SAND2011- 6035P
Adaptive Rule-Based Malware Detection

Employing Learning Classifier Systems

Master’s Thesis Defense
Missouri University of Science and Technology
Department of Computer Science
Jonathan Blount

Committee:
Dr. Daniel Tauritz (Advisor)
Dr. Bruce McMillin
Dr. Samuel Mulder (Sandia National Laboratories)

August 4, 2011

Outline

0 Introduction

@ Motivation

@ Malware Detection

@ Benchmark

@ Learning Classifier Systems
© System Description

@ LCS Overview

@ Population Initialization

@ Evolution
© Results

@ Malware Family

@ Evolution Trends

o LCS Tuning

@ Comparative Results
@ Conclusions

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction
tection
rk
ing Classifier Systems

Motivation

@ Cyber threats are quickly increasing in frequency and impact
@ 63,000 threats created per day in 2010

@ Existing malware detection techniques are insufficient

@ Signatures aren't effective against new, unknown threats

°

Traditional machine learning techniques like C4.5 are limited
and non-adaptive

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction Motivation
Malware Detection
Benchmar
Learning Classifier Systems

Malware Detection

@ The detection approach determines how information about a
program is gathered

@ The detection technique determines how that information is
employed

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction Motivation
Malware Detection
Benchmark
Learning Classifier Systems

Malware Detection Approaches

o Static analysis
e Structural and syntactical information (header data and
sequences of bytes) is analyzed
o Code is not executed, all possible branches can be analyzed
e Disassembly is often difficult
e Time consuming especially with obfuscated or packed code

@ Dynamic analysis

o Executes code and analyzes run-time information (contents of
the run-time stack, API calls)

o Only a single path (execution trace) is analyzed

o High performance overhead

@ Hybrid technique - combines the two previous approaches

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction Motivation
Malware Detection
Benchmark
Learning Classifier Systems

Malware Detection Techniques

@ Signature-based: popular reactive technique, models malicious
behavior of programs

@ Anomaly-based: detects patterns in data that differ from
expected behavior

@ Specification-based: manually created security specifications
define correct behavior

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction Motivation
Malware Detection
chmark
Learning Classifier Systems

Benchmark

6,774 total files in the dataset
3,401 malicious files provided by offensivecomputing.net
3,373 non-malicious files from Windows XP

58,584 total unique imports

703 total unique sections

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction Motivation
Malv Detection
Bench

Pre-processing diagram

Malware | [Goodware

Set Set
- Feature
Virus Total Malware
_ Extractor
Good |
»Goodware Feature
Vector

[Training Set |[Test Set |

Jonathan Blount Adaptive Rule-Based Malware Detection

Virus Total

File name:

Submission date:

Current status:
Result

2 compact

Antivirus
a-squared
AhnLab-V3
Antivir
Antiy-AVL
Zuthentium
Avast

VG
BitDefender
CAT-QuickHeal

ClamzV

Introduction

T0a13374

2009-10-03 10:30:14 (UTC)
finished

34141 (82.9%)

Version Last Update
4.5.0.24 2005.10.03
5.0.0.2 2009.10.02
7.9.1.27 2009.10.02
2.0.3.7 2009.10.03
5.1.2.4 2009.10.02
4.8.1351.0 2009.10.02
£.5.0.420 2009.10.03
7.2 2009.10.03
10.00 2005.10.03
0.94.1 2009.10.03

Jonathan Blour

Motivation
Malware Detection
Benchmark
Learning C

ifier Systems

W32/5uspk

Win32:Spywar

m
|
=1
m
=t

SH AECQ

Trojan.Spy.Bancos.NLR

Win32.Tro;

ased Malware Detection

Introduction ion
e Detection
Benchmark
Learning Classifier Systems

Number of imports per file

350 T T T T T ——— T
Malicious files
Non-Malicious files
300 ¢ b
250 b
w
a
= 200 F g
ks
[l
o
S
=1
z

o] 20 40 60 80 100 120 140 160

Imports per file

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction

Most common imports

= F
4500 Malicious files o

4000 Non-Malicious files
3500
3000
2500
2000
1500
1000
500

Number of files

E)
%y % %
%78 c) 2
k32=kernel32.dl ® % g % S
a32=advapi32.dil R4 RS
Import name

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction

Most common sections

6000

Malicious
Non-Malicious

5000

4000

3000

2000

Mumber of sections

1000

Section Name

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction n
Detection
Benchmark

Most common high-entropy sections

800

Malicious
Non-Malicious

Mumber of sections

Section Name

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction
Detection
rk
g Classifier Systems

