
280 2006; Myneni et al., 2007; Saleska et al., 2016; Smith et al., 2019).

281 The mean annual net radiation (R_n) balance in 2018 ($110.8 \pm 202.8 \text{ W m}^{-2}$) was nearly identical to
282 that in 2019 ($111.2 \pm 203.5 \text{ W m}^{-2}$) (Figure 4). The mean midday values of R_n were approximately
283 $450 \pm 200 \text{ W m}^{-2}$ during the wet season and increased to about $500 \pm 202 \text{ W m}^{-2}$ during the dry
284 period because of clearer sky conditions. The mean daytime VPD at 41 m height, was 8.0 hPa (8.7
285 hPa for the wet period; 8.8 hPa for the dry period) and 7.3 hPa (6.8 hPa for the wet period; 10.5
286 hPa for the dry period) in 2018 and 2019, respectively. In both years, there were instances when
287 VPD increased substantially during the dry period. For example, on DOY 242 (August 30, 2019)
288 air temperature and VPD exceeded 31°C and 17 hPa, respectively (Figure 4). Water table position
289 was on average, above the surface in 2018 (+0.034 m) and 2019 (+0.034 m). However, the seasonal

290 dynamics and range varied considerably between each year (Figure S4). In 2019, the water table
291 position showed slightly more dynamic range (0.35 m) compared to 2018 (0.32 m). In 2018, water
292 table position was relatively low during the early wet season and over the period DOY 170 (June
293 19) to DOY 290 (October 17). In 2019, the water table was generally at or above the surface, but
294 was periodically below the surface from DOY 215 (August 3) to DOY 330 (November 26).
295 Volumetric soil water content (θ , measurements initiated in 2019) remained above 0.77 in 2019
296 (Figure S4). During the dry season, θ showed a steady decline after DOY 150 (May 30) and
297 reached a minimum value on DOY 240 (August 28).

298 The energy balance closure for this site (Figure S5) was reasonably good with turbulent heat fluxes
299 ($H + LE$) accounting for more than 72% of the available energy ($R_n - S$). The energy balance closure
300 at this site was in the range (i.e. 0.53 to 0.99) reported for a broad range of AmeriFlux sites (Wilson
301 et al., 2002) and was similar to the energy balance closure (0.70 to 0.78) reported for broadleaf
302 and wetland sites (Stoy et al., 2013). The dominant sink for the available energy was LE (Figure
303 5). On an annual basis, mean midday LE was approximately 255 W m^{-2} , and nearly identical in
304 both years. The median Priestley-Taylor coefficient ($\alpha=1.12$) indicated that evaporation was not
305 significantly limited by water availability or canopy resistance. Mean midday H flux for the same
306 period was approximately 60 W m^{-2} , yielding midday Bowen ratio ($= H/LE$) values that were
307 typically 0.24. Mean midday LE peaked at about 300 W m^{-2} during the dry season. The midday
308 wet season LE was about 30 to 90 W m^{-2} lower than during the dry season, indicating that LE was
309 energy limited. This is supported by the fact that the mean equilibrium evaporation rate increased
310 from 350 W m^{-2} during the wet season to 400 W m^{-2} during the dry season. As expected, LE was
311 a strong linear function of R_n ($LE = 0.54R_n + 23.7$, $r^2 = 0.76$, RMSE = 54.3, df = 12,602, $p < 0.01$,
312 all data combined for 2018 and 2019) and was relatively insensitive to changes in VPD or air

313 temperature, T_a (Figure 6 and Figure S6) or water table position. Overall, LE accounted for about
314 54% of R_n . These Bowen ratio values and evaporative fractions are considerably lower than the
315 first ever measurements (Bowen ratio = 0.43 and evaporative fraction = 0.698) reported for a
316 tropical rain forest by Shuttleworth et al., (1984). The cumulative evaporative flux accounted for
317 about 1100 mm or 36% of the annual precipitation. These results imply that runoff and drainage
318 are an important component of the water balance and, therefore, the carbon balance in these palm
319 swamp peatlands (discussed in section 3.5).

320 Analyses of energy balance data from the Large Scale Biosphere-Atmosphere Experiment in the
321 Amazon (LBA) also support these findings (da Rocha et al., 2009). Their research demonstrated
322 that “wet” sites, experiencing greater than 1900 mm of annual precipitation, showed higher LE
323 during the dry season when available energy increased due to reduced cloud cover. The LBA wet
324 sites showed Bowen ratio values that were in the range of 0.32 to 0.36, indicating that the
325 Quistococha palm swamp forest studied here was wetter with relatively more energy partitioned
326 into LE (i.e. Bowen ratio of ~ 0.24). The diel LE patterns described here for the wet and dry seasons
327 are consistent with those reported by Hutyra et al., (2007) for a primary growth evergreen forest,
328 located in the Tapajós National Forest, Pará, Brazil. In their study, they concluded that LE
329 increased during the dry season and observed a similar linear relation with R_n for the wet and dry
330 seasons (i.e. LE was a linear function of R_n with a slope of 0.57 for wet seasons and 0.54 for dry
331 seasons). In contrast, LE has been reported to peak during the wet season at other Amazonian sites
332 (Malhi et al., 2002; Vourlitis et al., 2002). Malhi et al., (2002) found that LE was limited during
333 the dry season by a reduction in canopy conductance in response to reduced soil water content.
334 They showed that LE was a linear function of R_n with a slope of 0.65 during the wet season and a
335 slope of only 0.38 during the dry season. Given the relative high water table position at the

336 Quistococha site (Figure S4), and the lack of response of LE to changes in VPD (Figure 6 and
337 Figure S6), we conclude that LE was not water limited during the dry period of 2018 or 2019. Our
338 results support a broader analysis of energy balance in the tropics that found R_n explained 87% of
339 the variance in monthly LE across sites with an evaporative fraction (LE/R_n) of 0.72 (Fisher et al.,
340 2009).

341 **3.3. Net ecosystem CO₂ exchange**

342 Half-hourly CO₂ NEE ranged from about -60 to $+30 \mu\text{mol m}^{-2} \text{ s}^{-1}$ over the two-year period. The
343 annual mean midday CO₂ NEE was about $-20 \pm 8 \mu\text{mol m}^{-2} \text{ s}^{-1}$ in both years (Figure 7). In each
344 year, net CO₂ uptake was diminished immediately after the wet season and through the duration
345 of the dry season (Figure 7) despite higher LAI and greater available energy in the dry season.
346 This seasonal effect was related to a reduction in GPP (described below) and was more pronounced
347 in 2018 because of a more intense dry down that extended from June through October (Figure 2).
348 The water table position dropped during this period, but remained above the surface (Figure S4).
349 Similar results have been reported by Kiew et al., (2018) for a peat swamp forest in Sarawak,
350 Malaysia. They concluded that enhanced RE during the dry season was the dominant control on
351 NEE. In contrast, Hutyra et al., (2007) found that phenology and available light were the dominant
352 controls *via* canopy photosynthesis in an evergreen tropical rain forest in Tapajós. Here, we
353 observed a decline in GPP during dry periods and a more variable response in RE (described
354 below).

355 In 2018, CO₂ NEE reached $-26.0 \mu\text{mol m}^{-2} \text{ s}^{-1}$ at midday during the wet season, but was
356 substantially lower at $-18.2 \mu\text{mol m}^{-2} \text{ s}^{-1}$ during the dry season. Similar patterns were observed in
357 2019, with midday CO₂ NEE reaching $-20.6 \mu\text{mol m}^{-2} \text{ s}^{-1}$ during the wet season. The dry season

358 midday fluxes were also diminished ($-16.0 \mu\text{mol m}^{-2} \text{s}^{-1}$). The magnitude of peak daytime CO₂
359 NEE at Quistococha was in very good agreement with that observed for a lowland *terra firme*
360 (mineral soil wetland) tropical rain forest at the Reserva Biológica do Cuieiras, Amazonia, Brazil
361 (Malhi et al., 1998). They observed a mean net uptake of CO₂ at midday of about -15 to $-20 \mu\text{mol}$
362 $\text{m}^{-2} \text{s}^{-1}$. Very similar daytime patterns were also reported by Carswell et al., (2002) for a *terra firme*
363 forest near Belém, Pará, Brazil (eastern Amazonia).

364 We combined data from 2018 and 2019 to examine the light response of CO₂ NEE. The
365 photosynthetic and respiratory parameters were obtained using a non-linear least squares
366 optimization of the light-response function following Landsberg and Gower, (1997) and Griffis et
367 al., (2003). These light response analyses indicated a mean apparent canopy photosynthetic
368 capacity (A_{\max}), apparent quantum yield (α), and day respiration (R_d) of $43.0 \mu\text{mol m}^{-2} \text{s}^{-1}$, 0.09 ,
369 and $11.9 \mu\text{mol m}^{-2} \text{s}^{-1}$, respectively (Figure 8 and Table 1). These values are consistent with other
370 tropical rain forests (Malhi et al., 1998) and are similar to that reported for deciduous aspen boreal
371 forests during peak summer growth (Griffis et al., 2003). There was evidence that high values of
372 PAR, air temperature, and VPD limited the uptake of CO₂ in this palm swamp forest (Figure 8 and
373 Figure S7). Light-response analyses conducted by Malhi et al., (1998) also found evidence of
374 reduced apparent photosynthetic capacity at elevated VPD (see their Figure 6b). High air
375 temperature and VPD can reduce stomatal conductance, despite having ample soil water because
376 stomatal conductance is largely determined by leaf water status (Buckley, 2019, 2017). If the
377 evaporative demand exceeds what the plant vascular system can supply, the leaf can lose turgor,
378 despite adequate available soil water. Similar patterns have been observed for other wetlands and
379 peatlands (Blanken and Rouse, 1996; Otieno et al., 2012) and more broadly across eddy covariance
380 flux sites (Novick et al., 2016).

381 Additional light-response analyses were conducted for conditions when the air temperature was
382 above or below a threshold of 25 °C. These analyses indicated a substantial reduction in A_{\max} at
383 high temperatures. The light-response parameters for low vs high temperature conditions were
384 $A_{\max} = 57.8 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$, $\alpha = 0.07$, and $R_d = 11.6 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ ($R^2 = 0.35$, $df = 1176$) vs $A_{\max} =$
385 $40.6 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$, $\alpha = 0.09$, and $R_d = 10.7 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ ($R^2 = 0.39$, $df = 4703$), respectively (Table
386 1).

