
1

A Simplified Version of 
‘Complex System Modeling and 
Science-Based Cybersecurity’

Jackson Mayo (8953)
Sandia National Laboratories

August 15, 2011

Sandia National Laboratories is a multiprogram laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the United States Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2011-5891P



2

Note

• This is a simplified version of the presentation 
“Complex System Modeling and Science-Based 
Cybersecurity” (SAND2011-1375P)



3

Problem

• In general case, cannot find all vulnerabilities in a 
computer program
– This has been proven mathematically

• So 
– Good guy cannot fix all of the vulnerabilities

– And bad guy can always get in
• Because bad guy only needs to find one vulnerability

• Bad guy can find a vulnerability by “fuzz” testing
– Throw all kinds of random input at the program and 

see when it breaks



4

How Things Got This Way

• Enormously complex hardware and software 
are stamped out en masse

– Producing identical, general-purpose systems 
(e.g., Intel CPUs, Microsoft Windows) achieves 
economies of scale

– No one knows everything these systems can do

– Since they are ubiquitous and cheap, an attacker 
can practice on an identical copy of your system



5

Nature

• Nature faces the same problem

– Example: How defend against unknowable 
bacteria and viruses?

• Answer

– Vary the implementation (but not the function)

• Different implementations weak in different places

– If multiple independent weaknesses are needed, 
chance of infection decreases exponentially

• Principle of robustness or fault-tolerance



6

Computers

• Hardware

– Example: Space Shuttle: 4 computers, identical 
software, different hardware, same design

• Focus is on robustness to hardware failure

• Software

– N-version software

• Use N instances that process the same input in parallel
– Same function, different implementation

• Choose answer by majority



7

Attack!

• Bad guy attacks…and breaks an instance!

• Defense
– Only one instance broken; other N − 1 ok

• This is determined by comparing their individual outputs

– Repair:
• Automatically generate new instance

– Again, same function, different implementation

• Replace broken instance

• Now the bad guy must start all over again

• Bad guy is on the run!



8

Key

• Different implementation  different 
vulnerabilities (by assumption)

• Each instance is a different implementation

• So successful attack on one instance 
probably not successful on another instance

• Remember:

– Good guy cannot find all the vulnerabilities

– Bad guy finds vulnerabilities one at a time



9

Measuring the Payoff

• In an N-version voting system with sufficiently 
diverse implementations:

– Work for attacker to simultaneously compromise a 
majority of versions is exponential in N

– Work for defender to produce and run N versions 
is linear in N

N



10

Complexity Science

• Reductionism: Examining parts provides 
understanding of whole

– Most real-world systems too complex for this

• Including most digital hardware and software

• But formal methods can work in simpler digital systems

• Holism: Understand new systems by 
abstracting from other systems

– Complexity science helps here, with concepts such 
as robustness



11

Sandia Research

• Automatic generation of different 
implementations of the same function
– Pursuing genetic programming techniques 

inspired by biological evolution

• More general system design principles for 
achieving robustness
– Leveraging network models and game theory

– May be more efficient than diverse replication

• These efforts are yielding promising results



12

A Cybersecurity Vision

• How are high-consequence digital systems 
best created?

– Design for analyzability

• Enable an appropriate combination of formal methods 
(exhaustive analysis of smaller systems) and complexity 
science (probabilistic analysis of larger systems)

– Leverage human effort in potentially new ways

• Take advantage of tools such as genetic programming

• The human input may not be a full implementation, but 
a design specification that constrains the search space


