

Adaptive Rule-Based Malware Detection Employing Learning Classifier Systems

Master's Thesis Defense
Missouri University of Science and Technology
Department of Computer Science
Jonathan Blount

Committee:
Dr. Daniel Tauritz (Advisor)
Dr. Bruce McMillin
Dr. Samuel Mulder (Sandia National Laboratories)

August 4, 2011

Outline

1 Introduction

- Motivation
- Malware Detection
- Benchmark
- Learning Classifier Systems

2 System Description

- LCS Overview
- Population Initialization
- Evolution

3 Results

- Malware Family
- Evolution Trends
- LCS Tuning
- Comparative Results

4 Conclusions

Motivation

- Cyber threats are quickly increasing in frequency and impact
- 63,000 threats created *per day* in 2010
- Existing malware detection techniques are insufficient
- Signatures aren't effective against new, unknown threats
- Traditional machine learning techniques like C4.5 are limited and non-adaptive

Malware Detection

- The detection approach determines how information about a program is gathered
- The detection technique determines how that information is employed

Malware Detection Approaches

- Static analysis
 - Structural and syntactical information (header data and sequences of bytes) is analyzed
 - Code is not executed, all possible branches can be analyzed
 - Disassembly is often difficult
 - Time consuming especially with obfuscated or packed code
- Dynamic analysis
 - Executes code and analyzes run-time information (contents of the run-time stack, API calls)
 - Only a single path (execution trace) is analyzed
 - High performance overhead
- Hybrid technique - combines the two previous approaches

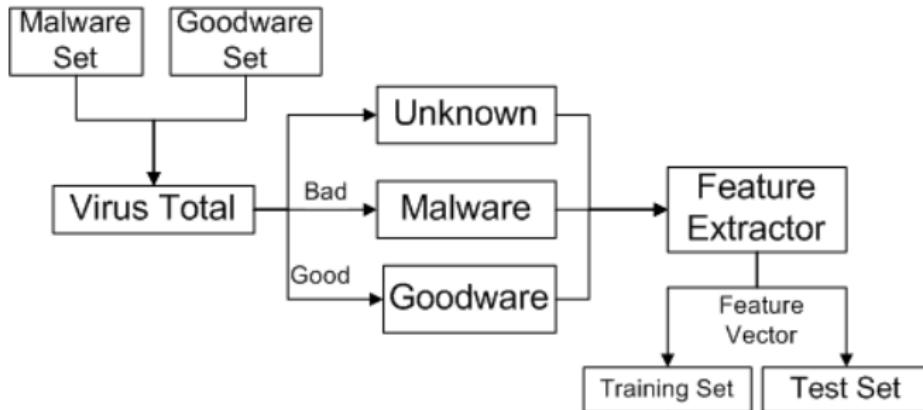
Malware Detection Techniques

- Signature-based: popular reactive technique, models malicious behavior of programs
- Anomaly-based: detects patterns in data that differ from expected behavior
- Specification-based: manually created security specifications define correct behavior

Benchmark

- 6,774 total files in the dataset
- 3,401 malicious files provided by offensivecomputing.net
- 3,373 non-malicious files from Windows XP
- 58,584 total unique imports
- 703 total unique sections

Pre-processing diagram



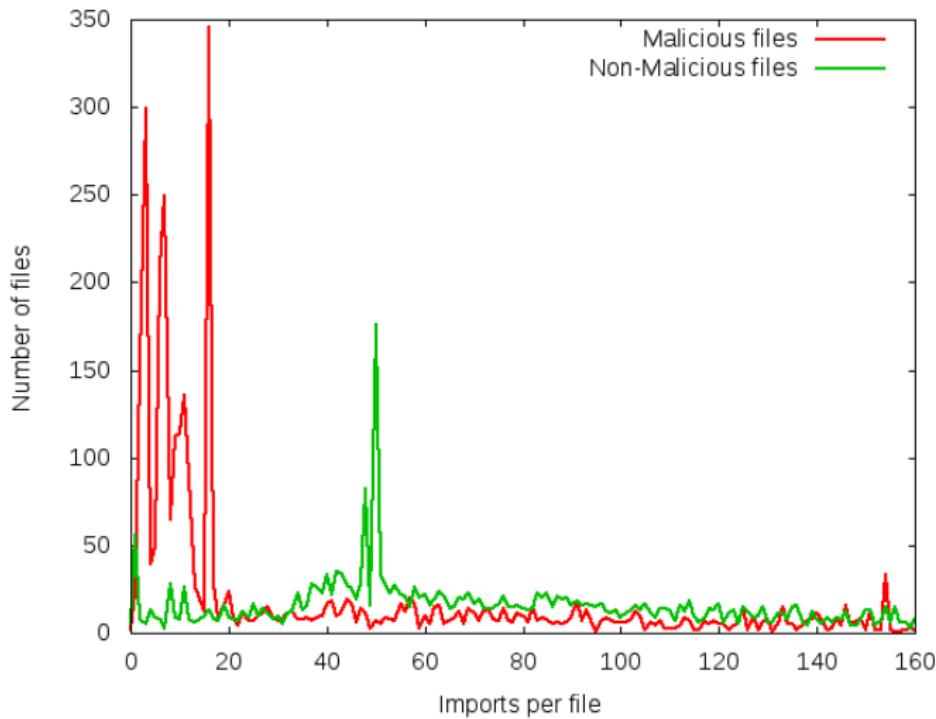
Virus Total

File name: 70a13374
Submission date: 2009-10-03 10:30:14 (UTC)
Current status: finished
Result: 34 / 41 (82.9%)