387 Light response analyses for the wet and dry seasons indicated substantially higher photosynthetic
388 capacity (A_{\max}) during the wet season (Table 1), despite the differences observed in LAI. During
389 the 2018 wet season, the A_{\max} was $58.0 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ versus $37.7 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ during the dry season
390 (Figure 9). A less pronounced pattern was observed in 2019, with a wet season A_{\max} of $45.5 \text{ } \mu\text{mol}$
391 $\text{m}^{-2} \text{ s}^{-1}$ and a dry season A_{\max} of $40.0 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$. Our analyses indicated that higher PAR and
392 VPD and lower water table position during the dry seasons limited photosynthesis. For example,
393 in 2018 mean PAR, VPD, and WT values were $+20 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$, $+1.0 \text{ hPa}$, and -1.2 cm , relative
394 to the wet season values. These analyses also suggest that the higher available energy during the
395 dry season enhanced surface evaporation relative to plant transpiration.

396 We found that mean annual midday GPP was about $26.0 \pm 8.1 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ and midday RE was
397 approximately $8.1 \pm 7.9 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ (Figure 10 and Figure 11). The partitioned GPP values
398 showed evidence for light-inhibition at PAR values greater $1000 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ and limitation
399 imposed by high air temperature and VPD (Figure S7). There was also some evidence for declining
400 GPP associated with the interplay between low water table position and high VPD (Figure S7).
401 During the 2018 dry season, GPP was substantially reduced (i.e. by $8 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$) compared to
402 the wet season, while midday partitioned RE decreased by about $2 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$. These results are

403 somewhat surprising given the relatively high water table position and soil water content observed
404 over the entire year. Such sensitivity to drier conditions (Figure S7) suggests that a substantial
405 decline in the carbon sink strength could occur as air temperature continues to warm (Gloor et al.,
406 2018) in the tropics or if the frequency of El Niño events or warm tropical North Atlantic Sea
407 Surface Temperature (NTA-SST) anomalies increase (discussed further in Section 3.5). This
408 hydrometeorological sensitivity highlights the need for longer-term measurements in these
409 systems to assess the potential for acclimation and longer-term feedback responses.

410 The patterns we observed at this equatorial Amazonian site differed from LBA sites (Restrepo-
411 Coupe et al., 2013; Saleska et al., 2003). For instance, Restrepo-Coupe et al., (2013) found that the
412 dry season caused an increase in LAI and a progressive increase in canopy photosynthetic capacity
413 at their equatorial flux site. Saleska et al., (2003) concluded that variations of RE was the dominant
414 control on seasonal CO₂ NEE dynamics. They observed significant increases in RE during the wet
415 season that contributed to a net carbon source in some years. Our results imply that RE is
416 suppressed by flooding and likely redox limited. Recent work at a flood plain Amazonian forest
417 near Cantão State Park, Brazil demonstrated that ecosystem productivity was limited by excessive
418 soil water content during the flooded season, while GPP was enhanced by higher soil water content
419 values during the dry/non-flooded period (Fonseca et al., 2019). Koren et al., (2018) reported a
420 significant reduction in SIF, a proxy for GPP, for the western (2 to 5%) and eastern (10 to 15%)
421 Amazon Basin, associated with high air temperatures and reduced soil water content.

422 Mean nighttime CO₂ NEE (i.e. measured RE) was $6.9 \pm 10.5 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ and $6.5 \pm 10.5 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ in 2018 and 2019, respectively (Figure S8). The mean nighttime RE was higher during the dry
423 season ($7.6 \pm 11.0 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$, $8.2 \pm 11.3 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$) compared to the wet season ($5.9 \pm 9.8 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$, $5.7 \pm 9.8 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$) in both 2018 and 2019, respectively. Carswell et al., (2002)

426 found that mean nighttime RE increased from about $7.1 \mu\text{mol m}^{-2} \text{s}^{-1}$ in the wet season to $8.2 \mu\text{mol}$
427 $\text{m}^{-2} \text{s}^{-1}$ in the dry season for the Belém, Pará, Brazil site. Hutyra et al., (2007) showed that the mean
428 nighttime RE was typically $9.2 \mu\text{mol m}^{-2} \text{s}^{-1}$ during the wet season and decreased to $7.7 \mu\text{mol m}^{-2}$
429 s^{-1} during the dry season for the Tapajós site. Thus, our nighttime values are comparable in terms
430 of magnitude, and similar in seasonal pattern to the *terra firme* ecosystem. Nighttime RE did not
431 show any significant relation with respect to soil temperature, air temperature or soil water content,
432 but were proportional to GPP (Figure S7). A similar conclusion was reported by Carswell et al.,
433 (2002) and Hutyra et al., (2007). This supports that the reduced net uptake of CO₂ during the dry
434 season, or high temperature periods, was largely driven by a reduction in photosynthetic activity
435 and a modest increase in RE.

436 **3.4. Net ecosystem CH₄ exchange**

437 The 2019 half-hourly CH₄ NEE values followed a skewed Laplace distribution, yielding a mean
438 flux of $59.3 \pm 89.3 \text{ nmol m}^{-2} \text{s}^{-1}$. We did not observe a pronounced diel pattern in CH₄ NEE,
439 however, emissions during the wet season were consistently higher (mean = $59.5 \pm 89.0 \text{ nmol m}^{-2}$
440 s^{-1}) than during the dry season (mean = $46.9 \pm 63.6 \text{ nmol m}^{-2} \text{s}^{-1}$) with a slight increase during
441 midday for the wet period (Figure 12 and Figure S9-S10). Recent work by Deshmukh et al., (2020)
442 observed a significant diel cycle in CH₄ emissions for a natural forested tropical peatland in
443 Sumatra, Indonesia that was correlated with photosynthetic flux and canopy conductance. Tang et
444 al. (2018) also reported a significant diel pattern in CH₄ emissions for a two-month study
445 conducted in a tropical peat forest in Sarawak, Malaysian Borneo, highlighting the potential
446 importance of plant-mediated transport of CH₄.

447 Higher variability of NEE CH₄ at night was likely associated with lower friction velocities and
448 may indicate short-term variability in the total flux caused by changes in CH₄ storage or the
449 influence of ebullition events during these more stable atmospheric conditions (i.e. weaker
450 boundary-layer mixing). Weak positive relationships were observed between CH₄ NEE and soil
451 temperature, air temperature, and water table position at the weekly timescale (Figure 13), but
452 were not statistically significant. This is likely related to the very small variations in soil
453 temperature and water table position. Further, we found a weak positive relation (slope = 5.6 nmol
454 m⁻² s⁻¹ kPa⁻¹) between CH₄ NEE and atmospheric pressure, but it was not statistically significant.
455 Based on an analysis of the statistical distributions for high (>25 °C) vs low (<25 °C) temperatures,
456 we found CH₄ fluxes to be very similar, 42.0 ± 66.7 nmol m⁻² s⁻¹ vs 42.3 ± 86.9 nmol m⁻² s⁻¹,
457 respectively (Figure S11-S12). However, there was some evidence of increasing CH₄ emissions
458 with increasing LE (Figure S13) and increasing CO₂ NEE magnitude (i.e increasing photosynthetic
459 activity, Figure 13), suggesting that plant-mediated transport might be important. Indeed, Pangala
460 et al., (2017) have shown that CH₄ emissions from central Amazonian tree stems were up to 200-
461 fold greater than emissions from tropical peat swamp soils and the dominant diffusive flux
462 component observed in the Amazonia. Tree bole CH₄ flux measurements have helped reconcile
463 the large disparity observed between top-down and bottom-up CH₄ budget estimates for the
464 Amazon Basin (Pangala *et al.*, 2017).
465 Methane emissions have also been reported for a tropical peat swamp forest located in Sarawak,
466 Malaysia based on the EC approach (Wong *et al.*, 2018). They found that mean CH₄ emissions
467 were 24.0 nmol m⁻² s⁻¹, substantially lower compared to the Quistococha palm swamp forest. Their
468 research showed little dependence of CH₄ emissions on water table position, soil water content, or
469 soil temperature, presumably because of the low variability of these potential environmental

470 drivers. Our EC CH₄ fluxes are higher than soil chamber fluxes (5.2 to 43.3 nmol m⁻² s⁻¹) measured
471 within the Quistococha Regional Park during the dry season of December 2011 and December
472 2012 (Finn et al., 2020) and are in relatively good agreement with *in situ* observations (mean
473 annual flux densities ranging from 38.3 to 84.3 nmol m⁻² s⁻¹) in the same park over the period April
474 2015 to March 2018 (Hergoualc'h et al., 2020). Further, laboratory incubations using soil samples
475 extracted from within the Quistococha Regional Park, indicate a CH₄ emission potential on the
476 order of 80 nmol m⁻² s⁻¹ (van Lent et al., 2019), which also supports our observations.

477 **3.5. Carbon budget and net radiative forcing**

478 Cumulative CO₂ NEE in 2018 and 2019 indicated an overall carbon sink of about -465 (-279 to
479 -651) g C m⁻² y⁻¹ and -462 (-277 to -647) g C m⁻² y⁻¹, respectively (Figure 14). The uncertainty
480 estimates (40% relative uncertainty) in parentheses were derived from the Monte Carlo and gap
481 filling analyses. Overall, we cannot conclude that the cumulative seasonal pattern of CO₂ NEE, or
482 its annual total, differed significantly between years. However, we note an important divergence
483 between each year over the period DOY 250 (September 7) to DOY 325 (November 21) that relates
484 to a decline in water table position in 2019 relative to 2018 (Figure S4). Here, midday RE was
485 enhanced by up to 4 μ mol m⁻² s⁻¹ relative to the same period in 2018. These results further highlight
486 the sensitivity of this palm swamp forest carbon balance to hydrometeorological conditions.

487 The cumulative CO₂ NEE values above include the so-called CO₂ open-path sensor self-heating
488 correction of Burba et al., (2008). When these corrections are not applied, the annual CO₂ NEE is
489 estimated at -552 g C m⁻² y⁻¹ and -546 g C m⁻² y⁻¹ for 2018 and 2019, respectively. We note here
490 that the sensor self-heating correction factors are highly uncertain for any given site due to site-
491 specific variability in IRGA heat fluxes, and ambient temperature-specific IRGA measurement

492 bias that both are unaccounted for in the correction framework (Deventer et al., 2020). It is,
493 however, noteworthy that despite these large uncertainties, the differences in annual budget
494 estimates calculated with and without applying the correction differ by $\sim 85 \text{ g m}^{-2} \text{ y}^{-1}$ ($\sim 18\%$), fall
495 within the respective uncertainty bounds, and thus do not alter the conclusion that this palm swamp
496 peatland is a large CO₂ sink.

