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Motivation

Cyber threats are quickly increasing in frequency and impact

63,000 threats created per day in 2010

Existing malware detection techniques are insufficient

Signatures aren’t effective against new, unknown threats

Traditional machine learning techniques like C4.5 are limited
and non-adaptive
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Malware Detection

The detection approach determines how information about a
program is gathered

The detection technique determines how that information is
employed
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Malware Detection Approaches

Static analysis

Structural and syntactical information (header data and
sequences of bytes) is analyzed
Code is not executed, all possible branches can be analyzed
Disassembly is often difficult
Time consuming especially with obfuscated or packed code

Dynamic analysis

Executes code and analyzes run-time information (contents of
the run-time stack, API calls)
Only a single path (execution trace) is analyzed
High performance overhead

Hybrid technique - combines the two previous approaches
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Malware Detection Techniques

Signature-based: popular reactive technique, models malicious
behavior of programs

Anomaly-based: detects patterns in data that differ from
expected behavior

Specification-based: manually created security specifications
define correct behavior
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Benchmark

6,774 total files in the dataset

3,401 malicious files provided by offensivecomputing.net

3,373 non-malicious files from Windows XP

58,584 total unique imports

703 total unique sections
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Pre-processing diagram
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Virus Total
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Number of imports per file
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Most common imports
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Most common sections
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Most common high-entropy sections

Jonathan Blount Adaptive Rule-Based Malware Detection



Introduction
System Description

Results
Conclusions

Motivation
Malware Detection
Benchmark
Learning Classifier Systems

Unpacked dataset

It’s trivial to distinguish packed files from unpacked files

Unpacked dataset:

854 malicious files
1,048 non-malicious files
18,804 unique imports
126 unique sections
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Dataset Noise

Two types of noise in classification problems:

Classification noise - makes it impossible for the system to
achieve 100% testing accuracy

Attribute noise - non-predictive attributes are attributes within
the problem domain that aren’t useful in the system’s
prediction, they have no relationship to class
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Training/Testing

Evaluated using stratified 10-fold cross-validation

During training:

The training set is repeatedly presented
The correct result from VirusTotal is used for
reward/punishment

The training and test sets have no files in common

During testing, VirusTotal is employed to score the system
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C4.5 algorithm

Machine learning algorithm that builds decision trees

Each node of the tree represents an attribute that most
effectively splits the data into subsets

Uses normalized information gain (difference in entropy) to
choose an attribute
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C4.5 Example tree
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C4.5 results

Baseline comparison to C4.5
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Evolutionary Algorithms

An Evolutionary Algorithm is a stochastic population-based
optimization meta-heuristic

Uses mechanisms inspired by biological evolution

Each individual in a population contains a candidate solution
to the problem

Useful in search and optimization problems
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Michigan versus Pittsburgh style

Michigan Style:

Holland’s first LCS

EA operates on the individual level

Entire population of rules represents a solution

Pittsburgh Style:

A population consists of variable length rule sets

EA operates on the level of an entire rule set

Each rule set is a potential solution
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Online versus offline learning

Offline Learning (batch learning):

All training problems are presented simultaneously

Results in a rule set that does not change over time

Pittsburgh style LCSs are usually applied in this method

Used in data mining problems

Online (incremental) learning:

Problem instances presented individually

Rule set evolves over time with each new observation

Typical of Michigan style LCS (though Pittsburgh can use
online learning)
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ZCS
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XCS
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Overgeneral Classifier Problem

General classifier - condition matches many problem instances

Greedy classifier - fitness depends on the magnitude of the
reward it receives

Overgeneral classifier - advocates desired action only in
certain problem cases

The problem occurs when rules act correctly in some states
but incorrectly in others

More specialized rules may be outvoted by overgenerals

Strong overgeneral rules are unreliable, but outweigh reliable
rules during action selection
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Malware Detection LCS diagram

The system is based on XCS
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Rule (classifier) definition

Condition - truth function which is satisfied by inputs

Action - rule advocates an action for the system to perform

Fitness values - accuracy of prediction of environmental reward
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LCS Training/Testing

Training set used to evolve rules to identify the malicious
samples

Current population is run against the test set periodically, to
evaluate generalization of the ruleset

Correct results are known during testing to score accuracy, but
no learning takes place
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Initialization Methods

3 methods:

Random - Entire population created by generating random
trees (conditions) and actions

Covering - Rules created by the covering operator, population
starts empty

C4.5 - Each leaf node in a decision tree converted into a
single rule, specialized by adding nodes
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Rule Evolution cycle
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Evolutionary Pressure in XCS

XCS’s generalization pressure is overcome by a strong fitness
pressure (the pressure towards higher accuracy)

Proportionate selection - the smaller the fitness differences in
the population, the smaller the fitness pressure

In XCS, rule fitness is derived from a scaled, action
set-relative accuracy

Tournament selection - based on fitness rank, not relative
fitness differences

Tournament selection does not suffer from fitness scaling or
from small differences in accuracies
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Tournament Size in XCS

In XCS the EA acts on the action set

In XCS, action set sizes can vary significantly

A change in the tournament size changes the strength of the
selection pressure applied

A relatively strong selection pressure, which adapts to the
current action set size, is required

XCS tournament size is dependent on the current action set
size, ensuring equal selection pressure
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Crossover example - parents
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Crossover example - offspring
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Covering-random deletion cycle

Rules’ conditions are too specific
Too small a population size (10)
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Adequate population size (30)

(a) random initialization (b) C4.5 initialization
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Malware family study

Too small a population size (10), covering-random deletion
loop occurred

The C4.5 decision tree performed better than the LCS at a
lower population size

Increasing the population to 20 and 30 allowed the LCS to
perform as well as C4.5 (and in one case out-train it)

C4.5 initialization method converged quicker than other
methods
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Evolution trends
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LCS population size tuning
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Population size study - C4.5 initialization

Jonathan Blount Adaptive Rule-Based Malware Detection



Introduction
System Description

Results
Conclusions

Malware Family
Evolution Trends
LCS Tuning
Comparative Results

Population size study - Random initialization
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Population size study - Covering initialization
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Offspring size study

(c) Offspring size = 1 (d) Offspring size = 2
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C4.5 vs. LCS
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Conclusions - Initialization methods

C4.5 initialization has promising results, in some cases
outperforming the decision tree it was seeded from

Covering initialization can achieve similar performance as C4.5
but takes longer to converge

Random initialization is slower to converge and has higher
performance variance than C4.5

Generalization of the LCS was better than that of C4.5
decision tree, but there is still some overfitting between the
training and testing results

Overfitting indicates that the system’s learning is specific to
the structure of the training set and generalization is not
optimal
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General Conclusions

C4.5 typically trains to a very high accuracy, but lacks in
generalization of testing data

LCS doesn’t suffer from C4.5’s feature dimension limitation

LCS has the potential to outperform more traditional
non-adaptive techniques such as C4.5

LCS is sensitive to certain parameter values, such as
population size

Tuning the LCS is required for optimal performance, as
parameters interact with each other

Noise in the dataset and problem space accounted for a large
variance in performance

Larger datasets were more diverse and thus more difficult to
classify
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Future work

Expand feature set of PE files

Investigate using dynamic as well as static analysis

Compare with larger and more diverse datasets

Compare LCS with other machine learning techniques such as
random forest and C5.0

LCS parameter tuning needed to obtain optimal performance

Using a Fuzzy LCS may allow for better generalization

Investigate why overfitting doesn’t appear in individual
experiments
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