Unpacked dataset

@ It's trivial to distinguish packed files from unpacked files
@ Unpacked dataset:

e 854 malicious files

e 1,048 non-malicious files
o 18,804 unique imports

e 126 unique sections

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction
Detection
rk
g Classifier Systems

Dataset Noise

Two types of noise in classification problems:

o Classification noise - makes it impossible for the system to
achieve 100% testing accuracy

@ Attribute noise - non-predictive attributes are attributes within
the problem domain that aren't useful in the system's
prediction, they have no relationship to class

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction
Detection
rk
g Classifier Systems

Training/Testing

o Evaluated using stratified 10-fold cross-validation
@ During training:
e The training set is repeatedly presented
e The correct result from VirusTotal is used for
reward /punishment
@ The training and test sets have no files in common
@ During testing, VirusTotal is employed to score the system

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction
Detection
rk
g Classifier Systems

C4.5 algorithm

@ Machine learning algorithm that builds decision trees

@ Each node of the tree represents an attribute that most
effectively splits the data into subsets

@ Uses normalized information gain (difference in entropy) to
choose an attribute

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction Motivation
\ e Detection
Benchmark
Learning Classifier Systems

C4.5 Example tree

.reloc

<=-0.472\>-0.472

msvcrt.dil:_cexit clean (100.00%)

text clean (100.00%)

<=6.440\ >6.440

‘ mal (100.00%) ‘

clean (100.00%)

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction n
Detection
Benchmark

C4.5 results

Baseline comparison to C4.5

100 T T T T 11000
Number of rules o
Number of training features o 4 10000
Testing accuracy
a0 | { 9000
" 1 8000
i
2 {17000 &
ks 60 | 2
@ | 6000 §
5 ‘s
E {5000 5
40t o
g { a0 5
3 z
g

< 1 3000

20 ¢] 2000

41 1000

a 4]

100 300 €00 800
Dataset size

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction Motivation
Detection
mark
Learning Classifier Systems

Evolutionary Algorithms

@ An Evolutionary Algorithm is a stochastic population-based
optimization meta-heuristic

@ Uses mechanisms inspired by biological evolution

@ Each individual in a population contains a candidate solution
to the problem

@ Useful in search and optimization problems

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction ivation
Detection

enc rK
Learning Classifier Systems

Michigan versus Pittsburgh style

Michigan Style:
@ Holland's first LCS
@ EA operates on the individual level
@ Entire population of rules represents a solution
Pittsburgh Style:
@ A population consists of variable length rule sets
@ EA operates on the level of an entire rule set

@ Each rule set is a potential solution

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction otivation
A Detection

ark
Learning Classifier Systems

Online versus offline learning

Offline Learning (batch learning):
@ All training problems are presented simultaneously
@ Results in a rule set that does not change over time
@ Pittsburgh style LCSs are usually applied in this method
@ Used in data mining problems
Online (incremental) learning:
@ Problem instances presented individually
@ Rule set evolves over time with each new observation

e Typical of Michigan style LCS (though Pittsburgh can use
online learning)

Jonathan Blount Adaptive Rule-Based Malware Detection

Discavery
Component

Reinforcement
Component

Perfomance
Component

Introduction

Learning Classifier Systems

ZCS

Environment }—

Detectors

Condition

Credit
Allocation

Action

Action
Selection

Discounted Reward

Evolutionary
Algorithm

Jonathan Blount

Adaptive Rule-Based Malware Detection

Introduction

Learning Classifier Systems

XCS

[Environment }—‘
Reward

|
Credit

Discovery i
Gormponent Action Allocation
Reinforcement Condition

Component on

Perfomance

Component Exploit

Selection

Explore

Evolutionary
Algorithm

Jonathan Blount Adaptive Rule-Based Malware Detection

Introduction Motivation
Detection
mark
Learning Classifier Systems

Overgeneral Classifier Problem

@ General classifier - condition matches many problem instances

o Greedy classifier - fitness depends on the magnitude of the
reward it receives

o Overgeneral classifier - advocates desired action only in
certain problem cases

@ The problem occurs when rules act correctly in some states
but incorrectly in others

@ More specialized rules may be outvoted by overgenerals

@ Strong overgeneral rules are unreliable, but outweigh reliable
rules during action selection

Jonathan Blount Adaptive Rule-Based Malware Detection

LCS Overview
Population Initialization
Evolution

System Description

Malware Detection LCS diagram

The system is based on XCS

Malware Detection
Learning Classifier System

Test Set

| Environment

Discovery Action
Component Condition

Reinforcement
Component

Reward

Credit
Allocation

Pedomance

Component Action

Selection

Evolutionary
Algorithm

Jonathan Blount Adaptive Rule-Based Malware Detection

LCS Overview
Population Initialization
Evolution

System Description

Rule (classifier) definition

Rule

Condition

Fitness, Prediction,
Prediction Error

e Condition - truth function which is satisfied by inputs
@ Action - rule advocates an action for the system to perform