497 The annual CH₄ NEE budget for 2019 was estimated to be a source of 22 (20 to 24) g CH₄-C m⁻²
498 y⁻¹, according to the monthly Laplace distribution analyses. Here, the uncertainty in parentheses
499 was propagated from the range of the mean monthly values. The annual CH₄ NEE budget, based
500 on the ANN approach was 17 (12 to 23) g CH₄-C m⁻² y⁻¹. However, since the ANN budget
501 approach was characterized by low predictive power (i.e. $R^2 < 0.1$) we make use of the Laplace
502 distribution analyses. Monthly CH₄ emissions ranged from 1.0 to 2.7 g CH₄-C m⁻² month⁻¹ (Figure
503 S14). Maximum monthly CH₄ emissions were generally correlated with monthly precipitation.
504 The CH₄ NEE budget of the Quistococha palm swamp forest is in excellent agreement with
505 chamber based estimates (14.5 to 31.9 g CH₄-C m⁻² y⁻¹) within the park over the period April 2015
506 to March 2018 (Hergoualc'h et al., 2020). Methane emissions from the Quistococha site are larger
507 than our mean budget estimate for a sub-boreal peatland (10.7 to 15.1 g CH₄-C m⁻² y⁻¹) in
508 Minnesota, USA (Deventer et al., 2019; Olson et al., 2013) and northern peatlands (Table 2) and
509 substantially larger than that extrapolated from two months of wet season measurements (8.8 g
510 CH₄-C m⁻² y⁻¹) over a tropical peat forest in Sarawak, Malaysian Borneo (Tang et al., 2018).
511 Further, our annual budget estimate is in excellent agreement with chamber-based estimates (28.6
512 $\pm 9.7 \text{ g CH}_4\text{-C m}^{-2} \text{ y}^{-1}$) from intact peat swamp forests in Southeast Asia (Hergoualc'h and Verchot,
513 2014). A recent synthesis of global eddy covariance CH₄ flux measurements revealed that tropical
514 wetlands were extremely underrepresented in the global database (Knox et al., 2019). They

515 reported only three sites (freshwater marsh site, USA; swamp Maludam, Malaysia; and brackish
516 marsh, USA) with an estimated mean annual emission of $43.2 \pm 11.2 \text{ g CH}_4\text{-C m}^{-2} \text{ y}^{-1}$.

517 The CO₂ sink strength of the Quistococha site was substantially higher than that of a tropical peat
518 swamp forest in Sarawak, Malaysia, (mean of $-136 \pm 51 \text{ g C m}^{-2} \text{ y}^{-1}$) over the period 2011 to 2014
519 (Kiew et al., 2018) and a peat swamp forest in Indonesia (mean of $+174 \pm 203 \text{ g C m}^{-2} \text{ y}^{-1}$) over
520 the period 2004 to 2008 (Hirano et al., 2012). Our review of tropical forest CO₂ budgets (Table 3)
521 and comparison with the mean CO₂ NEE derived by Luyssaert et al., (2007) (see their Table 3,
522 mean NEE = $-403 \pm 102 \text{ g C m}^{-2} \text{ y}^{-1}$) indicates that the Quistococha site is a relatively large CO₂
523 sink, but within the range of reported values for other tropical forests. Previous studies have argued
524 that the spatial and temporal patterns of the annual CO₂ budget in Amazonian forests can be large,
525 ranging from sink to source depending on climate and disturbance factors (Saleska et al., 2003).
526 Further, a recent synthesis examining the impacts of El Niño/La Niña on the carbon balance of
527 tropical ecosystems provides strong evidence that the drier conditions associated with El Niño are
528 likely to reduce their carbon sink strength through a reduction in photosynthetic fluxes (Gloor et
529 al., 2018; Koren et al., 2018; Malhi et al., 2018). In the western Amazon, El Niño/La Niña events
530 may be less important than the influence of warm tropical NTA-SST anomalies on climate (Chen
531 et al., 2015; Lilleskov et al., 2019), which have been shown to increase drought and fire frequency
532 in the region. Model simulations by Wang et al., (2018) suggest that the peatlands of the Pastaza-
533 Marañon Foreland Basin are susceptible to changing from a carbon sink to a carbon source if
534 conditions continue to get warmer and drier within the region. Our observations and analyses for
535 an underrepresented Amazonian palm swamp peatland in the Pastaza-Marañon Foreland Basin
536 strongly support these findings.

537 The current rate of carbon accumulation, as measured from EC, cannot be compared directly to
538 the long-term apparent rate of carbon accumulation (LARCA) as derived from peat core data
539 (Ratcliffe et al., 2018; Young et al., 2019) because carbon accumulated in the current year has
540 undergone less decomposition than older peats, which continue to lose carbon for thousands of
541 years (Clymo et al., 1998). In fact, most of the recently accumulated carbon will not become part
542 of the long-term peat. This is why the contemporary carbon balance of the Quistococha palm
543 swamp forest is large (average sink = $464 \text{ g C m}^{-2} \text{ y}^{-1}$) relative to the long-term apparent peat
544 carbon accumulation rate (LARCA = $74 \text{ g C m}^{-2} \text{ y}^{-1}$). Additional reasons for this disparity could
545 also be related to: 1) a short record of EC measurements that do not capture the potential range of
546 inter-annual variability of NEE at this site; 2) the dynamic history of paleo-vegetation; and 3)
547 potential carbon losses in the form of disturbance and/or lateral DOC/DIC exports. Paleoecological
548 evidence shows that the vegetation has changed dramatically at this site over the past 200 years
549 (Lähteenoja et al., 2009) suggesting a potential for periods of disturbance and net carbon losses
550 (Saleska et al., 2003). The site is located in close proximity to the Amazon river network so that
551 channel meandering and avulsion have the potential to cause disturbances by removing or burying
552 peat carbon (Salo et al., 1986). Drainage likely represents a significant carbon export from this
553 watershed. Hastie et al., (2019) have shown that there is large inter-annual variability in the net
554 carbon export from Amazonian river flood plains, which represents a significant fraction of carbon
555 fixed by these forest ecosystems. Indeed, our energy balance measurements indicated that annual
556 evaporation accounted for only 36% of the annual precipitation, which implies that drainage and
557 runoff are significant. Measurements of DOC/DIC transport, however, have not yet been estimated
558 for these palm swamp peatlands and this represents a potentially large uncertainty in our carbon
559 accounting.

560 A global warming potential (GWP) analysis, based on the annual budgets of contemporary CO₂
561 and CH₄ flux measurements, does not necessarily reflect the long-term carbon dynamics of a
562 peatland or the temporal dynamics and equilibrium response times of radiative forcing associated
563 with changes in atmospheric burdens of CO₂ and CH₄ (Frolking et al., 2006; Neubauer, 2014).
564 Here, we estimate the GWP to help assess the relative importance of contemporary CH₄ emissions
565 versus CO₂ uptake on the climate system. The GWP, on a 100-year time horizon, for CH₄ is
566 estimated at 28 with no carbon cycle feedbacks and 34 when including these feedbacks (Myhre et
567 al., 2013). Therefore, based on the above annual budget estimates, the CO₂ equivalence of the CH₄
568 emissions is estimated to be 821 to 997 g CO_{2eq} m⁻² y⁻¹, indicating that this Amazonian palm
569 swamp peatland has a net negative radiative forcing effect in terms of its CO₂ budget (i.e. after
570 converting from CO₂-C to CO₂, 1705 g CO₂ m⁻² y⁻¹ and 1694 g CO₂ m⁻² y⁻¹) and CH₄ budgets.
571 However, this does not include the potential impacts of DIC/DOC transport and cycling offsite.
572 Further, the sensitivity of NEE CO₂ to warmer and drier conditions implies that the carbon sink of
573 these palm swamp peatlands could be reduced substantially by increasing tropical temperatures
574 (Gloor et al., 2018) or through the increased intensity or frequency of drought events. Such
575 feedbacks require longer-term observations to help understand the potential role of acclimation in
576 these systems.

577 **4. Conclusions**

578 Our research has provided the first observations and analyses of the energy, CO₂, and CH₄ balance
579 of an Amazonian palm swamp forested peatland. The results suggest that these peatlands may be
580 an important CO₂ sink and a CH₄ source. While light-response analyses and flux partitioning
581 support that photosynthetic activity in these systems is inhibited by high photosynthetic photon
582 flux density, air temperatures, and vapor pressure deficits, latent heat flux appeared to be

583 insensitive to these climate drivers. There is also evidence for increased ecosystem respiration
584 under drier conditions and lower water table positions. Methane emissions were enhanced during
585 the wet season, but did not show a significant diel pattern or temperature dependence. Overall, the
586 CH₄ NEE budget was similar to that reported for other tropical peatlands and generally larger than
587 sub-boreal and northern peatlands. Considering the global warming potential of CH₄ on a 100-year
588 time horizon, we estimate that these ecosystems have a net radiative cooling effect in terms of their
589 carbon budget. Further research is required to reduce the uncertainties in the annual carbon budget,
590 carbon losses associated with runoff and drainage, and the processes controlling CH₄ production,
591 consumption, and transport between the ecosystem and atmosphere. This is a very challenging
592 environment for conducting long-term eddy covariance observations, but such measurements are
593 critical to understanding the longer-term feedbacks associated with changes in
594 hydrometeorological forcings.

595 **Acknowledgements**

596 This material is based upon work supported by the U.S. Department of Energy, Office of Science,
597 Office of Biological and Environmental Research, Terrestrial Ecosystem Science Program, under
598 Award Number DE-SC0020167. JDW acknowledges support provided by the U.S. Department of
599 Energy, Office of Science, Office of Biological and Environmental Research Program, Oak Ridge
600 National Laboratory's Terrestrial Ecosystem Science-Science Focus Area; ORNL is managed by
601 UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. This
602 material is also based on work supported by the U.S. interagency SilvaCarbon program and the
603 Sustainable Wetlands Adaptation and Mitigation Program (SWAMP) program. SilvaCarbon
604 is funded by the U.S. Agency for International Development (USAID) and U.S. Department of
605 State, and is implemented by the U.S. Forest Service (USFS) and U.S. Geological Survey.

