
Presentation to the New Mexico Consortium 
Ultrascale Systems Research Center 

August 8, 2011 
 

Kevin Pedretti 
Senior Member of Technical Staff 

Scalable System Software, Dept. 1423 
ktpedre@sandia.gov 

 
 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s 

National Nuclear Security Administration under contract DE-AC04-94AL85000.!

Kitten: A Lightweight Operating 
System for Ultrascale Supercomputers 

SAND2011-5626P



Outline 

• Introduction 

• Kitten lightweight kernel overview 

• Future directions 

• Conclusion 



Four+ Decades of UNIX 

Operating System = Collection of software and APIs 
Users care about environment, not implementation details 

LWK is about getting details right for scalability 



Sandia Lightweight Kernel Targets 
• Massively parallel, extreme-scale, distributed-

memory machine with a tightly-coupled network 
• High-performance scientific and engineering 

modeling and simulation applications 
• Enable fast message passing and execution 
• Offer a suitable development environment for 

parallel applications and libraries 
• Emphasize efficiency over functionality 
• Move resource management as close to 

application as possible 
• Provide deterministic performance 
• Protect applications from each other 



Lightweight Kernel Overview 

• POSIX-like environment 
•  Inverted resource management 
• Very low noise OS noise/jitter 
• Straight-forward network stack (e.g., no pinning) 
• Simplicity leads to reliability 
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Lightweight Kernel Timeline 
1990 – Sandia/UNM OS (SUNMOS), nCube-2 
1991 – Linux 0.02 
1993 – SUNMOS ported to Intel Paragon (1800 nodes) 
1993 – SUNMOS experience used to design Puma 

First implementation of Portals communication architecture 

1994 – Linux 1.0 
1995 – Puma ported to ASCI Red (4700 nodes) 

Renamed Cougar, productized by Intel 

1997 – Stripped down Linux used on Cplant (2000 nodes) 
Difficult to port Puma to COTS Alpha server 
Well-defined Portals API 

2002 – Cougar ported to ASC Red Storm (13000 nodes) 
Renamed Catamount, productized by Cray 

2004 – IBM develops LWK (CNK) for BG/L/P/Q (2011 Sequoia 1.6M cores) 
2005 – IBM & ETI develop LWK (C64) for Cyclops64 (160 cores, dance hall) 
2007 – Kitten development begins, Aug. 2007 

2007 – Cray releases Compute Node Linux for Cray XT3/4/5/6 systems 
2009 – Tilera develops “Zero Overhead Linux” for TILEPro (64 cores, 2D mesh) 

2009 – Argonne ZeptoOS Linux for BG/P, “Big Memory” Linux kernel patches 
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Many Drivers for Starting Fresh 
• SUNMOS/Puma/Cougar/Catamount shortcomings 

– Closed source (*) and export controlled 
–  Limited multi-core support 
– No support for multi-threaded applications (*) 
– Custom glibc port and compiler wrappers 
– No NUMA / PCI / ACPI / APIC / Linux driver support / Signals / … 
– No Virtual Machine Monitor capability 

• Needed more modern platform for research 
–  Less complex code-base enables rapid prototyping 
–  Exascale R&D in runtime systems and programming models 
–  Bring-up of new chips, simulated or real (IBM CNK argument) 

Focus on what’s important rather than working  
around problems that shouldn’t exist 



Kitten Lightweight Kernel 

• Maintain important characteristics of prior LWKs 
• Better match user, vendor, and researcher expectations -> 

Looks and feels like Linux, support multicore + threads 
• Available from http://code.google.com/p/kitten 
•  FY08-10 LDRD project, currently CSSE + ASCR funded 



LWK Architecture 
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Major changes: 
–  QK includes hypervisor functionality 
–  QK provides Linux ABI interface, relay to PCT 
–  PCT provides function shipping, rather than special libc.a 



Leverage Linux and Open Source 
• Repurpose basic functionality from Linux Kernel 

– Hardware bootstrap 
–  Basic OS kernel primitives 
–  PCI, NUMA, ACPI, IOMMU, … 

•  Innovate in key areas 
– Memory management, multi-core messaging optimization 
– Network stack 
–  Leverage runtime feedback 
–  Fully tick-less operation, but short duration OS work 

• Boots identically to Linux, drop-in replacement for CNL 
• Open platform more attractive to collaborators 

– Collaborating with Northwestern Univ. and Univ. New Mexico 
on lightweight virtualization for HPC, http://v3vee.org/ 