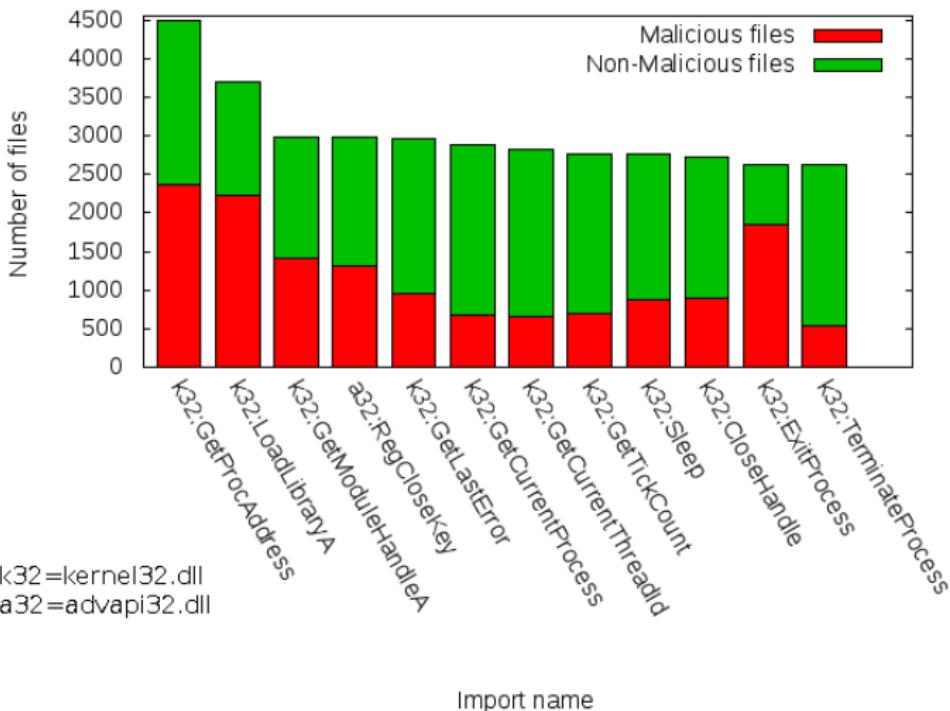
[Compact](#)

Antivirus	Version	Last Update	Result
a-squared	4.5.0.24	2009.10.03	Trojan-Spy.Banker!IK
AhnLab-V3	5.0.0.2	2009.10.02	-
AntiVir	7.9.1.27	2009.10.02	TR/Dropper.Gen
Antiy-AVL	2.0.3.7	2009.10.03	-
Authentium	5.1.2.4	2009.10.02	W32/SuspPack.M.gen!Eldorado
Avast	4.8.1351.0	2009.10.02	Win32:Spyware-gen
AVG	8.5.0.420	2009.10.03	SHeur2.AECQ
BitDefender	7.2	2009.10.03	Trojan.Spy.Bancos.NLA
CAT-QuickHeal	10.00	2009.10.03	Win32.TrojanDownloader.Banload.1
ClamAV	0.94.1	2009.10.03	-