606 SWAMP is funded by USAID and implemented by USFS and the Center for International Forestry
607 Research. HCQ's contribution was supported by the U.S. National Science Foundation under
608 Grant No 1355066. The data used to support this work have been submitted to the AmeriFlux
609 program and available for download at: <https://ameriflux.lbl.gov/sites/siteinfo/PE-QFR>.

610

611 **References**

612 Baldocchi, D.D., Hicks, B.B., Meyers, T.P., 1988. Measuring biosphere-atmosphere exchanges
613 of biologically related gases with micrometeorological methods. *Ecology*.

614 <https://doi.org/10.2307/1941631>

615 Bhomia, R.K., van Lent, J., Rios, J.M.G., Hergoualc'h, K., Coronado, E.N.H., Murdiyarso, D.,
616 2019. Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater
617 peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon. *Mitig. Adapt.*
618 *Strateg. Glob. Chang.* <https://doi.org/10.1007/s11027-018-9809-9>

619 Blanken, P.D., Rouse, W.R., 1996. Evidence of Water Conservation Mechanisms in Several
620 Subarctic Wetland Species. *J. Appl. Ecol.* <https://doi.org/10.2307/2404954>

621 Bonal, D., Bosc, A., Ponton, S., Goret, J.Y., Burban, B.T., Gross, P., Bonnefond, J.M., Elbers, J.,
622 Longdoz, B., Epron, D., Guehl, J.M., Granier, A., 2008. Impact of severe dry season on net
623 ecosystem exchange in the Neotropical rainforest of French Guiana. *Glob. Chang. Biol.*
624 <https://doi.org/10.1111/j.1365-2486.2008.01610.x>

625 Buckley, T.N., 2019. How do stomata respond to water status? *New Phytol.*
626 <https://doi.org/10.1111/nph.15899>

627 Buckley, T.N., 2017. Modeling stomatal conductance. *Plant Physiol.*
628 <https://doi.org/10.1104/pp.16.01772>

629 Burba, G.G., McDermitt, D.K., Grelle, A., Anderson, D.J., Xu, L., 2008. Addressing the
630 influence of instrument surface heat exchange on the measurements of CO₂ flux from open-
631 path gas analyzers. *Glob. Chang. Biol.* 14, 1854–1876. <https://doi.org/10.1111/j.1365-2486.2008.01606.x>

633 Carswell, F.E., Costa, A.L., Palheta, M., Malhi, Y., Meir, P., Costa, J.D.P.R., Ruivo, M.D.L.,
634 Leal, L.D.S.M., Costa, J.M.N., Clement, R.J., Grace, J., 2002. Seasonality in CO₂ and H₂O
635 flux at an eastern Amazonian rain forest. *J. Geophys. Res. D Atmos.*
636 <https://doi.org/10.1029/2000JD000284>

637 Chen, Y., Randerson, J.T., Morton, D.C., 2015. Tropical North Atlantic ocean-atmosphere
638 interactions synchronize forest carbon losses from hurricanes and Amazon fires. *Geophys.*
639 *Res. Lett.* <https://doi.org/10.1002/2015GL064505>

640 Chu, H., Chen, J., Gottgens, J.F., Ouyang, Z., John, R., Czajkowski, K., Becker, R., 2014. Net
641 ecosystem methane and carbon dioxide exchanges in a Lake Erie coastal marsh and a
642 nearby cropland. *J. Geophys. Res. Biogeosciences.* <https://doi.org/10.1002/2013JG002520>

643 Clymo, R.S., Turunen, J., Tolonen, K., 1998. Carbon Accumulation in Peatland. *Oikos.*
644 <https://doi.org/10.2307/3547057>

645 Da Rocha, H.R., Manzi, A.O., Cabral, O.M., Miller, S.D., Goulden, M.L., Saleska, S.R., Coupe,
646 N.R., Wofsy, S.C., Borma, L.S., Artaxo, R., Vourlitis, G., Nogueira, J.S., Cardoso, F.L.,
647 Nobre, A.D., Kruijt, B., Freitas, H.C., Von Randow, C., Aguiar, R.G., Maia, J.F., 2009.

648 Patterns of water and heat flux across a biome gradient from tropical forest to savanna in
649 brazil. J. Geophys. Res. Biogeosciences. <https://doi.org/10.1029/2007JG000640>

650 DAAC, O., 2018. Fixed Sites Subsetting and Visualization Tool.

651 Dargie, G.C., Lewis, S.L., Lawson, I.T., Mitchard, E.T.A., Page, S.E., Bocko, Y.E., Ifo, S.A.,
652 2017. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature.
653 <https://doi.org/10.1038/nature21048>

654 Deshmukh, C.S., Julius, D., Evans, C.D., Nardi, Susanto, A.P., Page, S.E., Gauci, V., Laurén, A.,
655 Sabiham, S., Agus, F., Asyhari, A., Kurnianto, S., Suardiwerianto, Y., Desai, A.R., 2020.
656 Impact of forest plantation on methane emissions from tropical peatland. Glob. Chang. Biol.
657 <https://doi.org/10.1111/gcb.15019>

658 Deventer, M.J., Bogoev, I., Roman, T., Kolka, R.K., Erickson, M., Lee, X., Baker, J.M., Millet,
659 D.B., Griffis, T.J., 2020. Biases in open-path carbon dioxide flux measurements: Roles of
660 instrument surface heat exchange and analyzer temperature sensitivity. Agric. For.
661 Meteorol. in review.

662 Deventer, M.J., Griffis, T.J., Roman, D.T., Kolka, R.K., Wood, J.D., Erickson, M., Baker, J.M.,
663 Millet, D.B., 2019. Error characterization of methane fluxes and budgets derived from a
664 long-term comparison of open- and closed-path eddy covariance systems. Agric. For.
665 Meteorol. 278, 107638. <https://doi.org/10.1016/j.agrformet.2019.107638>

666 Draper, F.C., Roucoux, K.H., Lawson, I.T., Mitchard, E.T.A., Honorio Coronado, E.N.,
667 Lähteenoja, O., Montenegro, L.T., Sandoval, E.V., Zaráte, R., Baker, T.R., 2014. The
668 distribution and amount of carbon in the largest peatland complex in Amazonia. Environ.

669 Res. Lett. <https://doi.org/10.1088/1748-9326/9/12/124017>

670 Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G.,
671 Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger,
672 D., Jensen, N.O., Katul, G., Keronen, P., Kowalski, A., Lai, C.T., Law, B.E., Meyers, T.,
673 Moncrieff, J., Moors, E., Munger, J.W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker,
674 A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001. Gap filling
675 strategies for defensible annual sums of net ecosystem exchange. *Agric. For. Meteorol.*
676 [https://doi.org/10.1016/S0168-1923\(00\)00225-2](https://doi.org/10.1016/S0168-1923(00)00225-2)

677 Finn, D., Robert, Ziv-el, M., Haren, J. Van, Park, J.G., 2020. Methanogens and Methanotrophs
678 Show Nutrient-Dependent Community Assemblage Patterns Across Tropical Peatlands of
679 the Pastaza-Marañón Basin , Peruvian Amazonia 11, 1–15.
680 <https://doi.org/10.3389/fmicb.2020.00746>

681 Fisher, J.B., Malhi, Y., Bonal, D., Da Rocha, H.R., De Araújo, A.C., Gamo, M., Goulden, M.L.,
682 Rano, T.H., Huete, A.R., Kondo, H., Kumagai, T., Loescher, H.W., Miller, S., Nobre, A.D.,
683 Nouvellon, Y., Oberbauer, S.F., Panuthai, S., Rouspard, O., Saleska, S., Tanaka, K.,
684 Tanaka, N., Tu, K.P., Von Randow, C., 2009. The land-atmosphere water flux in the
685 tropics. *Glob. Chang. Biol.* <https://doi.org/10.1111/j.1365-2486.2008.01813.x>

686 Fonseca, L.D.M., Dalagnol, R., Malhi, Y., Rifai, S.W., Costa, G.B., Silva, T.S.F., Da Rocha,
687 H.R., Tavares, I.B., Borma, L.S., 2019. Phenology and seasonal ecosystem productivity in
688 an Amazonian floodplain forest. *Remote Sens.* <https://doi.org/10.3390/rs11131530>

689 Frankenberg, C., Meirink, J.F., Van Weele, M., Platt, U., Wagner, T., 2005. Assessing methane
690 emissions from global space-borne observations. *Science* (80-).

691 <https://doi.org/10.1126/science.1106644>

692 Fratini, G., Ibrom, A., Arriga, N., Burba, G., Papale, D., 2012. Relative humidity effects on
693 water vapour fluxes measured with closed-path eddy-covariance systems with short
694 sampling lines. *Agric. For. Meteorol.* 165, 53–63.

695 <https://doi.org/10.1016/j.agrformet.2012.05.018>

696 Frolking, S., Roulet, N., Fuglestvedt, J., 2006. How northern peatlands influence the Earth's
697 radiative budget: Sustained methane emission versus sustained carbon sequestration. *J.*
698 *Geophys. Res. Biogeosciences.* <https://doi.org/10.1029/2005JG000091>

699 Gloor, E., Wilson, C., Chipperfield, M.P., Chevallier, F., Buermann, W., Boesch, H., Parker, R.,
700 Somkuti, P., Gatti, L. V., Correia, C., Domingues, L.G., Peters, W., Miller, J., Deeter, M.N.,
701 Sullivan, M.J.P., 2018. Tropical land carbon cycle responses to 2015/16 El Niño as
702 recorded by atmospheric greenhouse gas and remote sensing data. *Philos. Trans. R. Soc. B*
703 *Biol. Sci.* 373. <https://doi.org/10.1098/rstb.2017.0302>

704 Goodrich, J.P., Oechel, W.C., Gioli, B., Moreaux, V., Murphy, P.C., Burba, G., Zona, D., 2016.
705 Impact of different eddy covariance sensors, site set-up, and maintenance on the annual
706 balance of CO₂ and CH₄ in the harsh Arctic environment. *Agric. For. Meteorol.*
707 <https://doi.org/10.1016/j.agrformet.2016.07.008>

708 Grace, John, Lloyd, J., McIntyre, J., Miranda, A.C., Meir, P., Miranda, H.S., Nobre, C.,
709 Moncrieff, J., Massheder, J., Malhi, Y., Wright, I., Gash, J., 1995. Carbon dioxide uptake by
710 an undisturbed tropical rain forest in Southwest Amazonia, 1992 to 1993. *Science* (80-).
711 <https://doi.org/10.1126/science.270.5237.778>

712 Grace, J., Lloyd, J., McIntyre, J., Miranda, A.C., Meir, P., Miranda, H.S., Nobre, C., Moncrieff,
713 J., Massheder, J., Malhi, Y., Wright, I., Gash, J., 1995. Carbon-Dioxide Uptake by An
714 Undisturbed Tropical Rain-Forest in Southwest Amazonia, 1992 to 1993 15. *Science* (80-).
715 270, 778–780.

