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Motivation

@ Cyber threats are quickly increasing in frequency and impact
@ 63,000 threats created per day in 2010

@ Existing malware detection techniques are insufficient

@ Signatures aren't effective against new, unknown threats

°

Traditional machine learning techniques like C4.5 are limited
and non-adaptive
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Malware Detection

@ The detection approach determines how information about a
program is gathered

@ The detection technique determines how that information is
employed
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Malware Detection Approaches

o Static analysis
e Structural and syntactical information (header data and
sequences of bytes) is analyzed
o Code is not executed, all possible branches can be analyzed
e Disassembly is often difficult
e Time consuming especially with obfuscated or packed code

@ Dynamic analysis

o Executes code and analyzes run-time information (contents of
the run-time stack, API calls)

o Only a single path (execution trace) is analyzed

o High performance overhead

@ Hybrid technique - combines the two previous approaches
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Malware Detection Techniques

@ Signature-based: popular reactive technique, models malicious
behavior of programs

@ Anomaly-based: detects patterns in data that differ from
expected behavior

@ Specification-based: manually created security specifications
define correct behavior
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Benchmark

6,774 total files in the dataset
3,401 malicious files provided by offensivecomputing.net
3,373 non-malicious files from Windows XP

58,584 total unique imports

703 total unique sections
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Number of imports per file
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Unpacked dataset

@ It's trivial to distinguish packed files from unpacked files
@ Unpacked dataset:

e 854 malicious files

e 1,048 non-malicious files
o 18,804 unique imports

e 126 unique sections
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Dataset Noise

Two types of noise in classification problems:

o Classification noise - makes it impossible for the system to
achieve 100% testing accuracy

@ Attribute noise - non-predictive attributes are attributes within
the problem domain that aren't useful in the system's
prediction, they have no relationship to class
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Training/Testing

o Evaluated using stratified 10-fold cross-validation
@ During training:
e The training set is repeatedly presented
e The correct result from VirusTotal is used for
reward /punishment
@ The training and test sets have no files in common
@ During testing, VirusTotal is employed to score the system
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C4.5 algorithm

@ Machine learning algorithm that builds decision trees

@ Each node of the tree represents an attribute that most
effectively splits the data into subsets

@ Uses normalized information gain (difference in entropy) to
choose an attribute
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C4.5 Example tree
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C4.5 results

Baseline comparison to C4.5

100 T T T T 11000
Number of rules o
Number of training features o 4 10000
Testing accuracy
a0 | { 9000
" 1 8000
i
2 {17000 &
ks 60 | 2
@ | 6000 §
5 ‘s
E {5000 5
40t o
g { a0 5
3 z
g

< 1 3000

20 ¢ ] 2000

41 1000

a 4]

100 300 €00 800
Dataset size

Jonathan Blount Adaptive Rule-Based Malware Detection



Introduction Motivation
Detection
mark
Learning Classifier Systems

Evolutionary Algorithms

@ An Evolutionary Algorithm is a stochastic population-based
optimization meta-heuristic

@ Uses mechanisms inspired by biological evolution

@ Each individual in a population contains a candidate solution
to the problem

@ Useful in search and optimization problems
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Michigan versus Pittsburgh style

Michigan Style:
@ Holland's first LCS
@ EA operates on the individual level
@ Entire population of rules represents a solution
Pittsburgh Style:
@ A population consists of variable length rule sets
@ EA operates on the level of an entire rule set

@ Each rule set is a potential solution
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Online versus offline learning

Offline Learning (batch learning):
@ All training problems are presented simultaneously
@ Results in a rule set that does not change over time
@ Pittsburgh style LCSs are usually applied in this method
@ Used in data mining problems
Online (incremental) learning:
@ Problem instances presented individually
@ Rule set evolves over time with each new observation

e Typical of Michigan style LCS (though Pittsburgh can use
online learning)
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Overgeneral Classifier Problem

@ General classifier - condition matches many problem instances

o Greedy classifier - fitness depends on the magnitude of the
reward it receives

o Overgeneral classifier - advocates desired action only in
certain problem cases

@ The problem occurs when rules act correctly in some states
but incorrectly in others

@ More specialized rules may be outvoted by overgenerals

@ Strong overgeneral rules are unreliable, but outweigh reliable
rules during action selection
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Malware Detection LCS diagram

