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Motivations

= Formation of Calcium Carbonate (CaCO,) plays an

important role in many natural and engineered systems
= Geological CO, storage

= Growth of calcite concretions in fractured and porous media
= Biomineralization of products from microorganisms

= Formation of scale in boilers and cooling towers

= Pore scale mixing and reaction can affect CO, injection
efficiency and storage capacity

= Reactions in the field (e.g., flowing conditions) can be limited by rates of
transverse mixing

= Recent development of in-situ measurement techniques for (sub) pore-scale
reactive transport experiments provides a unique opportunity to test and
validate pore-scale modeling approaches



Methods

Experimental setup Pore scale modeling
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» Two solutions are mixing along the
centerline and CaCQOj; precipitates

, . , « Lattice Boltzmann Method for water flow
» Microscopic images are taken over time

* Direct numerical simulation of CaCO,
precipitation and dissolution



Precipitate morphology and growth rate
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o PreC|p|tat|on ~ along the centerline within one pore space transverse
to the primary flow direction, with some large crystals off the centerline
e Width of the precipitate line ~ increase with distance from the inlet
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Yoon et al., WRR (2011)

e Precipitate area increases rapidly
due to fast precipitation

e and then decreases due to fast
dissolution within 13 min

e until a relatively constant but lower
plateau is reached over 3-4 hours



! Experimental Results




CaCO; Precipitation and Dissolution

Lattice Boltzmann Method:
Velocity field (u) at pore scale

Finite Volume Method: Reactive transport at pore scale
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Calcite Precipitation and Dissoluion
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Key features of modeling

1. Flow field (solved by Lattice Boltzmann method)
- CaCO; volume fraction (0) of a grid cell (Sum x Spm x 20pum) is greater
than a threshold value (e.g.,0.6), then no flow is allowed through the grid cell
- Diffusion is still allowed until the grid cell is fully occupied by calcite

2. Effective diffusion coefficient = D, * tortuosity (T)
- 1(0) = (1-6)* where n ~ 0 to 3

3. Quasi 3D grid cell for reactive surface

Sum
—»> Slvtm/ +—>

Reactive surface area (a,):
_—~ Horizontal plane
~ f(space, time)
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Cylinder Reaction surface:

Top and bottom of CaCO,
micromodel & cylinder post

Pore space . .
Numerical grid cell

4. Effects of n, k., and dissolution factor on precipitation and dissolution rate



Model results: Reference case (25 mM)

(a) CaCOj; volumetric content (13 min)
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(b) CaCO3 volumetric content (18 min)
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(c) CaCO3 Volumetr1c content (118 min)

Reference case with literature values (n=2, kcc from Chou et al. (1989):
- Initial precipitation 1s modeled well
- Simulation was not able to capture the dissolution process after ~13 min
- Experimental results show CaCOj; dissolution may be pH-dependent



Sensitivity: D¢ & K

(a) Vm at 13 min {Casel)

(e) Image of precipitates at 13 min
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e As the n value decreases (increases), D 4 decreases less (more) as V, increases,
resulting in more (less) precipitation compared to the experimental results

¢ As k. increases, precipitation occurs faster, particularly along the centerline, resulting in
a reduction of diffusion (i.e., mixing) -> decreasing the maximum precipitate area



Dissolution factor (factor=300)
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e Thickness and area of precipitate along the centerline after 13 min decreases more
quickly, and the precipitate area matches the experimental data until 30 minutes

e Model predicts dissolution below the centerline well, but not above the centerline

e The need to include a higher dissolution factor may be attributed to an increase in the
precipitate surface area and the recrystallization process during dissolution



Summary and Challenges

e Pore Scale LB-FVM qualitatively captures governing physics in
transverse-mixing induced CaCO; formation
- CaCO, formation and precipitate patterns

- Pore blocking due to precipitation

e The effects of geochemical reactions and flow field change are
coupled properly

e There 1s a need to account for the enhanced dissolution, possibly
linking to reactive surface area at sub-micro scale and
recrystallization processes

e Pore-scale modeling and experimental results will be used to test
the validity of various upscaling (pore to continuum) and
multi-scale (hybrid) methods, and to develop a new method of
obtaining effective dispersion coefficient values and reactive
surface area



Questions?
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(b) Supersaturation Index at 4 min
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Ostwald's Rule of Stages

Supersaturated
Solution
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|| Calcite
& Kabaxci ef al., Trans [Chemi:, Vol 74, Part A, 1996, p. 765

Modifications of Calcium Carbonate

CALCITE p=28glcm crystalline thermod. stable

ARAGONITE p = 3.0 g/lcm? crystalline metastable

VATERITE p = 2.7 glcm? crystalline metastable

MONOHYDRATE p= n.a. crystalline metastable

HEXAHYDRATE p= 1.8 glcm? crystalline

COLLOIDAL . a. it bt Bolze et al., Langmuir(2002)