716 Griffis, T.J., Black, T.A., Morgenstern, K., Barr, A.G., Nesic, Z., Drewitt, G.B., Gaumont-Guay,
717 D., McCaughey, J.H., 2003. Ecophysiological controls on the carbon balances of three
718 southern boreal forests. *Agric. For. Meteorol.* 117, 53–71.

719 Gumbrecht, T., Roman-Cuesta, R.M., Verchot, L., Herold, M., Wittmann, F., Householder, E.,
720 Herold, N., Murdiyarso, D., 2017. An expert system model for mapping tropical wetlands
721 and peatlands reveals South America as the largest contributor. *Glob. Chang. Biol.*
722 <https://doi.org/10.1111/gcb.13689>

723 Hastie, A., Lauerwald, R., Ciais, P., Regnier, P., 2019. Aquatic carbon fluxes dampen the overall
724 variation of net ecosystem productivity in the Amazon basin: An analysis of the interannual
725 variability in the boundless carbon cycle. *Glob. Chang. Biol.*
726 <https://doi.org/10.1111/gcb.14620>

727 Hergoualc'h, K., Dezzeo, N., Verchot, L. V., Martius, C., van Lent, J., del Aguila Pasquel, J.,
728 Lopez, M., 2020. Spatial and temporal variability of soil N₂O and CH₄ fluxes along a
729 degradation gradient in a palm swamp peat forest in the Peruvian Amazon. *Glob. Chang.*
730 *Biol.* in review.

731 Hergoualc'h, K., Gutiérrez-Vélez, V.H., Menton, M., Verchot, L. V., 2017. Characterizing
732 degradation of palm swamp peatlands from space and on the ground: An exploratory study
733 in the Peruvian Amazon. *For. Ecol. Manage.* <https://doi.org/10.1016/j.foreco.2017.03.016>

734 Hergoualc'h, K., Verchot, L. V., 2014. Greenhouse gas emission factors for land use and land-
735 use change in Southeast Asian peatlands. *Mitig. Adapt. Strateg. Glob. Chang.*
736 <https://doi.org/10.1007/s11027-013-9511-x>

737 Hirano, T., Segah, H., Kusin, K., Limin, S., Takahashi, H., Osaki, M., 2012. Effects of
738 disturbances on the carbon balance of tropical peat swamp forests. *Glob. Chang. Biol.*
739 <https://doi.org/10.1111/j.1365-2486.2012.02793.x>

740 Horst, T.W., Lenschow, D.H., 2009. Attenuation of scalar fluxes measured with spatially-
741 displaced sensors. *Boundary-Layer Meteorol.* <https://doi.org/10.1007/s10546-008-9348-0>

742 Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W.,
743 Nemani, R.R., Myneni, R., 2006. Amazon rainforests green-up with sunlight in dry season.
744 *Geophys. Res. Lett.* 33, 2–5. <https://doi.org/10.1029/2005GL025583>

745 Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F.,
746 de Camargo, P.B., Wofsy, S.C., 2007. Seasonal controls on the exchange of carbon and
747 water in an Amazonian rain forest. *J. Geophys. Res. Biogeosciences.*
748 <https://doi.org/10.1029/2006JG000365>

749 Kelly, T.J., Lawson, I.T., Roucoux, K.H., Baker, T.R., Jones, T.D., Sanderson, N.K., 2017. The
750 vegetation history of an Amazonian domed peatland. *Palaeogeogr. Palaeoclimatol.*
751 *Palaeoecol.* <https://doi.org/10.1016/j.palaeo.2016.11.039>

752 Kiew, F., Hirata, R., Hirano, T., Wong, G.X., Aeries, E.B., Musin, K.K., Waili, J.W., Lo, K.S.,
753 Shimizu, M., Melling, L., 2018. CO₂ balance of a secondary tropical peat swamp forest in
754 Sarawak, Malaysia. *Agric. For. Meteorol.* <https://doi.org/10.1016/j.agrformet.2017.10.022>

755 Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J.G., Dlugokencky, E.J.,
756 Bergamaschi, P., Bergmann, D., Blake, D.R., Bruhwiler, L., Cameron-Smith, P., Castaldi,
757 S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E.L., Houweling, S., Josse,
758 B., Fraser, P.J., Krummel, P.B., Lamarque, J.F., Langenfelds, R.L., Le Quéré, C., Naik, V.,
759 O'doherty, S., Palmer, P.I., Pison, I., Plummer, D., Poulter, B., Prinn, R.G., Rigby, M.,
760 Ringeval, B., Santini, M., Schmidt, M., Shindell, D.T., Simpson, I.J., Spahni, R., Steele,
761 L.P., Strode, S.A., Sudo, K., Szopa, S., Van Der Werf, G.R., Voulgarakis, A., Van Weele,
762 M., Weiss, R.F., Williams, J.E., Zeng, G., 2013. Three decades of global methane sources
763 and sinks. *Nat. Geosci.* <https://doi.org/10.1038/ngeo1955>

764 Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P., 2015. A simple two-dimensional
765 parameterisation for Flux Footprint Prediction (FFP). *Geosci. Model Dev.*
766 <https://doi.org/10.5194/gmd-8-3695-2015>

767 Knox, S.H., Jackson, R.B., Poulter, B., McNicol, G., Fluet-Chouinard, E., Zhang, Z., Hugelius,
768 G., Bousquet, P., Canadell, J.G., Saunois, M., Papale, D., Chu, H., Keenan, T.F., Baldocchi,
769 D., Torn, M.S., Mammarella, I., Trotta, C., Aurela, M., Bohrer, G., Campbell, D.I., Cescatti,
770 A., Chamberlain, S., Chen, J., Chen, W., Dengel, S., Desai, A.R., Euskirchen, E., Friborg,
771 T., Gasbarra, D., Goded, I., Goeckede, M., Heimann, M., Helbig, M., Hirano, T., Hollinger,
772 D.Y., Iwata, H., Kang, M., Klatt, J., Krauss, K.W., Kutzbach, L., Lohila, A., Mitra, B.,
773 Morin, T.H., Nilsson, M.B., Niu, S., Noormets, A., Oechel, W.C., Peichl, M., Peltola, O.,
774 Reba, M.L., Richardson, A.D., Runkle, B.R.K., Ryu, Y., Sachs, T., Schäfer, K.V.R.,
775 Schmid, H.P., Shurpali, N., Sonnentag, O., Tang, A.C.I., Ueyama, M., Vargas, R., Vesala,
776 T., Ward, E.J., Windham-Myers, L., Wohlfahrt, G., Zona, D., 2019. FluXNET-CH4
777 synthesis activity objectives, observations, and future directions. *Bull. Am. Meteorol. Soc.*

778 <https://doi.org/10.1175/BAMS-D-18-0268.1>

779 Knox, S.H., Sturtevant, C., Matthes, J.H., Koteen, L., Verfaillie, J., Baldocchi, D., 2015.

780 Agricultural peatland restoration: Effects of land-use change on greenhouse gas (CO₂ and

781 CH₄) fluxes in the Sacramento-San Joaquin Delta. *Glob. Chang. Biol.*

782 <https://doi.org/10.1111/gcb.12745>

783 Koren, G., Van Schaik, E., Araújo, A.C., Boersma, K.F., Gärtner, A., Killaars, L., Kooreman,

784 M.L., Kruijt, B., Van Der Laan-Luijkx, I.T., Von Randow, C., Smith, N.E., Peters, W.,

785 2018. Widespread reduction in sun-induced fluorescence from the Amazon during the

786 2015/2016 El Niño. *Philos. Trans. R. Soc. B Biol. Sci.* 373.

787 <https://doi.org/10.1098/rstb.2017.0408>

788 Körner, C., 1995. Leaf Diffusive Conductances in the Major Vegetation Types of the Globe, in:

789 *Ecophysiology of Photosynthesis*. https://doi.org/10.1007/978-3-642-79354-7_22

790 Kosugi, Y., Takanashi, S., Ohkubo, S., Matsuo, N., Tani, M., Mitani, T., Tsutsumi, D., Nik,

791 A.R., 2008. CO₂ exchange of a tropical rainforest at Pasoh in Peninsular Malaysia. *Agric.*

792 *For. Meteorol.* <https://doi.org/10.1016/j.agrformet.2007.10.007>

793 Lähteenoja, O., Ruokolainen, K., Schulman, L., Alvarez, J., 2009a. Amazonian floodplains

794 harbour minerotrophic and ombrotrophic peatlands. *Catena*.