Number of imports per file

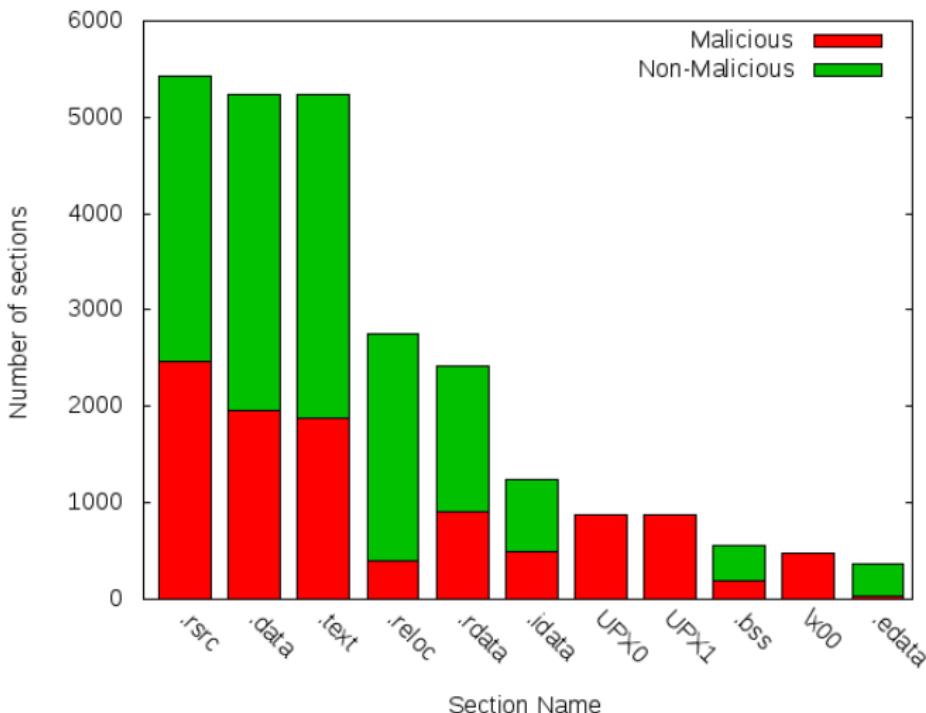


Most common imports

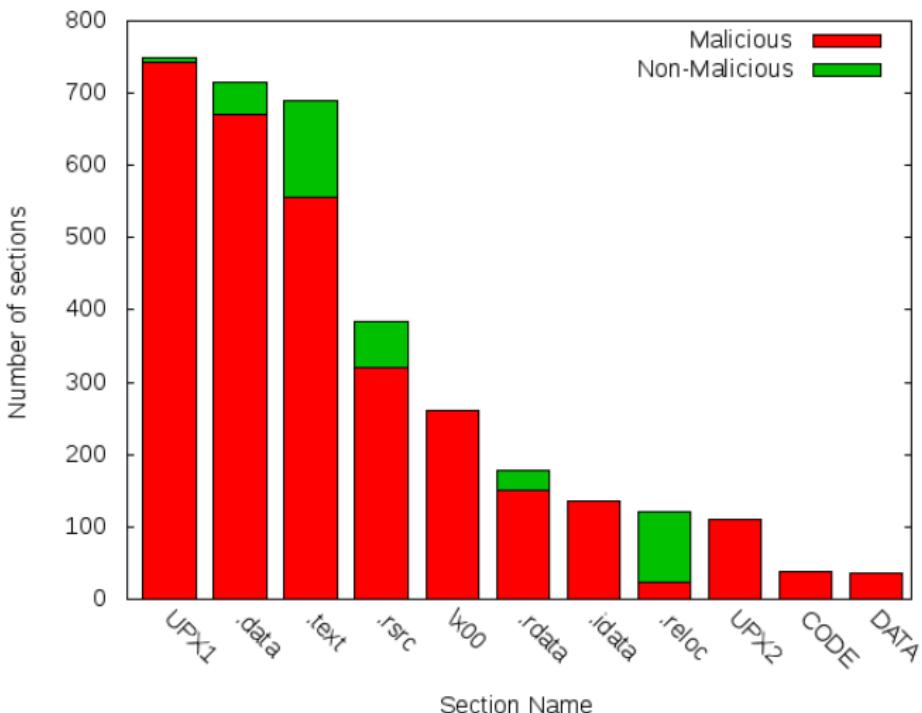


k32=kernel32.dll
a32=advapi32.dll

Most common sections



Most common high-entropy sections



Unpacked dataset

- It's trivial to distinguish packed files from unpacked files
- Unpacked dataset:
 - 854 malicious files
 - 1,048 non-malicious files
 - 18,804 unique imports
 - 126 unique sections

Dataset Noise

Two types of noise in classification problems:

- Classification noise - makes it impossible for the system to achieve 100% testing accuracy
- Attribute noise - non-predictive attributes are attributes within the problem domain that aren't useful in the system's prediction, they have no relationship to class

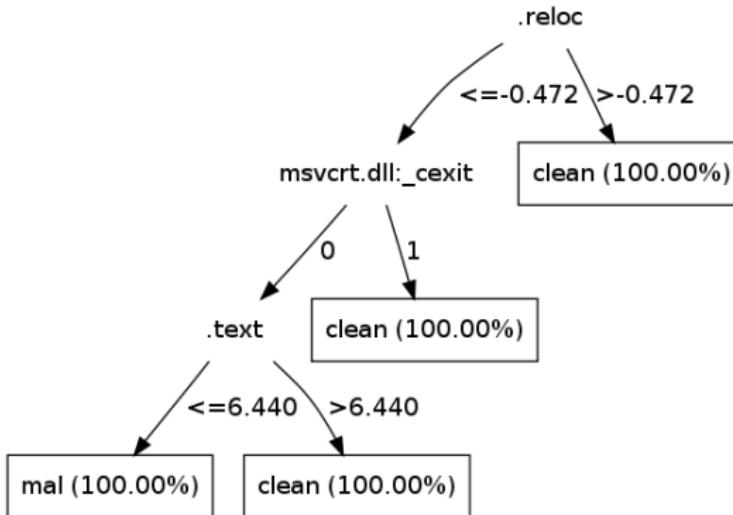
Training/Testing

- Evaluated using stratified 10-fold cross-validation
- During training:
 - The training set is repeatedly presented
 - The correct result from VirusTotal is used for reward/punishment
- The training and test sets have no files in common
- During testing, VirusTotal is employed to score the system

C4.5 algorithm

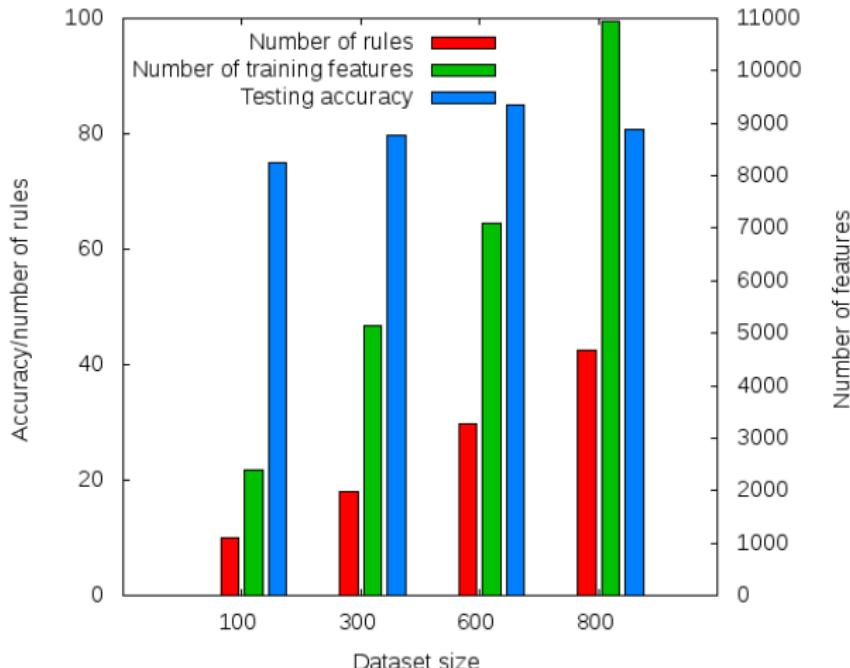
- Machine learning algorithm that builds decision trees
- Each node of the tree represents an attribute that most effectively splits the data into subsets
- Uses normalized information gain (difference in entropy) to choose an attribute

C4.5 Example tree



C4.5 results

Baseline comparison to C4.5



Evolutionary Algorithms

- An Evolutionary Algorithm is a stochastic population-based optimization meta-heuristic
- Uses mechanisms inspired by biological evolution
- Each individual in a population contains a candidate solution to the problem
- Useful in search and optimization problems

Michigan versus Pittsburgh style

Michigan Style:

- Holland's first LCS
- EA operates on the individual level
- Entire population of rules represents a solution

Pittsburgh Style:

- A population consists of variable length rule sets
- EA operates on the level of an entire rule set
- Each rule set is a potential solution

