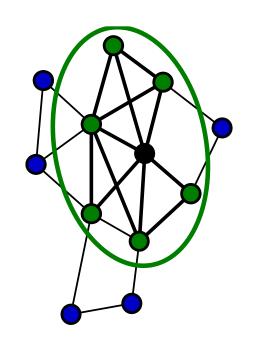
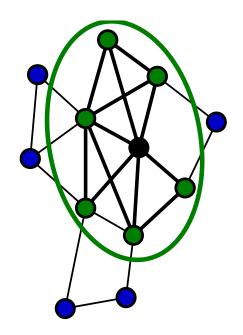
Vertex Neighborhoods, Low Conductance Cuts, and Good Seeds for Local Community Methods (KDD 2012)



DAVID F. GLEICH PURDUE SESH COMANDUR
SANDIA LIVERMORE

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000."



A vertex neighborhood is a "good" conductance community in a graph with a heavy-tailed degree distribution and large clustering coefficient.

Our contributions

1. The previous theorem and its proof. This shows that good communities are *expected* and easy to find in modern networks with heavy-tailed degrees and large clustering.

2. An empirical evaluation of neighborhood communities that shows vertex neighborhoods are the "backbone" of the network community profile.

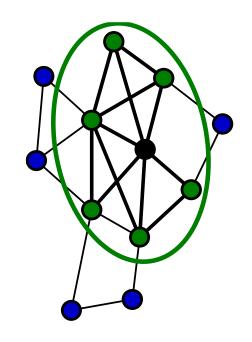
Formal background for the theorem

- 1. Vertex neighborhoods
- Low conductance cuts
- 3. Clustering coefficients

Vertex neighborhoods

The set of a vertex and all its neighborhood

Also called an "egonet"



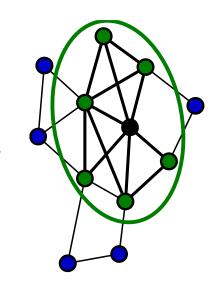
Prior research on egonets of social networks from the "structural holes" perspective [Burt95, Kleinberg08].

Used for anomaly detection [Akoglu10], community seeds [Huang11,Schaeffer11], overlapping communities [Schaeffer07,Rees10].

Conductance communities

Conductance is one of the most important community scores [Schaeffer07]

The conductance of a set of vertices is the ratio of edges leaving to total edges:



$$\phi(S) = \frac{\text{cut}(S)}{\min(\text{vol}(S), \text{vol}(\bar{S}))} \frac{\text{(edges leaving the set)}}{\text{cut}(S) = 7} \text{vol}(S) = 33$$

Equivalently, it's the probability that a random edge leaves the set.

$$vol(S) = 33$$

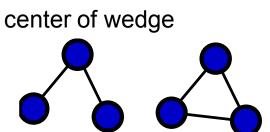
$$vol(\bar{S}) = 11$$

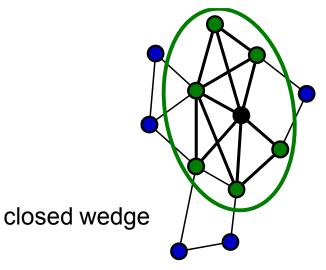
$$\phi(S) = 7/11$$

Small conductance ⇔ Good community

Clustering coefficients

Wedge





Global clustering coefficient

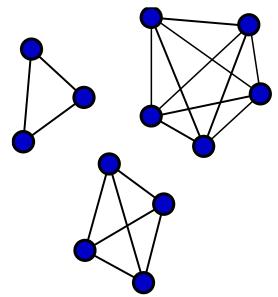
$$\kappa = \frac{\text{number of closed wedges}}{\text{number of wedges}}$$

Probability that a random wedge is closed

Simple version of theorem

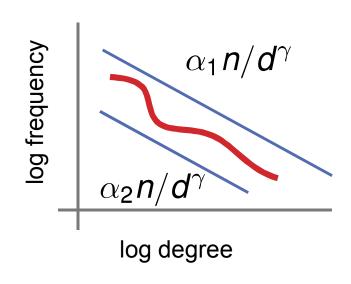
If global clustering coefficient = 1, then the graph is a disjoint union of cliques.