795 <https://doi.org/10.1016/j.catena.2009.06.006>

796 Lähteenoja, O., Ruokolainen, K., Schulman, L., Oinonen, M., 2009b. Amazonian peatlands: An

797 ignored C sink and potential source. *Glob. Chang. Biol.* <https://doi.org/10.1111/j.1365-2486.2009.01920.x>

799 Landsberg, J.J., Gower, S.T., 1997. Ecosystem Process Models, in: Applications of Physiological
800 Ecology to Forest Management. <https://doi.org/10.1016/b978-012435955-0/50009-1>

801 Lasslop, G., Reichstein, M., Papale, D., Richardson, A., Arneth, A., Barr, A., Stoy, P.,
802 Wohlfahrt, G., 2010. Separation of net ecosystem exchange into assimilation and respiration
803 using a light response curve approach: Critical issues and global evaluation. Glob. Chang.
804 Biol. <https://doi.org/10.1111/j.1365-2486.2009.02041.x>

805 Leifeld, J., Menichetti, L., 2018. The underappreciated potential of peatlands in global climate
806 change mitigation strategies /704/47/4113 /704/106/47 article. Nat. Commun.
807 <https://doi.org/10.1038/s41467-018-03406-6>

808 Lilleskov, E., McCullough, K., Hergoualc'h, K., del Castillo Torres, D., Chimner, R.,
809 Murdiyarso, D., Kolka, R., Bourgeau-Chavez, L., Hribljan, J., del Aguila Pasquel, J.,
810 Wayson, C., 2019. Is Indonesian peatland loss a cautionary tale for Peru? A two-country
811 comparison of the magnitude and causes of tropical peatland degradation. Mitig. Adapt.
812 Strateg. Glob. Chang. <https://doi.org/10.1007/s11027-018-9790-3>

813 Lloyd, J., Taylor, J.A., 1994. On the Temperature Dependence of Soil Respiration. Funct. Ecol.
814 <https://doi.org/10.2307/2389824>

815 Luysaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichstein, M., Papale, D., Piao, S.L.,
816 Schulze, E.D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C.,
817 Black, K.G., Bonal, D., Bonnefond, J.M., Chambers, J., Ciais, P., Cook, B., Davis, K.J.,
818 Dolman, A.J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T.,
819 Grunwald, T., Guidolotti, G., Hanson, P.J., Harding, R., Hollinger, D.Y., Hutyra, L.R.,
820 Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., 2007. CO₂-balance of boreal,

821 temperate and tropical forests derived from a global database. *Glob. Chang. Biol.* 13, 2509–
822 2537. <https://doi.org/10.1111/j.1365-2486.2007.01439.x>

823 Malhi, Y., Nobre, A.D., Grace, J., Kruijt, B., Pereira, M.G.P., Culf, A., Scott, S., 1998. Carbon
824 dioxide transfer over a Central Amazonian rain forest. *J. Geophys. Res. Atmos.*
825 <https://doi.org/10.1029/98JD02647>

826 Malhi, Y., Pegoraro, E., Nobre, A.D., Pereira, M.G.P., Grace, J., Culf, A.D., Clement, R., 2002.
827 Energy and water dynamics of a central Amazonian rain forest. *J. Geophys. Res. D Atmos.*
828 <https://doi.org/10.1029/2001JD000623>

829 Malhi, Y., Rowland, L., Aragão, L.E.O.C., Fisher, R.A., 2018. New insights into the variability
830 of the tropical land carbon cycle from the El Niño of 2015/2016. *Philos. Trans. R. Soc. B
831 Biol. Sci.* 373. <https://doi.org/10.1098/rstb.2017.0298>

832 Moncrieff, J., Clement, R., Finnigan, J., Meyers, T., 2006. Averaging, Detrending, and Filtering
833 of Eddy Covariance Time Series, in: *Handbook of Micrometeorology*.
834 https://doi.org/10.1007/1-4020-2265-4_2

835 Montzka, S.A., Krol, M., Dlugokencky, E., Hall, B., Jöckel, P., Lelieveld, J., 2011. Small
836 interannual variability of global atmospheric hydroxyl. *Science* (80-.).
837 <https://doi.org/10.1126/science.1197640>

838 Morgenstern, K., Black, T.A., Humphreys, E.R., Griffis, T.J., Drewitt, G.B., Cai, T., Nesic, Z.,
839 Spittlehouse, D.L., Livingston, N.J., 2004. Sensitivity and uncertainty of the carbon balance
840 of a Pacific Northwest Douglas-fir forest during an El Niño/La Niña cycle. *Agric. For.
841 Meteorol.* 123. <https://doi.org/10.1016/j.agrformet.2003.12.003>

842 Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D.,
843 Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura,
844 T., Zhang, H., 2013. Anthropogenic and Natural Radiative Forcing. *Clim. Chang.* 2013
845 Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang.
846 659–740. <https://doi.org/10.1017/CBO9781107415324.018>

847 Myneni, R., Knyazikhin, Y., Park, T., 2015. MCD15A2H MODIS/Terra+Aqua Leaf Area
848 Index/FPAR 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS L. Process. DAAC.
849 <https://doi.org/10.5067/MODIS/MCD15A2H.006>

850 Myneni, R.B., Yang, W., Nemani, R.R., Huete, A.R., Dickinson, R.E., Knyazikhin, Y., Didan,
851 K., Fu, R., Negrón Juárez, R.I., Saatchi, S.S., Hashimoto, H., Ichii, K., Shabanov, N. V.,
852 Tan, B., Ratana, P., Privette, J.L., Morisette, J.T., Vermote, E.F., Roy, D.P., Wolfe, R.E.,
853 Friedl, M.A., Running, S.W., Votava, P., El-Saleous, N., Devadiga, S., Su, Y., Salomonson,
854 V. V., 2007. Large seasonal swings in leaf area of Amazon rainforests. *Proc. Natl. Acad.*
855 *Sci. U. S. A.* <https://doi.org/10.1073/pnas.0611338104>

856 Nemitz, E., Mammarella, I., Ibrom, A., Aurela, M., Burba, G.G., Dengel, S., Gielen, B., Grelle,
857 A., Heinesch, B., Herbst, M., Hörtnagl, L., Klemedtsson, L., Lindroth, A., Lohila, A.,
858 McDermitt, D.K., Meier, P., Merbold, L., Nelson, D., Nicolini, G., Nilsson, M.B., Peltola,
859 O., Rinne, J., Zahniser, M., 2018. Standardisation of eddy-covariance flux measurements of
860 methane and nitrous oxide. *Int. Agrophysics.* <https://doi.org/10.1515/intag-2017-0042>

861 Neubauer, S.C., 2014. On the challenges of modeling the net radiative forcing of wetlands:
862 Reconsidering Mitsch et al. 2013. *Landsc. Ecol.* <https://doi.org/10.1007/s10980-014-9986-1>

863 Nisbet, E.G., Dlugokencky, E.J., Manning, M.R., Lowry, D., Fisher, R.E., France, J.L., Michel,

864 S.E., Miller, J.B., White, J.W.C., Vaughn, B., Bousquet, P., Pyle, J.A., Warwick, N.J., Cain,
865 M., Brownlow, R., Zazzeri, G., Lanoisellé, M., Manning, A.C., Gloor, E., Worthy, D.E.J.,
866 Brunke, E., Labuschagne, C., Wolff, E.W., Ganesan, A.L., 2016. Global Biogeochemical
867 Cycles 1–15. <https://doi.org/10.1002/2016GB005406>.Received

868 Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A.,
869 Blanken, P.D., Noormets, A., Sulman, B.N., Scott, R.L., Wang, L., Phillips, R.P., 2016. The
870 increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat.
871 Clim. Chang. <https://doi.org/10.1038/nclimate3114>

872 Olson, D., Griffis, T.J., Noormets, A., Kolka, R., Chen, J., 2013. Interannual, seasonal, and
873 retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. J.
874 Geophyscial Res. - Biogeosciences 118, 226–238. <https://doi.org/10.1002/jgrg.20031>

875 Otieno, D., Lindner, S., Muhr, J., Borken, W., 2012. Sensitivity of peatland herbaceous
876 vegetation to vapor pressure deficit influences net ecosystem CO₂ exchange. Wetlands.
877 <https://doi.org/10.1007/s13157-012-0322-8>

878 Page, S.E., Rieley, J.O., Banks, C.J., 2011. Global and regional importance of the tropical
879 peatland carbon pool. Glob. Chang. Biol. <https://doi.org/10.1111/j.1365-2486.2010.02279.x>

880 Pangala, S.R., Enrich-prast, A., Basso, L.S., Peixoto, R.B., Bastviken, D., Marotta, H., Silva, L.,
881 Calazans, B., Hornibrook, E.R.C., Luciana, V., 2017. Large emissions from floodplain trees
882 close the Amazon methane budget. Nat. Publ. Gr. 552, 230–234.
883 <https://doi.org/10.1038/nature24639>

884 Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B.,

885 Rambal, S., Valentini, R., Vesala, T., Yakir, D., 2006. Towards a standardized processing of
886 Net Ecosystem Exchange measured with eddy covariance technique: algorithms and
887 uncertainty estimation. *Biogeosciences* 3, 571–583.

888 Ratcliffe, J., Andersen, R., Anderson, R., Newton, A., Campbell, D., Mauquoy, D., Payne, R.,
889 2018. Contemporary carbon fluxes do not reflect the long-term carbon balance for an
890 Atlantic blanket bog. *Holocene*. <https://doi.org/10.1177/0959683617715689>

891 Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C.,
892 Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H.,
893 Janous, D., Knöhl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T.,
894 Miglietta, F., Ourcival, J.M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen,
895 J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R., 2005. On the separation of
896 net ecosystem exchange into assimilation and ecosystem respiration: Review and improved
897 algorithm. *Glob. Chang. Biol.* <https://doi.org/10.1111/j.1365-2486.2005.001002.x>

898 Restrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen,
899 B., Cabral, O.M.R., de Camargo, P.B., Cardoso, F.L., da Costa, A.C.L., Fitzjarrald, D.R.,
900 Goulden, M.L., Kruijt, B., Maia, J.M.F., Malhi, Y.S., Manzi, A.O., Miller, S.D., Nobre,
901 A.D., von Randow, C., Sá, L.D.A., Sakai, R.K., Tota, J., Wofsy, S.C., Zanchi, F.B.,
902 Saleska, S.R., 2013. What drives the seasonality of photosynthesis across the Amazon
903 basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network.
904 *Agric. For. Meteorol.* <https://doi.org/10.1016/j.agrformet.2013.04.031>

905 Roucoux, K.H., Lawson, I.T., Jones, T.D., Baker, T.R., Coronado, E.N.H., Gosling, W.D.,
906 Lähteenoja, O., 2013. Vegetation development in an Amazonian peatland. *Palaeogeogr.*

907 Palaeoclimatol. Palaeoecol. 374, 242–255. <https://doi.org/10.1016/j.palaeo.2013.01.023>

908 Sabbatini, S., Mammarella, I., Arriga, N., Fratini, G., Graf, A., Hörtnagl, L., Ibrom, A., Longdoz,
909 B., Mauder, M., Merbold, L., Metzger, S., Montagnani, L., Pitacco, A., Rebmann, C.,
910 Sedlák, P., Šigut, L., Vitale, D., Papale, D., 2018. Eddy covariance raw data processing for
911 CO 2 and energy fluxes calculation at ICOS ecosystem stations. Int. Agrophysics.
912 <https://doi.org/10.1515/intag-2017-0043>

913 Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M.L., Wofsy, S.C., Da Rocha, H.R., De
914 Camargo, P.B., Crill, P., Daube, B.C., De Freitas, H.C., Hutyra, L., Keller, M., Kirchhoff,
915 V., Menton, M., Munger, J.W., Pyle, E.H., Rice, A.H., Silva, H., 2003. Carbon in Amazon
916 Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses. Science (80-.).
917 <https://doi.org/10.1126/science.1091165>