@ Fitness values - accuracy of prediction of environmental reward

Jonathan Blount Adaptive Rule-Based Malware Detection

LCS Overview
Population Initialization
Evolution

System Description

LCS Training/Testing

@ Training set used to evolve rules to identify the malicious
samples

@ Current population is run against the test set periodically, to
evaluate generalization of the ruleset

@ Correct results are known during testing to score accuracy, but
no learning takes place

Jonathan Blount Adaptive Rule-Based Malware Detection

LCS Overview
Population Initialization
Evolution

System Description

Initialization Methods

3 methods:

@ Random - Entire population created by generating random
trees (conditions) and actions

@ Covering - Rules created by the covering operator, population
starts empty

@ C4.5 - Each leaf node in a decision tree converted into a
single rule, specialized by adding nodes

Jonathan Blount Adaptive Rule-Based Malware Detection

LCS Overview
Population Initialization
Evolution

System Description

Rule Evolution cycle

Initialization Termination

S 7

I Populatlon

Parent Surwvor
Selection Selection
Recombination "
Parents _ » Offspring
Mutation

Jonathan Blount Adaptive Rule-Based Malware Detection

LCS Overview
Population Initialization
Evolution

System Description

Evolutionary Pressure in XCS

XCS's generalization pressure is overcome by a strong fitness
pressure (the pressure towards higher accuracy)

Proportionate selection - the smaller the fitness differences in
the population, the smaller the fitness pressure

@ In XCS, rule fitness is derived from a scaled, action
set-relative accuracy

@ Tournament selection - based on fitness rank, not relative
fitness differences

Tournament selection does not suffer from fitness scaling or
from small differences in accuracies

Jonathan Blount Adaptive Rule-Based Malware Detection

LCS Overview
Population Initialization
Evolution

System Description

Tournament Size in XCS

In XCS the EA acts on the action set
In XCS, action set sizes can vary significantly

A change in the tournament size changes the strength of the
selection pressure applied

A relatively strong selection pressure, which adapts to the
current action set size, is required

@ XCS tournament size is dependent on the current action set
size, ensuring equal selection pressure

Jonathan Blount Adaptive Rule-Based Malware Detection

S Oy
Population Initialization
Evolution

System Description

Crossover example - parents

@ ole32.dll: getrunningobjecttable
kernel32.dil: initializecriticalsection

kernel32.dIl: gettickcount kernel32.dll: getcommandlinea

Jonathan Blour Adaptive Rule-Based Malware Detection

System Description Population Initialization

Evolution

Crossover example - offspring

ole32.dll: getrunningobjecttable
kernel32.dll: initializecriticalsection

Jonathan Blour Adaptive Rule-Based Malware Detection

Malware Family
Evolution Trends

Results

Covering-random deletion cycle

@ Rules’ conditions are too specific
@ Too small a population size (10)

System Accuracy

System Accuracy

02 -
System training ——
0 Systemtesting ———
Q 50 100 150 200 250 300 350 400 450

Problem Instances (1000s)

Jonathan Blount Adaptive Rule-Based Malware Detection

Malware Family

Evolution Trends
Results LCS Tuning

Comparative Results

Adequate population size (30)

System Accuracy System Accuracy
1 T 1 e
e e R B
" M APy o
08 k M t 08
§ 0.6 g 0.6
g g
£ £
§ 5
k] 0.4 @ 04
@ @
0.2 0.2
System training —— Systemtraning ——
o System testing o System testing
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Problem Instances (1000s) Problem Instances (1000s)
(a) random initialization (b) C4.5 initialization

Jonathan Blour Adaptive Rule-Based Malware Detection

Malware Family
Evolution Trends
Results

Malware family study

@ Too small a population size (10), covering-random deletion
loop occurred

@ The C4.5 decision tree performed better than the LCS at a
lower population size

@ Increasing the population to 20 and 30 allowed the LCS to
perform as well as C4.5 (and in one case out-train it)

o C4.5 initialization method converged quicker than other
methods

Jonathan Blount Adaptive Rule-Based Malware Detection

Evolution Trends
Results LCS Tuning
Comparative Result:

Evolution
1 F T T T T T T T T T
. i oy PR PR
08
&
o 06 [
=]
g
<
=
5
T 04 |
w
0z r LCStraining ——
LCS testing
C45 tra\mng _—
0 C4.5 testing ——