Vertex neighborhoods are optimal communities!



Theorem

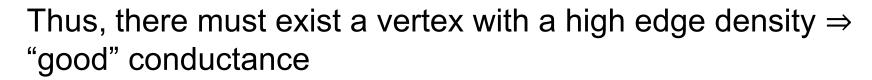
Condition: Let graph G have clustering coefficient κ and have vertex degrees bounded by a power-law function with exponent γ less than 3.



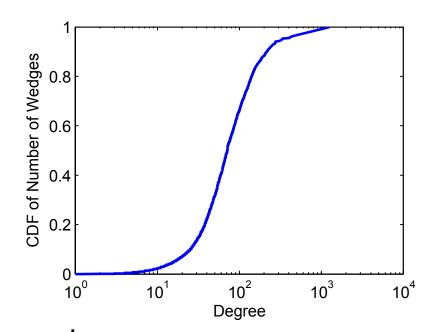
Theorem: Then there exists a vertex neighborhood with conductance $\leq 4(1 - \kappa)/(3 - 2\kappa)$

Proof Sketch

- 1) Large clustering coefficient
- ⇒ many wedges are closed
- 2) Heavy tailed degree dist
- ⇒ a few vertices have a very large degree
- 3) Large degree \Rightarrow O(d^2) wedges \Rightarrow "most" of wedges



Use the probabilistic method to formalize



Confession The theory is really weak

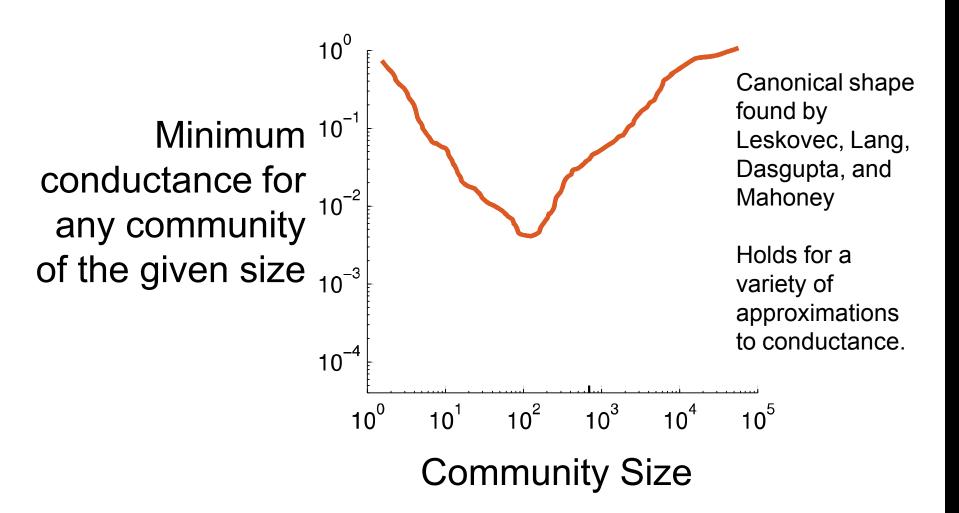
$$\phi(S) \leq 4(1-\kappa)/(3-2\kappa)$$

This bound is useless unless κ

					> 1 /·)
Graph	Verts	Edges	κ	Ċ	- 172
ca-AstroPh email-Enron cond-mat-2005 arxiv dblp hollywood-2009	17903 33696 36458 86376 226413 1069126	196972 180811 171735 517563 716460 56306653	0.318 0.085 0.243 0.560 0.383 0.310	0.633 0.509 0.657 0.678 0.635 0.766	Collaboration networks κ ~ [0.1 – 0.5]
fb-Penn94 fb-A-oneyear fb-A soc-LiveJournal1	41536 1138557 3097165 4843953	1362220 4404989 23667394 42845684	0.098 0.038 0.048 0.118	0.212 0.060 0.097 0.274	Social networks $\kappa \sim [0.05 - 0.1]$
oregon2-010526 p2p-Gnutella25 as-22july06 itdk0304	11461 22663 22963 190914	32730 54693 48436 607610	0.037 0.005 0.011 0.061	0.352 0.005 0.230 0.158	Tech. networks $\kappa \sim [0.005 - 0.05]$