918 Saleska, S.R., Wu, J., Guan, K., Araujo, A.C., Huete, A., Nobre, A.D., Restrepo-Coupe, N.,
919 2016. Dry-season greening of Amazon forests. Nature. <https://doi.org/10.1038/nature16457>

920 Salo, J., Kalliola, R., Häkkinen, I., Mäkinen, Y., Niemelä, P., Puhakka, M., Coley, P.D., 1986.
921 River dynamics and the diversity of Amazon lowland forest. Nature.
922 <https://doi.org/10.1038/322254a0>

923 Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.G., Dlugokencky, E.J.,
924 Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F.N., Castaldi,
925 S., Jackson, R.B., Alexe, M., Arora, V.K., Beerling, D.J., Bergamaschi, P., Blake, D.R.,
926 Brailsford, G., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Frankenberg, C., Gedney,
927 N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.S., Kleinen, T., Krummel,
928 P., Lamarque, J.F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., Melton, J.R.,

929 Morino, I., Naik, V., O'Doherty, S., Parmentier, F.J.W., Patra, P.K., Peng, C., Peng, S.,
930 Peters, G.P., Pison, I., Prinn, R., Ramonet, M., Riley, W.J., Saito, M., Santini, M.,
931 Schroeder, R., Simpson, I.J., Spahni, R., Takizawa, A., Thornton, B.F., Tian, H., Tohjima,
932 Y., Viovy, N., Voulgarakis, A., Weiss, R., Wilton, D.J., Wiltshire, A., Worthy, D., Wunch,
933 D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z., Zhu, Q., 2017. Variability and quasi-decadal
934 changes in the methane budget over the period 2000-2012. *Atmos. Chem. Phys.*
935 <https://doi.org/10.5194/acp-17-11135-2017>

936 Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., Raymond,
937 P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K., Ciais, P., Arora, V.K., Bastviken, D.,
938 Bergamaschi, P., Blake, D.R., Brailsford, G., Bruhwiler, L., Carlson, K.M., Carroll, M.,
939 Castaldi, S., Chandra, N., Crevoisier, C., Crill, P.M., Covey, K., Curry, C.L., Etiope, G.,
940 Frankenberg, C., Gedney, N., Hegglin, M.I., Höglund-Isakson, L., Hugelius, G., Ishizawa,
941 M., Ito, A., Janssens-Maenhout, G., Jensen, K.M., Joos, F., Kleinen, T., Krummel, P.B.,
942 Langenfelds, R.L., Laruelle, G.G., Liu, L., Machida, T., Maksyutov, S., McDonald, K.C.,
943 McNorton, J., Miller, P.A., Melton, J.R., Morino, I., Müller, J., Murgia-Flores, F., Naik, V.,
944 Niwa, Y., Noce, S., O'Doherty, S., Parker, R.J., Peng, C., Peng, S., Peters, G.P.,
945 Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W.J., Rosentreter, J.A., Segers, A.,
946 Simpson, I.J., Shi, H., Smith, S.J., Steele, P.L., Thornton, B.F., Tian, H., Tohjima, Y.,
947 Tubiello, F.N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T.S., van Weele, M., van
948 der Werf, G.R., Weiss, R.F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W.,
949 Zhang, Z., Zhao, Y., Zheng, B., Zhu, Qing, Zhu, Qiuhan, Zhuang, Q., 2020. The Global
950 Methane Budget 2000–2017. *Earth Syst. Sci. Data* 12, 1561–1623.
951 <https://doi.org/10.5194/essd-2019-128>

952 Schaefer, H., Fletcher, S.E.M., Veidt, C., Lassey, K.R., Brailsford, G.W., Bromley, T.M.,

953 Dlugokencky, E.J., Michel, S.E., Miller, J.B., Levin, I., Lowe, D.C., Martin, R.J., Vaughn,

954 B.H., White, J.W.C., 2016. A 21st-century shift from fossil-fuel to biogenic methane

955 emissions indicated by $^{13}\text{CH}_4$. *Science* (80-). <https://doi.org/10.1126/science.aad2705>

956 Shuttleworth, W.J., Gash, J.H.C., Lloyd, C.R., Moore, C.J., Roberts, J., Filho, A.D.O.M., Fisch,

957 G., De Paula Silva Filho, V., Ribeiro, M.D.N.G., Molion, L.C.B., De Abreu Sá, L.D.,

958 Nobre, J.C.A., Cabral, O.M.R., Patel, S.R., Carvalho De Moraes, J., 1984. Eddy correlation

959 measurements of energy partition for Amazonian forest. *Q. J. R. Meteorol. Soc.*

960 <https://doi.org/10.1002/qj.49711046622>

961 Smith, M.N., Stark, S.C., Taylor, T.C., Ferreira, M.L., de Oliveira, E., Restrepo-Coupe, N.,

962 Chen, S., Woodcock, T., dos Santos, D.B., Alves, L.F., Figueira, M., de Camargo, P.B., de

963 Oliveira, R.C., Aragão, L.E.O.C., Falk, D.A., McMahon, S.M., Huxman, T.E., Saleska,

964 S.R., 2019. Seasonal and drought-related changes in leaf area profiles depend on height and

965 light environment in an Amazon forest. *New Phytol.* 222, 1284–1297.

966 <https://doi.org/10.1111/nph.15726>

967 Song-Miao Fan, Wofsy, S.C., Bakwin, P.S., Jacob, D.J., Fitzjarrald, D.R., 1990. Atmosphere-

968 biosphere exchange of CO₂ and O₃ in the central Amazon forest. *J. Geophys. Res.*

969 <https://doi.org/10.1029/jd095id10p16851>

970 Stoy, P.C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M.A., Arneth, A.,

971 Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D., van Gorsel, E.,

972 Kiely, G., Knohl, A., Margolis, H., McCaughey, H., Merbold, L., Montagnani, L., Papale,

973 D., Reichstein, M., Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari,

974 F., Varlagin, A., 2013. A data-driven analysis of energy balance closure across FLUXNET
975 research sites: The role of landscape scale heterogeneity. Agric. For. Meteorol.
976 <https://doi.org/10.1016/j.agrformet.2012.11.004>

977 Tang, A.C.I., Stoy, P.C., Hirata, R., Musin, K.K., Aeries, E.B., Wenceslaus, J., Melling, L.,
978 2018. Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in
979 Sarawak, Malaysian Borneo. Geophys. Res. Lett. <https://doi.org/10.1029/2017GL076457>

980 Taylor, M.A., Celis, G., Ledman, J.D., Bracho, R., Schuur, E.A.G., 2018. Methane Efflux
981 Measured by Eddy Covariance in Alaskan Upland Tundra Undergoing Permafrost
982 Degradation. J. Geophys. Res. Biogeosciences. <https://doi.org/10.1029/2018JG004444>

983 van Lent, J., Hergoualc'h, K., Verchot, L., Oenema, O., van Groenigen, J.W., 2019. Greenhouse
984 gas emissions along a peat swamp forest degradation gradient in the Peruvian Amazon: soil
985 moisture and palm roots effects. Mitig. Adapt. Strateg. Glob. Chang.
986 <https://doi.org/10.1007/s11027-018-9796-x>

987 Vourlitis, G.L., Filho, N.P., Hayashi, M.M.S., de S. Nogueira, J., Caseiro, F.T., Campelo, J.H.,
988 2002. Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato
989 Grosso, Brazil. Water Resour. Res. <https://doi.org/10.1029/2000wr000122>

990 Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F.C., Cadillo-Quiroz, H., 2018. Potential shift
991 from a carbon sink to a source in Amazonian peatlands under a changing climate. Proc.
992 Natl. Acad. Sci. U. S. A. <https://doi.org/10.1073/pnas.1801317115>

993 Webb, E.K., Pearman, G.I., Leuning, R., 1980. Correction of flux measurements for density
994 effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc.

995 <https://doi.org/10.1002/qj.49710644707>

996 Wille, C., Kutzbach, L., Sachs, T., Wagner, D., Pfeiffer, E.M., 2008. Methane emission from
997 Siberian arctic polygonal tundra: Eddy covariance measurements and modeling. *Glob.*
998 *Chang. Biol.* <https://doi.org/10.1111/j.1365-2486.2008.01586.x>

999 Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C.,
1000 Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B.E., Kowalski, A.,
1001 Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., Verma, S.,
1002 2002. Energy balance closure at FLUXNET sites. *Agric. For. Meteorol.* 113, 223–243.

1003 Wong, G.X., Hirata, R., Hirano, T., Kiew, F., Aeries, E.B., Musin, K.K., Waili, J.W., Lo, K.S.,
1004 Melling, L., 2018. Micrometeorological measurement of methane flux above a tropical peat
1005 swamp forest. *Agric. For. Meteorol.* <https://doi.org/10.1016/j.agrformet.2018.03.025>

1006 Wood, J.D., Griffis, T.J., Baker, J.M., Frankenberg, C., Verma, M., Yuen, K., 2017. Multiscale
1007 analyses reveal robust relationships between gross primary production and solar induced
1008 fluorescence. *Geophys. Res. Lett.* 44, 533–541. <https://doi.org/10.1002/2016GL070775>

1009 Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O.,
1010 Reichstein, M., 2018. Basic and extensible post-processing of eddy covariance flux data
1011 with REddyProc. *Biogeosciences*. <https://doi.org/10.5194/bg-15-5015-2018>

1012 Young, D.M., Baird, A.J., Charman, D.J., Evans, C.D., Gallego-Sala, A. V., Gill, P.J., Hughes,
1013 P.D.M., Morris, P.J., Swindles, G.T., 2019. Misinterpreting carbon accumulation rates in
1014 records from near-surface peat. *Sci. Rep.* <https://doi.org/10.1038/s41598-019-53879-8>