The system is based on XCS
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Rule (classifier) definition

Rule

Condition

Fitness, Prediction,
Prediction Error

e Condition - truth function which is satisfied by inputs
@ Action - rule advocates an action for the system to perform

@ Fitness values - accuracy of prediction of environmental reward
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LCS Training/Testing

@ Training set used to evolve rules to identify the malicious
samples

@ Current population is run against the test set periodically, to
evaluate generalization of the ruleset

@ Correct results are known during testing to score accuracy, but
no learning takes place
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Initialization Methods

3 methods:

@ Random - Entire population created by generating random
trees (conditions) and actions

@ Covering - Rules created by the covering operator, population
starts empty

@ C4.5 - Each leaf node in a decision tree converted into a
single rule, specialized by adding nodes
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Rule Evolution cycle

Initialization Termination
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Evolutionary Pressure in XCS

XCS's generalization pressure is overcome by a strong fitness
pressure (the pressure towards higher accuracy)

Proportionate selection - the smaller the fitness differences in
the population, the smaller the fitness pressure

@ In XCS, rule fitness is derived from a scaled, action
set-relative accuracy

@ Tournament selection - based on fitness rank, not relative
fitness differences

Tournament selection does not suffer from fitness scaling or
from small differences in accuracies
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Tournament Size in XCS

In XCS the EA acts on the action set
In XCS, action set sizes can vary significantly

A change in the tournament size changes the strength of the
selection pressure applied

A relatively strong selection pressure, which adapts to the
current action set size, is required

@ XCS tournament size is dependent on the current action set
size, ensuring equal selection pressure
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Crossover example - parents

@ ole32.dll: getrunningobjecttable
kernel32.dil: initializecriticalsection

kernel32.dIl: gettickcount kernel32.dll: getcommandlinea
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Evolution

Crossover example - offspring

ole32.dll: getrunningobjecttable
kernel32.dll: initializecriticalsection
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Covering-random deletion cycle

@ Rules’ conditions are too specific
@ Too small a population size (10)
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Malware Family

Evolution Trends
Results LCS Tuning

Comparative Results

Adequate population size (30)
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Malware family study

@ Too small a population size (10), covering-random deletion
loop occurred

@ The C4.5 decision tree performed better than the LCS at a
lower population size

@ Increasing the population to 20 and 30 allowed the LCS to
perform as well as C4.5 (and in one case out-train it)

o C4.5 initialization method converged quicker than other
methods
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LCS population size tuning
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Evolution Trends
Results LCS Tuning

Comparative Results

Population size study - C4.5 initialization
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Population size study - Random initialization
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Evolution Trends
Results LCS Tuning

Comparative Results

Population size study - Covering initialization
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Malware Family

Evolution Trends
Results LCS Tuning

Comparative Results
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Mal Family

Evolution Trends
Results LCS Tunir

Comparative Results
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Conclusions

Conclusions - Initialization methods

e C4.5 initialization has promising results, in some cases
outperforming the decision tree it was seeded from

@ Covering initialization can achieve similar performance as C4.5
but takes longer to converge

@ Random initialization is slower to converge and has higher
performance variance than C4.5

@ Generalization of the LCS was better than that of C4.5
decision tree, but there is still some overfitting between the
training and testing results

o Overfitting indicates that the system's learning is specific to
the structure of the training set and generalization is not
optimal
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Conclusions

General Conclusions

@ C4.5 typically trains to a very high accuracy, but lacks in
generalization of testing data

@ LCS doesn't suffer from C4.5's feature dimension limitation

@ LCS has the potential to outperform more traditional
non-adaptive techniques such as C4.5

@ LCS is sensitive to certain parameter values, such as
population size

@ Tuning the LCS is required for optimal performance, as
parameters interact with each other

@ Noise in the dataset and problem space accounted for a large
variance in performance

@ Larger datasets were more diverse and thus more difficult to
classify
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Future work

Expand feature set of PE files
Investigate using dynamic as well as static analysis
Compare with larger and more diverse datasets

Compare LCS with other machine learning techniques such as
random forest and C5.0

LCS parameter tuning needed to obtain optimal performance
@ Using a Fuzzy LCS may allow for better generalization

@ Investigate why overfitting doesn’t appear in individual
experiments
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