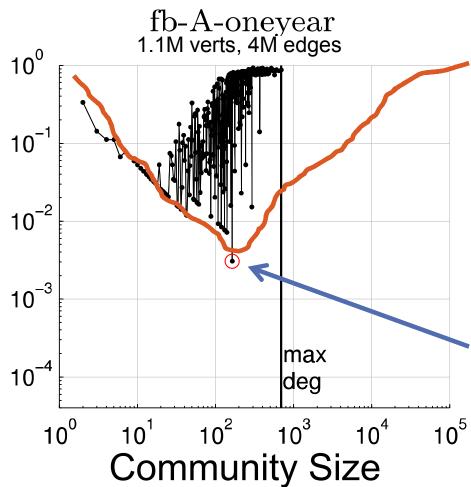
We view this theory as "intuition for the truth"

Network Community Profiles



Network Community Profiles

Minimum 10⁻¹ conductance for any community neighborhood of 10⁻² the given size



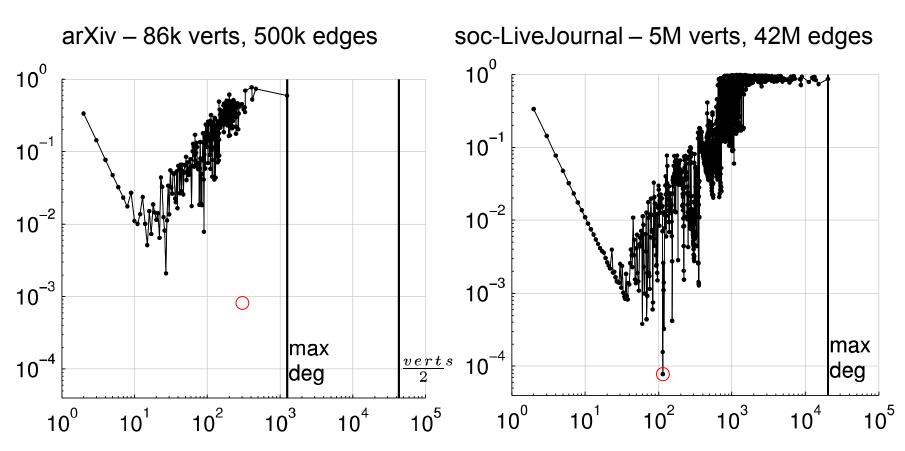
(Degree + 1)

Facebook data from Wilson et al. 2009

"Egonet community profile" shows the same shape, 3 secs to compute.

The Fiedler community computed from the normalized Laplacian is a neighborhood!

Not just one graph



15 more graphs available www.cs.purdue.edu/~dgleich/codes/neighborhoods

Communities [Andersen06]

To find the canonical NCP structure, Leskovec et al. used a personalized PageRank based community finder.

These start with a single vertex seed, and then expand the community based on the solution of a personalized PageRank problem.

The resulting community satisfies a local Cheeger inequality.

This needs to run thousands of times for an NCP

Network Community Profile

Minimum conductance for any community of the given size

This region fills when using the PPR method (like now!)