–  Potential for wider impact 



POSIX Threads + OpenMP Support 
• Kitten user-applications link with the standard GNU C 

library installed on the Linux host 
• GNU C includes POSIX threads implementation called 

NPTL 
• NPTL relies on Linux futex() system call, Kitten supports 

–  Futex() = Fast user-level locking 
–  Atomic instructions used to manipulate futexes 
– Only trap to OS Kernel when futex is contended, 

uncontended case requires no syscalls 
• Compilers typically build OpenMP support on top of  

POSIX threads -> Kitten supports OpenMP 
• Kitten supports many threads per core 

–  Each core has private run queue 
–  Round-robin preemptive scheduling 
–  No automatic load-balancing between cores 



Key Memory Management APIs 
• Address space creation/destruction 

–  extern int aspace_create(id_t id_request,  
" " " "   const char *name, id_t *id);"

–  extern int aspace_destroy(id_t id); 
• Create virtual memory regions 

–  extern int aspace_add_region(id_t id, vaddr_t start, 
"size_t extent, vmflags_t flags, vmpagesize_t pagesz, 
"const char *name); 

• Allocate physical to virtual memory 
–  extern int aspace_map_pmem(id_t id, paddr_t pmem, 

"vaddr_t start, size_t extent);"

• Map one address space into another 
–  extern int aspace_smartmap(id_t src, id_t dst, 

"vaddr_t start, size_t extent);"



SMARTMAP Eliminates 
Unnecessary Intra-node Memory Copies 

•  Basic Idea: Each process on a node maps the memory of 
all other processes on the same node into its virtual 
address space 

•  Enables single copy process to process message 
passing (vs. multiple copies in traditional approaches) 
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For more information see SC’08 paper 



SHMEM Ping-Pong Latency 
Kitten Demonstrates Low Variability 
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Kitten Provides a Scalable 
Virtualization Environment for HPC 

•  Lightweight Kernels (LWK) traditionally 
have limited, fixed functionality 

•  Kitten LWK addresses this limitation by 
embedding a virtual machine monitor 
(collaboration with Northwestern Univ. 
and Univ. of New Mexico) 

•  Allows users to “boot” full-featured guest 
operating systems on-demand 

•  System architected for low virtualization 
overhead; takes advantage of Kitten’s 
simple memory management 

•  Conducted large scale experiments on 
Red Storm using micro-benchmarks and 
two full applications, CTH and Sage 

For more information see IPDPS’10 + VEE’11 papers 



HPC Virtualization Has Many Use Cases 
• X-Stack researchers 

–  Enable large-scale testing without requiring dedicated 
system time 

–  Emulate and evaluate novel hardware functionality 
before it is available (e.g., global memory) 

–  Enable hardware/software co-design 
• End-users 

–  Load full-featured guest OS, or app-specific OS 
– Dynamically replace runtime with one more suitable for 

the user’s workload (e.g., a massive number of small 
jobs) 

– Cyber-security experiments using commodity OSes, run 
multiple OSes per compute node 

–  System administrators test new vendor software without 
taking machine out of production 



Highlight Results from 
Red Storm Virtualization Experiments 
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Native is Catamount running on ‘bare metal’, Guest is Catamount 
running as a guest operating system managed by Kitten/Palacios 

Performance when executing in virtual machine 
within 5% of native 
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Future Directions 
• OS support for exascale runtime systems 

– Functional partitioning of cores 
(network progress engines, I/O, resiliency, …) 

– Exploit SMARTMAP capability 
– Continue to get out of the way, let runtime/app 

manage resources 
• Performance experiments 

–  Infiniband performance, eliminate memory pinning 
– Possibly target Cray XE6 

• GPU support 
• Continue work on HPC-focused virtual machine 

monitor capability, Palacios 



Conclusion 

• Kitten is a modern, open-source LWK platform 
that supports multi-core processors (N cores, 
multiple threads per core), advanced intra-node 
data movement (SMARTMAP), current multi-
threaded programming models (via Linux user-
space compatibility), commodity HPC networking 
(Infiniband), and full-featured guest operating 
systems (Palacios virtualization) 

• Well-positioned for exascale HW/SW co-design 
and collaboration 
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SHMEM 16-Core Message Rate Benchmark 
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Noise Only Becomes Issue at Large Node 
Counts; Negligible at Small Scale 

Latency for Dissemination-based Collectives (e.g., Allreduce) 

Figure Credit: Torsten Hoefler, et al., 
“Characterizing the Influence of System Noise to Large-Scale Applications by Simulation 


