
Exploring Formal Verification Methodology for FPGA-based Digital Systems

Early Career Early Career
R&D ProgramR&D Program

Sandia National LaboratoriesSandia National Laboratories

Yalin Hu (Org 8135)

Problem

R&D ProgramR&D Program
Yalin Hu (Org 8135)

Livermore, CA

Results
• How to formally verify a FPGA-based digital system (Figure 1)?
• What are the specific requirements that are different than industrial applications?
• How confident are we after the verification?
• How to automate the verification with respect to specification?
• What is the best design/verification flow (Figure 2)?

Potential development framework has been identified
Potential application has been identified
Several prototype models have been developed for NuSMV

• Simple ALU
• Shift register
• Single port random access memory (RAM)

Customer
Specification

Design
Implementation in

HDL

Simulation & Review

Customer
Specification

Design
Implementation in

HDL

Formal Verification

Formal Specification

Automatic
Conversion to NuSMV

HDL code

• Single port random access memory (RAM)
• Open source Advanced Encryption System (AES)

Proved challenge with existing model checking tools for designs involving memory
• Small sized RAM experienced state explosion problem during model checking with NuSMV

(Figure 3)
• An implementation of AES (computational intensive) is too complex to model efficiently with

NuSMV

1E+70

1E+84

1E+98

1E+112

1E+126

1E+140

1E+154

1E+168

1E+182

100

1000

10000

100000

N
u

m
b

e
r

o
f

St
at

e
s

R
u

n
ti

m
e

 (S
e

co
n

d
s)

U
si

n
g

fl
ag

s
-c

o
i,

-d
f,

 -
d

yn
am

ic

State Space Explosion in RAM (M = 16)
Figure 1. How to deliver trusted FPGA-based designs?

Approach
Significance

Simulation & Review

Production

Formal Verification

Production

Figure 1. Hardware design flow. Left: Design flow without formal methods – passing simulation
proves correctness. Right: Design flow augmented with formal verification – passing verification
ensures that the formal specification is held.

Formal Verification – is the process of checking that the intent of the design was preserved in its
implementation.

Investigation of various formal approaches
• Equivalence checking -- whether two representations of a design is equivalent

Bring new S&T into mission-critical, high-consequence digital system design/verification to compliment

Identified the need for a hybrid approach to compensate for the limitations of model checking and
theorem proving

1

1E+14

1E+28

1E+42

1E+56

1E+70

1

10

100

2 6 10 14 18 22 26 30 34 38

N
u

m
b

e
r

o
f

St
at

e
s

R
u

n
ti

m
e

 (
U

si
n

g
fl

ag
s

RAM Size (N) Number of states Runtime (seconds)

Figure 3. State space explosion for RAM with fixed word size (M) and variable memory size (N).

• Equivalence checking -- whether two representations of a design is equivalent
• Model checking -- whether a modeled design meets specification
• Symbolic model checking -- build propositional logic instead of graph for FSM
• Automated theorem proving -- proving of mathematical theorems with computer programs
• Integrated approaches

Integration of event-driven simulator with model checker
• What is the appropriate abstraction level?
• What is the appropriate application programming interface (API)?

OHDL VHDL

API to NuSMV

Sim engine

models

O-to-Nu translator

Bring new S&T into mission-critical, high-consequence digital system design/verification to compliment
the traditional simulation based testing
•Simulation: dynamically demonstrate that the design intent is preserved in implementation  proves correctness

• Fact: potentially identify the presence of a bug
• Challenge: does not ensure the absence of a bug

•Formal verification: statically proves that the implementation satisfies the requirements  catches fault
• Fact: exhaustive explore all state space to uncover all incorrect behaviors
• Challenge: identify enough properties to check

Distinguish Sandia’s specific needs from industrial applications, which can be handled with commercial
tools – how many “9”s will be “good enough”?

• High-reliability  high functional correctness
• High-availability  low system downtime

Availability (%) Downtime

Weekly Monthly Annually

90% “one 9” 16.8 hours 72 hours 36.5 days

99% “two 9s” 16.8 hours 7.2 hours 3.65 days

Introduction of the concept of “systems are designed to be verified and are verified by design”

.smv

Leverage this S&T in an improved design/verification flow

99% “two 9s” 16.8 hours 7.2 hours 3.65 days

99.9% “three 9s” 10.1 minutes 43.2 minutes 8.76 hours

99.99% “four 9s” 1.01 minutes 4.32 minutes 52.56 minutes

99.999% “five 9s” 6.05 seconds 25.9 seconds 5.256 minutes

99.9999% “six 9s” 0.605 seconds 2.59 seconds 31.5 seconds

S y s t e m S p e c i fi c a t i o n

P r o p e r ty S p e c i f i c a ti o nF u n c t i o n S p e c i fi c a t i o n

Im p l e m e n t a ti o n P ro p e r t y M o d e l i n g

S a ti s f i a b le ?

V e ri f i c a t io n F r a m e w o rk

Customer
Specification

Formal Specification

Automatic Conversion to
NuSMV

HDL Design
Implementation

Automatic Model
Abstraction Using

Formally Verified Tool

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000."

SAND 2010-xxxP

S a ti s f i a b le ?

Formal Verification Production

Formally Verified Tool

Figure 4. Improved hardware design flow combines model checking and theorem proving

SAND2011-5706P