Online versus offline learning

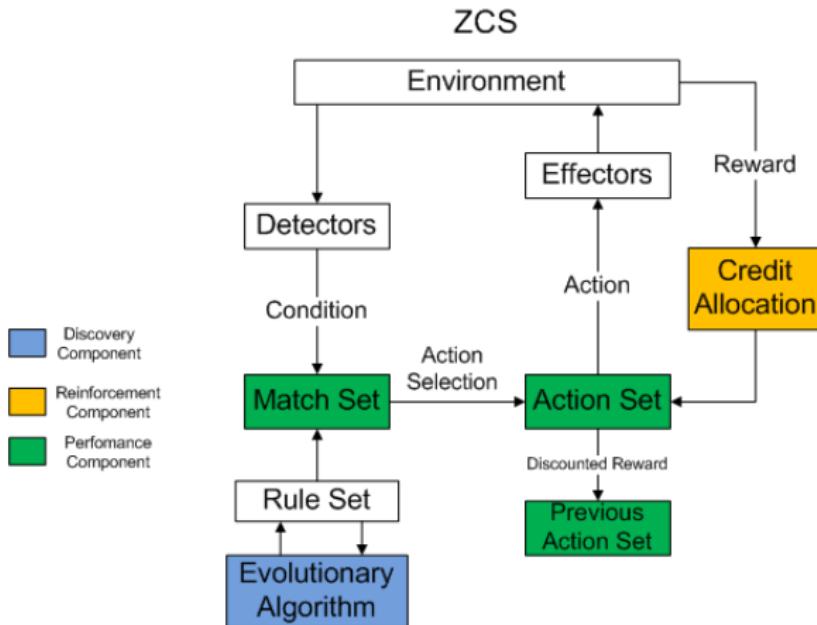
Offline Learning (batch learning):

- All training problems are presented simultaneously
- Results in a rule set that does not change over time
- Pittsburgh style LCSs are usually applied in this method
- Used in data mining problems

Online (incremental) learning:

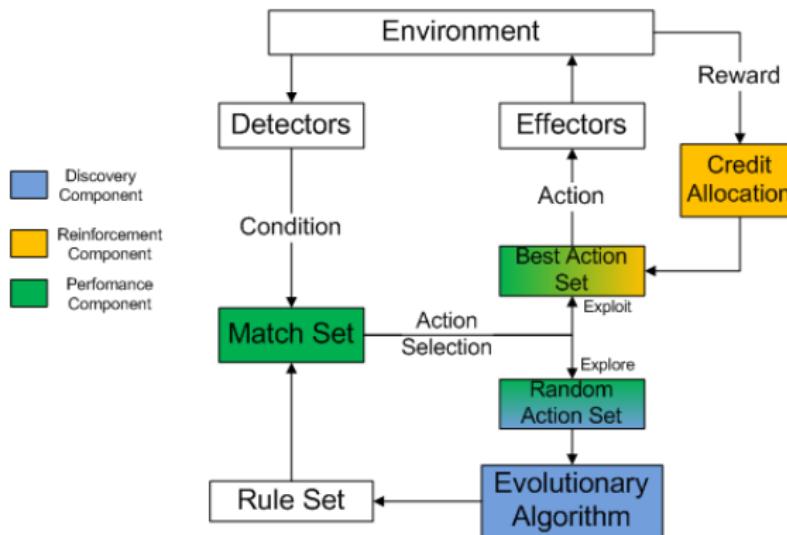
- Problem instances presented individually
- Rule set evolves over time with each new observation
- Typical of Michigan style LCS (though Pittsburgh can use online learning)

ZCS



XCS

XCS

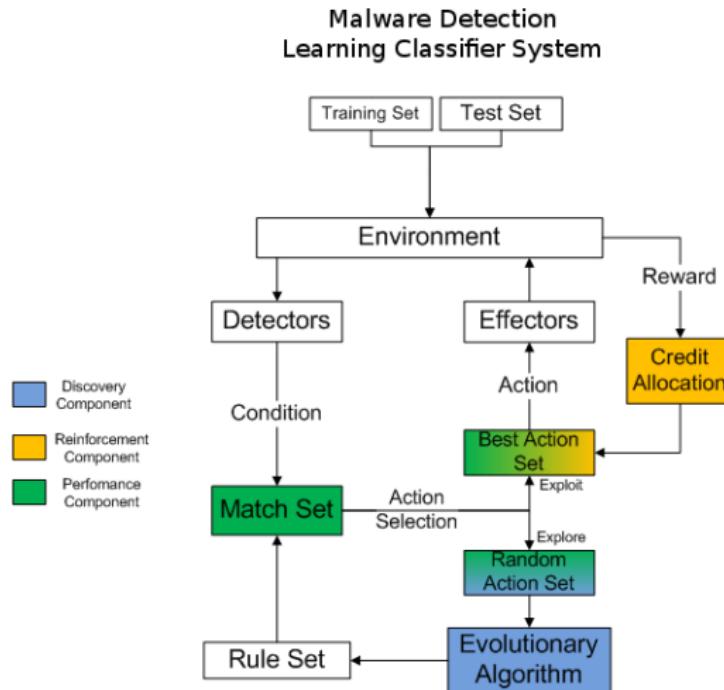


Overgeneral Classifier Problem

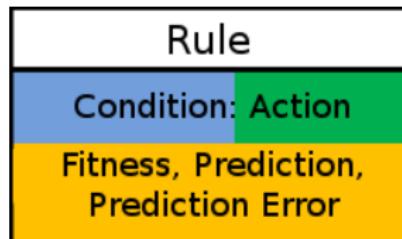
- *General classifier* - condition matches many problem instances
- *Greedy classifier* - fitness depends on the magnitude of the reward it receives
- *Overgeneral classifier* - advocates desired action only in certain problem cases
- The problem occurs when rules act correctly in some states but incorrectly in others
- More specialized rules may be outvoted by overgenerals
- Strong overgeneral rules are unreliable, but outweigh reliable rules during action selection

Malware Detection LCS diagram

The system is based on XCS



Rule (classifier) definition



- Condition - truth function which is satisfied by inputs
- Action - rule advocates an action for the system to perform
- Fitness values - accuracy of prediction of environmental reward