0 50 100 150 200 250 300 350 400 450

Problem Instances (1000s)

Jonathan Blount Adaptive Rule-Based Malware Detection

Evolution Trends
Results LCS Tuning
Comparative Results

LCS population size tuning

1 T T T T T T
Training
Testing ===
095 1
09 R
&
i
=]
g
B 085 R
=
jol
@
@
08 1
075 R
07
50 100 200 300 400 500

FPopulation size

Jonathan Blount Adaptive Rule-Based Malware Detection

Malware Family

Evolution Trends
Results LCS Tuning

Comparative Results

Population size study - C4.5 initialization

System Accuracy
1
08 |
=
(=)
[ER T
=
g
<
£
@
w 04 |
>
9]
02 F 50 ——
100 ——
200 ——
300 —
0 1 L 1
0 100 200 300 400 500

Problem Instances (1000s)

Jonathan Blount Adaptive Rule-Based Malware Detection

Evolution Trends
Results LCS Tuning
Comparative Results

Population size study - Random initialization

System Accuracy
1 F T T T
ﬁ‘ : s Jl»nv 1'1 ‘M’f‘"ﬁ""*
0 T o i

=

(=)

& 086

=

3

<<

£

a

w04 |

>

w

0z | 50 ——
00 ——
200 ——
200 ——
0 1 L 1
0 100 200 300 400 500

Problem Instances (1000s)

Jonathan Blount Adaptive Rule-Based Malware Detection

Y are Family

Evolution Trends
Results LCS Tuning

Comparative Results

Population size study - Covering initialization

System Accuracy
=
(=)
[ER T
=
g
<
£
@
w 04 |
>
9]
02 F 50 ——
100 ——
200 ——
300 —
0 1 L 1
0 100 200 300 400 500

Problem Instances (1000s)

Jonathan Blount Adaptive Rule-Based Malware Detection

Malware Family

Evolution Trends
Results LCS Tuning

Comparative Results

System Accuracy System Accuracy
1
08 Wi et
g Y
§ g
£ =3
5 5
@ w 0.4
4 4
& &
0.2
System training —— Systemtraning ——
o System testing o System testing
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Problem Instances (1000s) Problem Instances (1000s)

(c) Offspring size =1 (d) Offspring size = 2

Jonathan Blour Adaptive Rule-Based Malware Detection

Mal Family

Evolution Trends
Results LCS Tunir

Comparative Results

100 T T T
C4.5 Training
C4.5 Testing E==m
LCS Training
95 LCS Testing mmmm
90 R
Z
o
=]
I
< 85 E
=
5
@
@
80 | 1
75 b 1
?O L 1 L

Decision Tree C4.5 Covering Random
Algorithm/LCS Initialization

Jonathan Blount Adaptive Rule-Based Malware Detection

Conclusions

Conclusions - Initialization methods

e C4.5 initialization has promising results, in some cases
outperforming the decision tree it was seeded from

@ Covering initialization can achieve similar performance as C4.5
but takes longer to converge

@ Random initialization is slower to converge and has higher
performance variance than C4.5

@ Generalization of the LCS was better than that of C4.5
decision tree, but there is still some overfitting between the
training and testing results

o Overfitting indicates that the system's learning is specific to
the structure of the training set and generalization is not
optimal

Jonathan Blount Adaptive Rule-Based Malware Detection

Conclusions

General Conclusions

@ C4.5 typically trains to a very high accuracy, but lacks in
generalization of testing data

@ LCS doesn't suffer from C4.5's feature dimension limitation

@ LCS has the potential to outperform more traditional
non-adaptive techniques such as C4.5

@ LCS is sensitive to certain parameter values, such as
population size

@ Tuning the LCS is required for optimal performance, as
parameters interact with each other

@ Noise in the dataset and problem space accounted for a large
variance in performance

@ Larger datasets were more diverse and thus more difficult to
classify

Jonathan Blount Adaptive Rule-Based Malware Detection

Conclusions

Future work

Expand feature set of PE files
Investigate using dynamic as well as static analysis
Compare with larger and more diverse datasets

Compare LCS with other machine learning techniques such as
random forest and C5.0

LCS parameter tuning needed to obtain optimal performance
@ Using a Fuzzy LCS may allow for better generalization

@ Investigate why overfitting doesn’t appear in individual
experiments

Jonathan Blount Adaptive Rule-Based Malware Detection

	Introduction
	Motivation
	Malware Detection
	Benchmark
	Learning Classifier Systems

	System Description
	LCS Overview
	Population Initialization
	Evolution

	Results
	Malware Family
	Evolution Trends
	LCS Tuning
	Comparative Results

	Conclusions