7807 seconds

5

Community Size

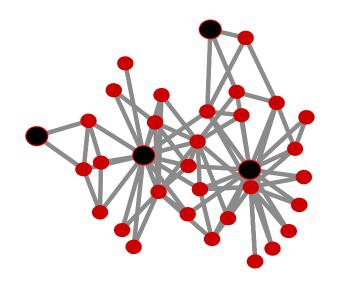
Vertex Neighborhoods, Low Conductance Cuts, and Good Seeds for Local Community Methods

Locally Minimal Communities

"My conductance is the best locally."

$$\phi(N(v)) \leq \phi(N(w))$$

 $\dot{}$ w adjacent to v

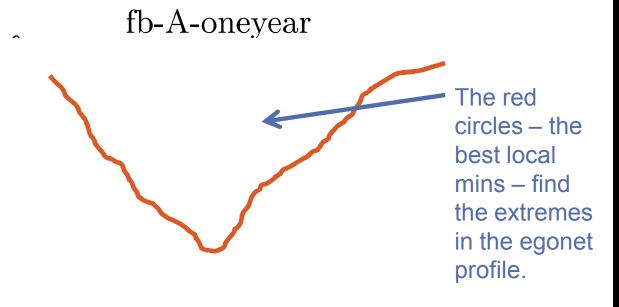


In Zachary's Karate Club network, there are four locally minimal communities

capture extremal neighborhoods

Red dots are conductance and size of a locally minimal community

Usually about 1% of # of vertices.

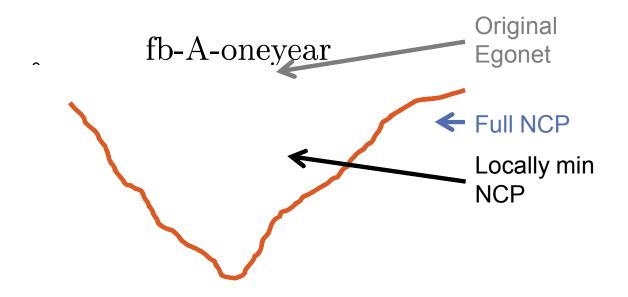


Community Size

5

Growing locally minimal comm.

Growing only locally minimal communities



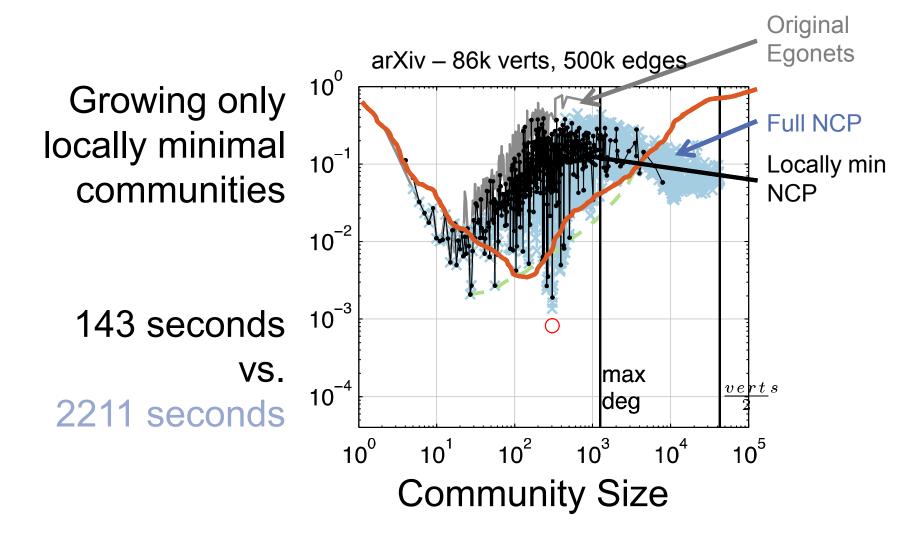
283 seconds vs.

7807 seconds

5

Community Size

Growing locally minimal comm.



Recap

A theorem relating clustering, heavy-tailed degrees, and low-conductance cuts of vertex neighborhoods.

Empirical evaluation of vertex neighborhoods.

More on k-cores in the paper.

- ⇒ Many communities are easy to find!
- ⇒ Explains success of community detection?

Acknowledgements

David supported by NSF CAREER award 1149756-CCF.

Sesh supported by the Sandia LDRD program (project 158477) and the applied mathematics program at the Dept. of Energy.