LCS Training/Testing

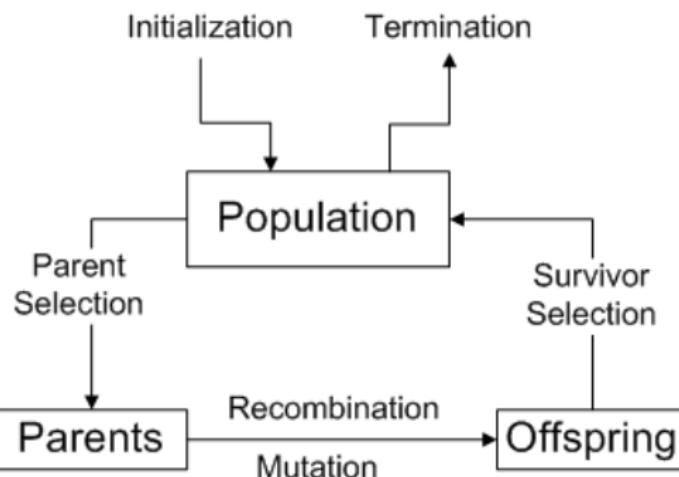
- Training set used to evolve rules to identify the malicious samples
- Current population is run against the test set periodically, to evaluate generalization of the ruleset
- Correct results are known during testing to score accuracy, but no learning takes place

Initialization Methods

3 methods:

- Random - Entire population created by generating random trees (conditions) and actions
- Covering - Rules created by the covering operator, population starts empty
- C4.5 - Each leaf node in a decision tree converted into a single rule, specialized by adding nodes

Rule Evolution cycle



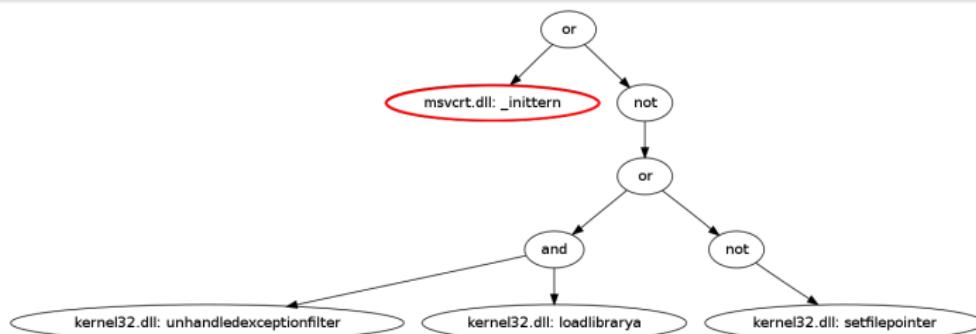
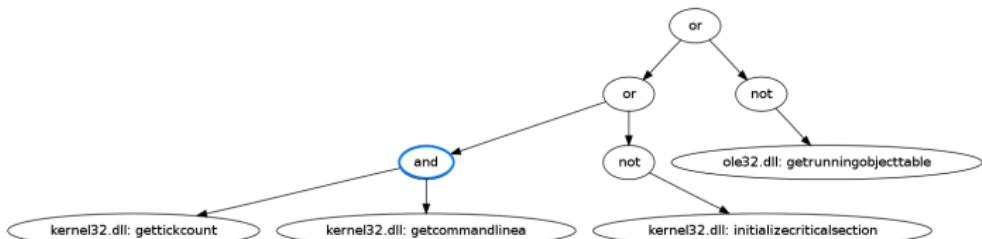
Evolutionary Pressure in XCS

- XCS's generalization pressure is overcome by a strong fitness pressure (the pressure towards higher accuracy)
- *Proportionate selection* - the smaller the fitness differences in the population, the smaller the fitness pressure
- In XCS, rule fitness is derived from a scaled, action set-relative accuracy
- *Tournament selection* - based on fitness rank, not relative fitness differences
- Tournament selection does not suffer from fitness scaling or from small differences in accuracies

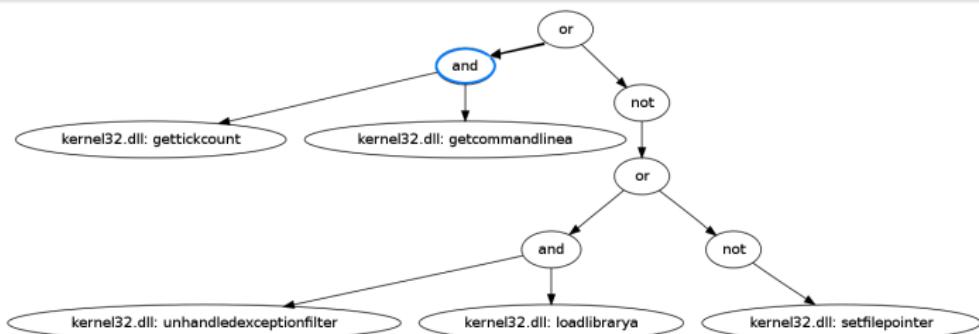
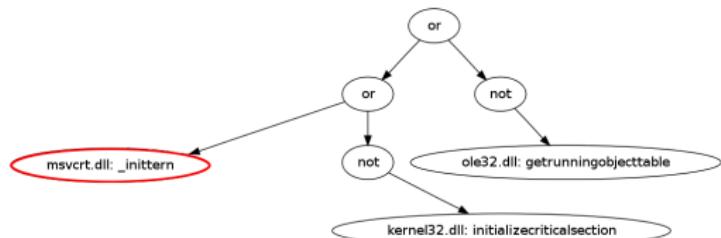
Tournament Size in XCS

- In XCS the EA acts on the action set
- In XCS, action set sizes can vary significantly
- A change in the tournament size changes the strength of the selection pressure applied
- A relatively strong selection pressure, which adapts to the current action set size, is required
- XCS tournament size is dependent on the current action set size, ensuring equal selection pressure