1015

1016 **Table 1.** Summary of canopy-scale light-response analyses

Data Selection	A_{max} ($\mu\text{mol m}^{-2} \text{s}^{-1}$)	Alpha (unitless)	R_d ($\mu\text{mol m}^{-2} \text{s}^{-1}$)	Fit
All data	43.0 (41.7 to 44.4)	0.09 (0.08 to 0.11)	11.9 (10.6 to 13.2)	$R^2 = 0.44$; df = 5882
$T_{air} < 25^\circ\text{C}$	57.8 (44.0 to 71.5)	0.07 (0.05 to 0.09)	11.6 (9.6 to 13.7)	$R^2 = 0.35$; df = 1176
$T_{air} > 25^\circ\text{C}$	40.6 (39.1 to 42.1)	0.09 (0.07 to 0.11)	10.7 (8.9 to 12.4)	$R^2 = 0.39$; df = 4703
Wet 2018	58.0 (52.0 to 64.0)	0.10 (0.07 to 0.14)	13.5 (9.4 to 17.6)	$R^2 = 0.51$; df = 616
Dry 2018	37.8 (33.8 to 41.7)	0.06 (0.04 to 0.08)	9.2 (6.4 to 12.0)	$R^2 = 0.41$; df = 797
Wet 2019	45.5 (41.9 to 49.1)	0.09 (0.06 to 0.12)	10.7 (7.8 to 13.7)	$R^2 = 0.51$; df = 820
Dry 2019	40.0 (34.4 to 45.7)	0.06 (0.03 to 0.08)	10.6 (6.9 to 14.3)	$R^2 = 0.38$; df = 637

1017 *numbers in parentheses indicate the 95% confidence intervals (lower, upper)

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040 **Table 2.** Summary of net ecosystem CH₄ exchange and soil CH₄ emissions of select peatland and wetland
1041 sites

Site	Years	Ecosystem	Climate	Flux (g C m ⁻² y ⁻¹)	Reference
Iquitos, Peru, QFR 73° 19' 08.1" W; 3° 50' 03.9" S	2019	palm swamp peat forest	3000 mm; 26 °C	22 ^a	this study
Iquitos, Peru, Quistococha Regional Reserve	2015-2018	intact palm swamp peat forest	3087 mm; 27 °C	14.5 to 31.9 ^b	Hergoualc'h et al., 2020
Maludam National Park, Sarawak, Malaysia 111° 8' E 1° 27' N	2014-2015	peat swamp forest	2540 mm 27.1 °C	9.2 ^a	Wong et al., 2018
Maludam National Park, Sarawak, Malaysia 111° 8' E 1° 27' N	2013	peat swamp forest	not reported for time period	8.8 ^a	Tang et al., 2018
Meta-analysis of sites from Southeast Asia	1990s-2010	intact peat swamp forest	26.3 °C	28.6 ^{b,c}	Hergoualc'h and Verchot, 2014
Winoos Point Marsh Conservancy, Lake Erie, Ohio, USA 82° 59' 45.02" W; 41° 27' 51.28" N	2011-2013	fresh water marsh	840 mm; 9.2 °C	42.3 to 57.0 ^a	Chu et al., 2014
Sacramento-San Joaquin Delta, CA, USA, 121.7650° W; 38.0498° N	2012-2013	restored young wetland	390 mm; 15 °C	53 ^a	Knox et al., 2015
Marcell Experimental Forest, Minnesota, USA -93.489° W 45.505° N	2015-2017	sub-boreal fen	770 mm 3 °C	10.7 to 15.1 ^a	Deventer et al., 2019 Olson et al., 2013
North Slope, Barrow, Alaska, USA 156° 36' 33.04" W; 71° 19' 21.10" N	2013-2014	wet sedge tundra	Not reported for time period	4.5 ^a	Goodrich et al., 2016
Lena River Delta, Siberia, Russia 126° 30' E; 72° 22' N	2003-2004	arctic tundra	319 mm; -14.7	2.4 ^a	Wille et al., 2008

1042 * note that a positive NEE value indicates a CH₄ source; Climate statistics represent mean annual values. ^aannual estimate of
1043 CH₄ NEE derived from eddy covariance data; ^bannual estimate of soil CH₄ emissions derived from chamber data; ^cannual
1044 mean derived from all available site data.

1045

1046

1047

1048

1049

1050

1051

1052 **Table 3.** Summary of net ecosystem CO₂ exchange of select tropical forest sites

Site	Years	Ecosystem	Climate	NEE (g C m ⁻² y ⁻¹)	Reference
Iquitos, Peru, QFR 73° 19' 08.1" W; 3° 50' 03.9" S	2018 to 2019	palm swamp peat forest	3000 mm; 26 °C	range of -462 to -465	this study
Sarawak, Malaysia 111° 24' E 1° 23' N	2011 to 2014	peat swamp forest	26.5 °C	range of -207 to -98	Kiew et al., 2018
Palangkaraya, Indonesia	July 2004 to July 2008	peat swamp secondary forest	2452 mm 26 °C	range of -27 to +443	Hirano et al., 2012
Pasoh Forest Reserve, Peninsular Malaysia 102° 18' E; 2° 58' N	2003 to 2005	lowland tropical evergreen forest	1804 mm	-147 to -79	Kosugi et al., 2008
French Guiana, South America 52° 54' W; 5° 16' N	2004 to 2005	pristine tropical wet forest	3041 mm; 26.5 °C	-157 to -142	Bonal et al., 2008
Tapajós National Forest, Pará, Brazil 54° 58' W 2° 51' S	2002 to 2005	evergreen old growth tropical rain forest	2200 mm 26 °C	range of -221 to +2677	Hutyra et al., 2007
Tapajós National Forest, Pará, Brazil 54° 58' W 2° 51' S 54° 56' W 3° 54' S Sites KM 67 and KM 83	July 2000 to August 2003	Evergreen old growth tropical rain forest	25 °C 1920 mm	range of +0 to +2300	Saleska et al., 2003
Cuieiras Forest Reserve, near Manaus, Brazil 60° 06' 55" W; 2° 35' 22" S	Sept 1, 1995 to Aug 31, 1996	lowland terra firme tropical rain forest	2200 mm	-590	Malhi et al., 1998
Reserva, Jaru, Rondonia, Brazil, 61° 56' W; 10° 84' S	Sept 1992; April to June 1993	old growth tropical rain forest	1997 mm 25 °C	-102 ^a	Grace et al., 1995
Reserva Florestal Ducke, near Manaus, Brazil 59° 57' W; 2° 57' S	April 22 to May 8, 1987	old tropical rain forest	1415 mm 27 °C	-220 ^b	Fan et al., 1990

1053 * note that a negative NEE value indicates a CO₂ sink; ^aannual estimate derived from a model parameterized with site data;1054 ^bannual estimate based on mean flux value;

1055

1056

1057

1058

1059

1060

1061

1062 **List of Figures**

1063 **Figure 1.** Research site location and eddy covariance tower flux footprint climatology. The flux footprint
1064 was estimated using the model of Kljun et al., (2015). The isopleths indicate the cumulative
1065 probability of particle contribution to the total flux. The dashed lines indicate the wind sector that
1066 was used to filter out the influence of the lake on the tower flux measurements. The yellow triangle
1067 indicates an area of moderate ecosystem disturbance caused by palm fruit harvesting.

1068 **Figure 2.** a) Monthly total precipitation in 2018; b) Monthly total precipitation in 2018; c) Cumulative
1069 precipitation in 2018 and 2019; d) daily average air temperature measured at the flux tower at a height of
1070 40 m.

1071 **Figure 3.** Leaf area index (LAI) estimated with the MCD15A2H Version 6 Moderate Resolution Imaging
1072 Spectroradiometer (MODIS) Level 4.

1073 **Figure 4.** Flux tower climatology. Upper panels) Half-hourly net radiation values in 2018 and 2019;
1074 Middle panels) Half-hourly values of air temperature in 2018 and 2019; Lower panels) Half-hourly values
1075 vapor pressure deficit values in 2018 and 2019. The y-axes indicate the time of day (TOD) as half-hourly
1076 values.

1077 **Figure 5.** Energy balance characteristics of the flux tower site. a) net radiation, latent heat flux and
1078 sensible heat flux including all half-hourly values for 2018 and 2019; b) latent and sensible heat flux
1079 during the dry seasons in 2018 and 2019; c) latent and sensible heat flux during the wet seasons in 2018
1080 and 2019; d) latent and sensible heat flux during the transition season in 2018 and 2019.

1081 **Figure 6.** Evaporative fraction - latent heat flux as a function of net radiation. a) color bar indicates vapor
1082 pressure deficit (hPa); b) color bar indicates air temperature (°C).

1083 **Figure 7.** Diel patterns of net ecosystem CO₂ exchange. a) all data; b) wet season and dry season in 2018;
1084 c) wet season and dry season in 2019; d) transition season in 2018 and 2019.

1085 **Figure 8.** Canopy scale light-response CO₂ NEE analyses. a) Combining all available data for 2018 and
1086 2019 where the color bar indicates water table position (m); b) All data combined where color bar
1087 indicates vapor pressure deficit (hPa); c) All data combined where color bar indicates air temperature
1088 (°C). Note that a minimum PAR threshold of 25 $\mu\text{mol m}^{-2} \text{s}^{-1}$ was used and that NEE data are plotted as $-1 \times \text{NEE}$.

1090 **Figure 9.** Canopy scale light-response CO₂ NEE analyses for the dry and wet seasons in 2018 and 2019.
1091 a) wet season 2018; b) dry season 2018; c) wet season 2019; d) dry season 2019. Note that a minimum
1092 PAR threshold of 25 $\mu\text{mol m}^{-2} \text{s}^{-1}$ was used and that NEE data are plotted as $-1 \times \text{NEE}$.

1093 **Figure 10.** Diel patterns of gross ecosystem photosynthesis (GEP). a) all data; b) wet season and dry
1094 season in 2018; c) wet season and dry season in 2019; d) transition season in 2018 and 2019.

1095 **Figure 11.** Diel patterns of ecosystem respiration (RE). a) all data; b) wet season and dry season in 2018;
1096 c) wet season and dry season in 2019; d) transition season in 2018 and 2019.

1097 **Figure 12.** Net ecosystem methane exchange. a) half-hourly flux distribution in 2019; b) diel patterns of
1098 friction velocity for the dry and wet seasons in 2019; c) diel patterns of net ecosystem methane flux
1099 during the wet and dry seasons of 2019; d) diel patterns of soil water content in 2019.

1100 **Figure 13.** Relationships between net ecosystem methane exchange averaged over 7-day periods for
1101 environmental drivers including: a) soil temperature; b) air temperature; c) net ecosystem CO₂ exchange,

1102 and d) water table position.

1103 **Figure 14.** Cumulative net ecosystem CO₂ exchange (NEE) in 2018 and 2019. Note that the uncertainty
1104 estimates were derived from a Monte Carlo approach that assesses the impact of the gap-filling approach
1105 on the cumulative NEE.

1106