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Results 
• How to formally verify a FPGA-based digital system (Figure 1)?
• What are the specific requirements that are different than industrial applications?
• How confident are we after the verification?
• How to automate the verification with respect to specification?
• What is the best design/verification flow (Figure 2)?

Potential development framework has been identified
Potential application has been identified
Several prototype models have been developed for NuSMV

• Simple ALU
• Shift register
• Single port random access memory (RAM)
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• Single port random access memory (RAM)
• Open source Advanced Encryption System (AES)

Proved challenge with existing model checking tools for designs involving memory
• Small sized RAM experienced state explosion problem during model checking with NuSMV

(Figure 3)
• An implementation of AES (computational intensive)  is too complex to model efficiently with 

NuSMV
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State Space Explosion in RAM (M = 16)
Figure 1. How to deliver trusted FPGA-based designs?
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Figure 1. Hardware design flow. Left: Design flow without formal methods – passing simulation  
proves correctness. Right: Design flow augmented with formal verification – passing verification 
ensures that the formal specification is held.

Formal Verification – is the process of checking that the intent of the design was preserved in its 
implementation.

Investigation of various formal approaches
• Equivalence checking -- whether two representations of a design is equivalent

Bring new S&T into mission-critical, high-consequence digital system design/verification to compliment 

Identified the need for a hybrid approach to compensate for the limitations of model checking and 
theorem proving
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Figure 3. State space explosion for RAM with fixed word size (M) and variable memory size (N).

• Equivalence checking -- whether two representations of a design is equivalent
• Model checking -- whether a modeled design meets specification
• Symbolic model checking -- build propositional logic instead of graph for FSM
• Automated theorem proving -- proving of mathematical theorems with computer programs
• Integrated approaches

Integration of event-driven simulator with model checker
• What is the appropriate abstraction level?
• What is the appropriate application programming interface (API)?
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Bring new S&T into mission-critical, high-consequence digital system design/verification to compliment 
the traditional simulation based testing
•Simulation: dynamically demonstrate that the design intent is preserved in implementation  proves correctness

• Fact: potentially identify the presence of a bug
• Challenge: does not ensure the absence of a bug

•Formal verification: statically proves that the implementation satisfies the requirements  catches fault
• Fact: exhaustive explore all state space to uncover all incorrect behaviors
• Challenge: identify enough properties to check

Distinguish Sandia’s specific needs from industrial applications, which can be handled with commercial 
tools – how many “9”s will be “good enough”?

• High-reliability  high functional correctness
• High-availability  low system downtime

Availability (%) Downtime

Weekly Monthly Annually

90% “one 9” 16.8 hours 72 hours 36.5 days

99% “two 9s” 16.8 hours 7.2 hours 3.65 days

Introduction of the concept of “systems are designed to be verified and are verified by design”

.smv

Leverage this S&T in an improved design/verification flow

99% “two 9s” 16.8 hours 7.2 hours 3.65 days

99.9% “three 9s” 10.1 minutes 43.2 minutes 8.76 hours

99.99% “four 9s” 1.01 minutes 4.32 minutes 52.56 minutes

99.999% “five 9s” 6.05 seconds 25.9 seconds 5.256 minutes

99.9999% “six 9s” 0.605 seconds 2.59 seconds 31.5 seconds
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Figure 4.  Improved hardware design flow combines model checking and theorem proving
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