Crossover example - parents

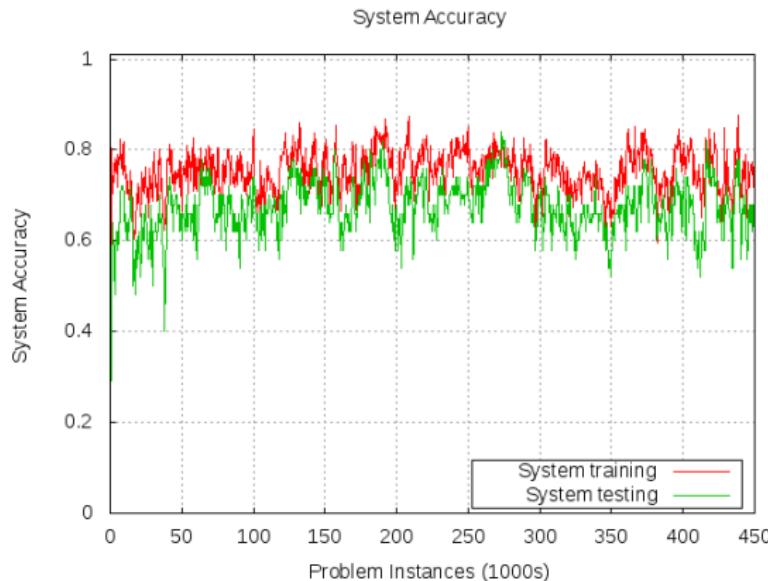


Crossover example - offspring

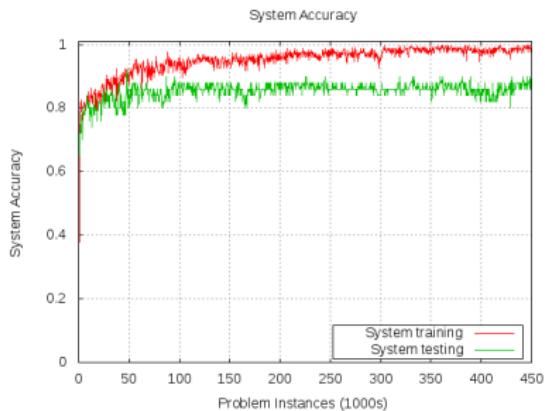


Covering-random deletion cycle

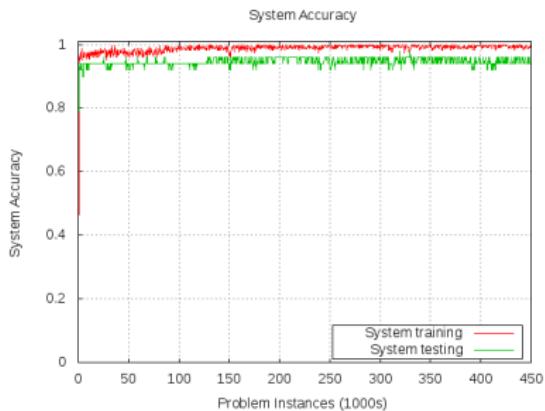
- Rules' conditions are too specific
- Too small a population size (10)



Adequate population size (30)



(a) random initialization

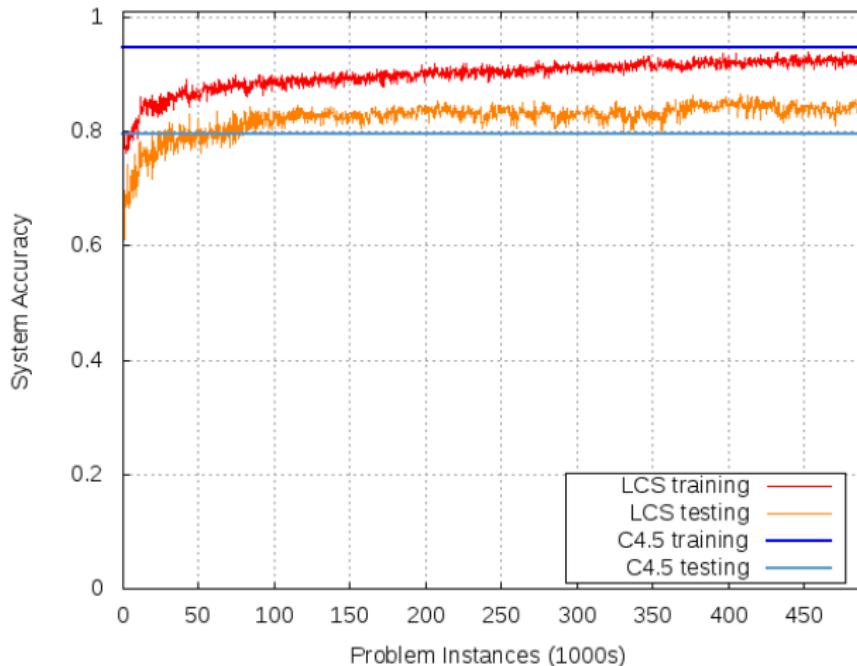


(b) C4.5 initialization

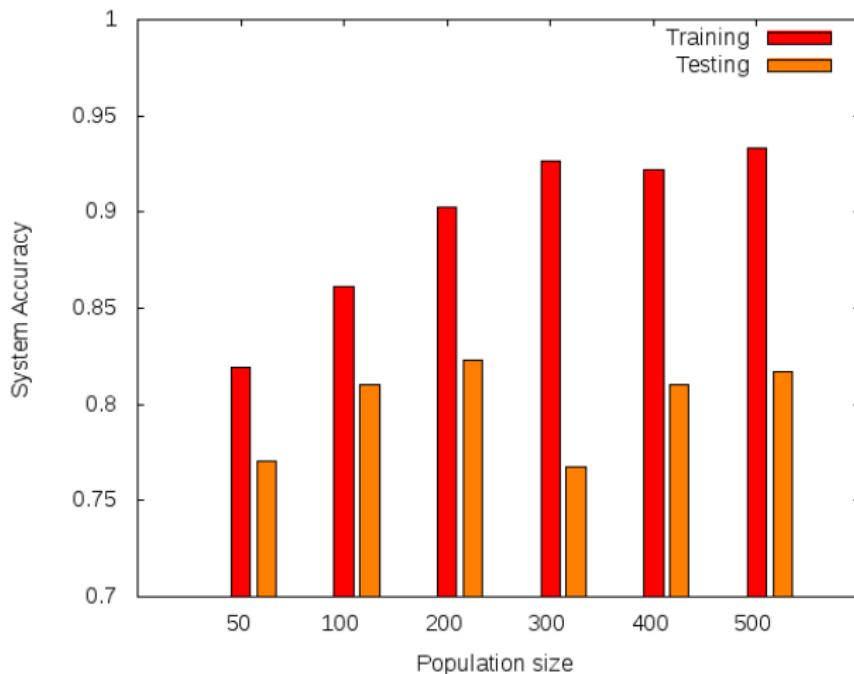
Malware family study

- Too small a population size (10), covering-random deletion loop occurred
- The C4.5 decision tree performed better than the LCS at a lower population size
- Increasing the population to 20 and 30 allowed the LCS to perform as well as C4.5 (and in one case out-train it)
- C4.5 initialization method converged quicker than other methods

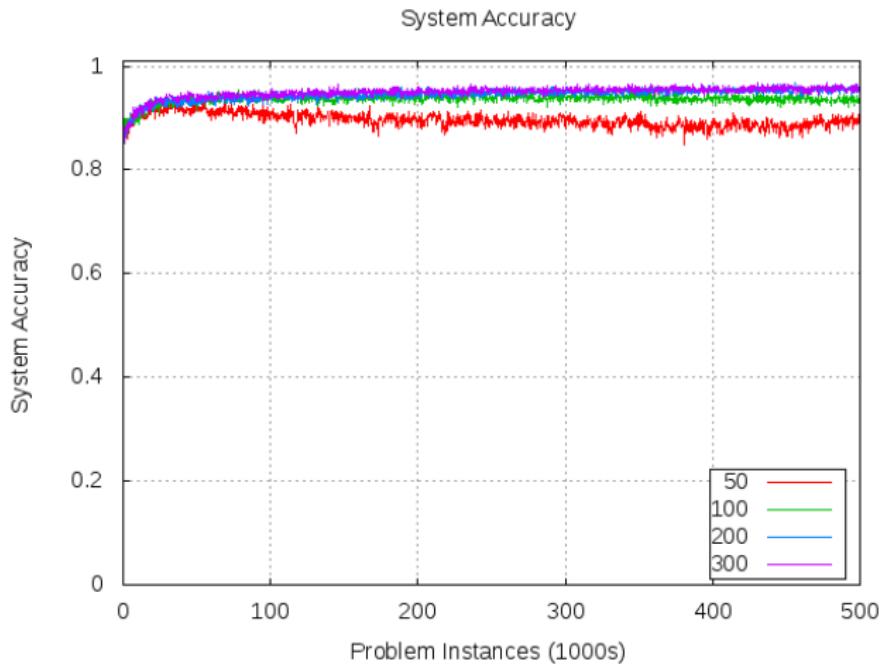
Evolution trends



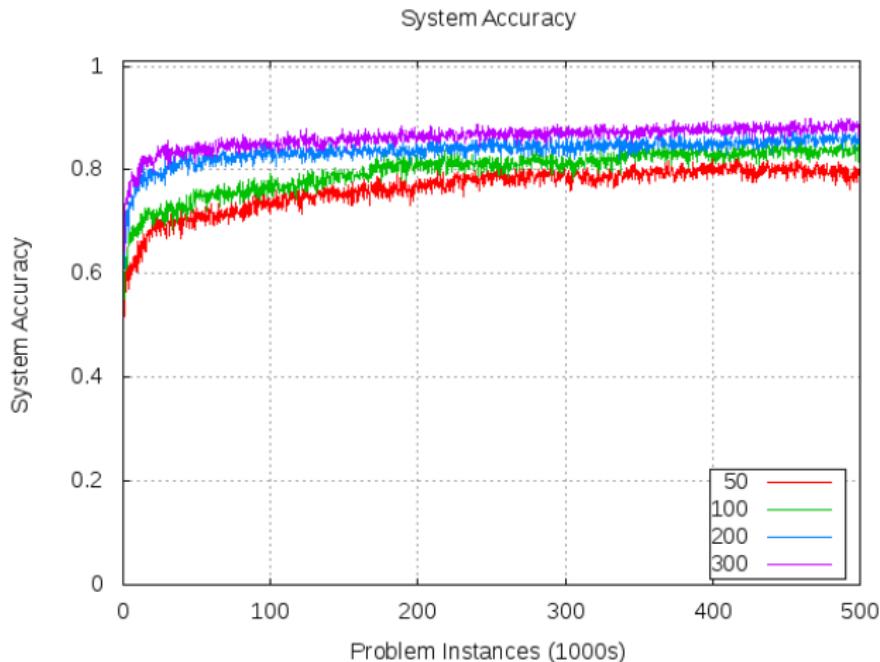
LCS population size tuning



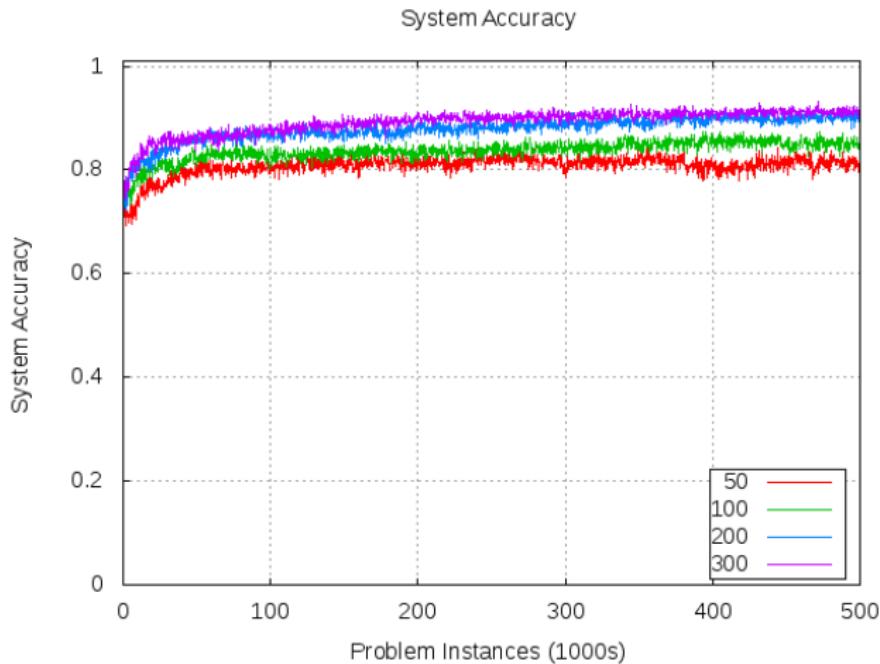
Population size study - C4.5 initialization



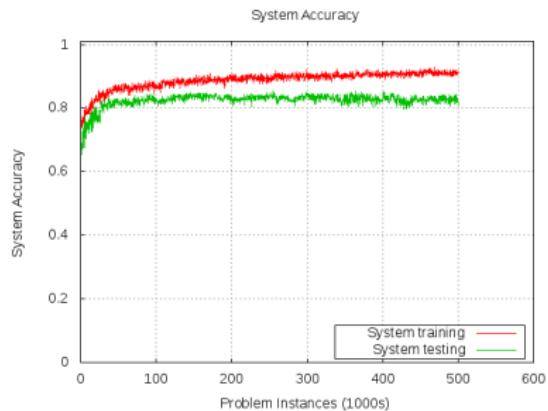
Population size study - Random initialization



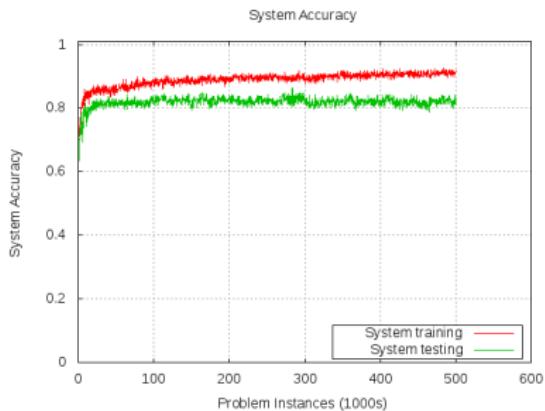
Population size study - Covering initialization



Offspring size study

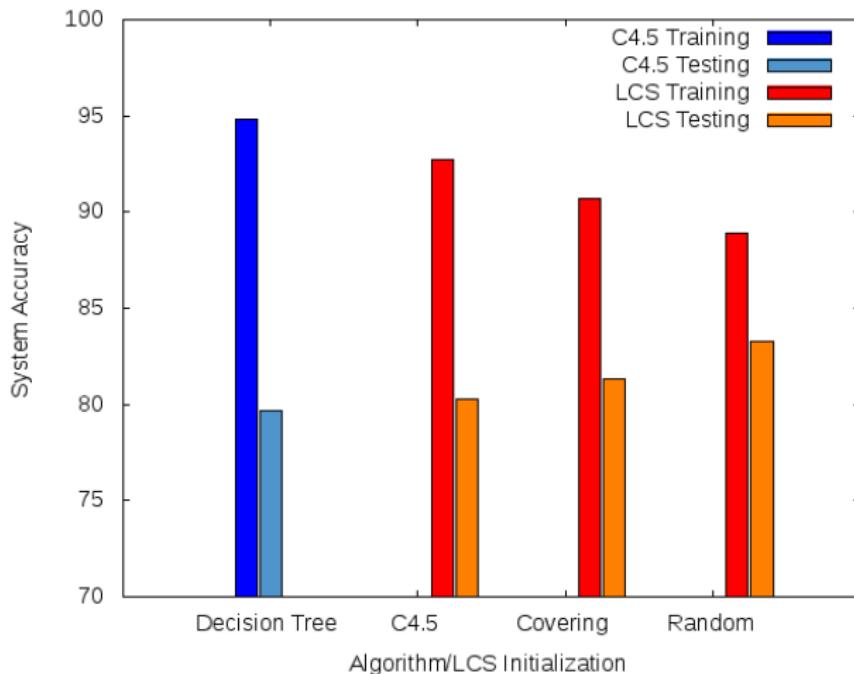


(c) Offspring size = 1



(d) Offspring size = 2

C4.5 vs. LCS



Conclusions - Initialization methods

- C4.5 initialization has promising results, in some cases outperforming the decision tree it was seeded from
- Covering initialization can achieve similar performance as C4.5 but takes longer to converge
- Random initialization is slower to converge and has higher performance variance than C4.5
- Generalization of the LCS was better than that of C4.5 decision tree, but there is still some overfitting between the training and testing results
- Overfitting indicates that the system's learning is specific to the structure of the training set and generalization is not optimal

General Conclusions

- C4.5 typically trains to a very high accuracy, but lacks in generalization of testing data
- LCS doesn't suffer from C4.5's feature dimension limitation
- LCS has the potential to outperform more traditional non-adaptive techniques such as C4.5
- LCS is sensitive to certain parameter values, such as population size
- Tuning the LCS is required for optimal performance, as parameters interact with each other
- Noise in the dataset and problem space accounted for a large variance in performance
- Larger datasets were more diverse and thus more difficult to classify

Future work

- Expand feature set of PE files
- Investigate using dynamic as well as static analysis
- Compare with larger and more diverse datasets
- Compare LCS with other machine learning techniques such as random forest and C5.0
- LCS parameter tuning needed to obtain optimal performance
- Using a Fuzzy LCS may allow for better generalization
- Investigate why overfitting doesn't appear in individual experiments