
Presentation to the New Mexico Consortium
Ultrascale Systems Research Center

August 8, 2011

Kevin Pedretti
Senior Member of Technical Staff

Scalable System Software, Dept. 1423
ktpedre@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.!

Kitten: A Lightweight Operating
System for Ultrascale Supercomputers

SAND2011-5626P

Outline

• Introduction

• Kitten lightweight kernel overview

• Future directions

• Conclusion

Four+ Decades of UNIX

Operating System = Collection of software and APIs
Users care about environment, not implementation details

LWK is about getting details right for scalability

Sandia Lightweight Kernel Targets
• Massively parallel, extreme-scale, distributed-

memory machine with a tightly-coupled network
• High-performance scientific and engineering

modeling and simulation applications
• Enable fast message passing and execution
• Offer a suitable development environment for

parallel applications and libraries
• Emphasize efficiency over functionality
• Move resource management as close to

application as possible
• Provide deterministic performance
• Protect applications from each other

Lightweight Kernel Overview

• POSIX-like environment
•  Inverted resource management
• Very low noise OS noise/jitter
• Straight-forward network stack (e.g., no pinning)
• Simplicity leads to reliability

Policy
Maker
(PCT)

A
pp

lic
at

io
n

1

libmpi.a
Libc.a

A
pp

lic
at

io
n

N

libmpi.a
Libc.a

Policy Enforcer/HAL (QK)

Privileged Hardware

…

Page 3

Page 2

Page 1

Page 0

…

Page 3

Page 2

Page 1

Page 0

Physical
Memory

Application
Virtual

Memory

Basic Architecture Memory Management

Lightweight Kernel Timeline
1990 – Sandia/UNM OS (SUNMOS), nCube-2
1991 – Linux 0.02
1993 – SUNMOS ported to Intel Paragon (1800 nodes)
1993 – SUNMOS experience used to design Puma

First implementation of Portals communication architecture

1994 – Linux 1.0
1995 – Puma ported to ASCI Red (4700 nodes)

Renamed Cougar, productized by Intel

1997 – Stripped down Linux used on Cplant (2000 nodes)
Difficult to port Puma to COTS Alpha server
Well-defined Portals API

2002 – Cougar ported to ASC Red Storm (13000 nodes)
Renamed Catamount, productized by Cray

2004 – IBM develops LWK (CNK) for BG/L/P/Q (2011 Sequoia 1.6M cores)
2005 – IBM & ETI develop LWK (C64) for Cyclops64 (160 cores, dance hall)
2007 – Kitten development begins, Aug. 2007

2007 – Cray releases Compute Node Linux for Cray XT3/4/5/6 systems
2009 – Tilera develops “Zero Overhead Linux” for TILEPro (64 cores, 2D mesh)

2009 – Argonne ZeptoOS Linux for BG/P, “Big Memory” Linux kernel patches

Outline

• Introduction

• Kitten lightweight kernel overview

• Future directions

• Conclusion

Many Drivers for Starting Fresh
• SUNMOS/Puma/Cougar/Catamount shortcomings

– Closed source (*) and export controlled
–  Limited multi-core support
– No support for multi-threaded applications (*)
– Custom glibc port and compiler wrappers
– No NUMA / PCI / ACPI / APIC / Linux driver support / Signals / …
– No Virtual Machine Monitor capability

• Needed more modern platform for research
–  Less complex code-base enables rapid prototyping
–  Exascale R&D in runtime systems and programming models
–  Bring-up of new chips, simulated or real (IBM CNK argument)

Focus on what’s important rather than working
around problems that shouldn’t exist

Kitten Lightweight Kernel

• Maintain important characteristics of prior LWKs
• Better match user, vendor, and researcher expectations ->

Looks and feels like Linux, support multicore + threads
• Available from http://code.google.com/p/kitten
•  FY08-10 LDRD project, currently CSSE + ASCR funded

LWK Architecture

Policy
Maker
(PCT)

A
pp

lic
at

io
n

1

libmpi.a

LWK
specific
Libc.a

A
pp

lic
at

io
n

N

libmpi.a

Policy Enforcer/HAL (QK)

Privileged Hardware

Catamount Kitten

LWK
specific
Libc.a

A
pp

lic
at

io
n

1

libmpi.a

Standard
Libc.a

Guest
OS

G
ue

st
 O

S
1

Policy Enforcer/HAL/Hypervisor
(QK)

Privileged Hardware

Policy
Maker
(PCT)

Major changes:
–  QK includes hypervisor functionality
–  QK provides Linux ABI interface, relay to PCT
–  PCT provides function shipping, rather than special libc.a

Leverage Linux and Open Source
• Repurpose basic functionality from Linux Kernel

– Hardware bootstrap
–  Basic OS kernel primitives
–  PCI, NUMA, ACPI, IOMMU, …

•  Innovate in key areas
– Memory management, multi-core messaging optimization
– Network stack
–  Leverage runtime feedback
–  Fully tick-less operation, but short duration OS work

• Boots identically to Linux, drop-in replacement for CNL
• Open platform more attractive to collaborators

– Collaborating with Northwestern Univ. and Univ. New Mexico
on lightweight virtualization for HPC, http://v3vee.org/

–  Potential for wider impact

POSIX Threads + OpenMP Support
• Kitten user-applications link with the standard GNU C

library installed on the Linux host
• GNU C includes POSIX threads implementation called

NPTL
• NPTL relies on Linux futex() system call, Kitten supports

–  Futex() = Fast user-level locking
–  Atomic instructions used to manipulate futexes
– Only trap to OS Kernel when futex is contended,

uncontended case requires no syscalls
• Compilers typically build OpenMP support on top of

POSIX threads -> Kitten supports OpenMP
• Kitten supports many threads per core

–  Each core has private run queue
–  Round-robin preemptive scheduling
–  No automatic load-balancing between cores

Key Memory Management APIs
• Address space creation/destruction

–  extern int aspace_create(id_t id_request,  
" " " " const char *name, id_t *id);"

–  extern int aspace_destroy(id_t id);
• Create virtual memory regions

–  extern int aspace_add_region(id_t id, vaddr_t start,
"size_t extent, vmflags_t flags, vmpagesize_t pagesz,
"const char *name);

• Allocate physical to virtual memory
–  extern int aspace_map_pmem(id_t id, paddr_t pmem,

"vaddr_t start, size_t extent);"

• Map one address space into another
–  extern int aspace_smartmap(id_t src, id_t dst,

"vaddr_t start, size_t extent);"

SMARTMAP Eliminates
Unnecessary Intra-node Memory Copies

•  Basic Idea: Each process on a node maps the memory of
all other processes on the same node into its virtual
address space

•  Enables single copy process to process message
passing (vs. multiple copies in traditional approaches)

P0 P1 P2 P3

P0 P0 P0 P0
P1 P1 P1 P1

P2 P2 P2 P2

P3 P3 P3 P3

P0 P1 P2 P3

MPI Processes P0-P3
Vi

rtu
al

 A
dd

re
ss

 S
pa

ce

Virt Addr 0

Top of Virt
Addr Space

SMARTMAP Example

Single copy impact

MPI Exchange

For more information see SC’08 paper

SHMEM Ping-Pong Latency
Kitten Demonstrates Low Variability

 0.1

 1

 10

1 128 256 384 512 640 768 896 1024

Message Size (bytes)

Kitten/SMARTMAP

 0.1

 1

 10

L
a
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

Linux/XPMEM

 0.1

 1

 10

CrayXE/XPMEM

Kitten Provides a Scalable
Virtualization Environment for HPC

•  Lightweight Kernels (LWK) traditionally
have limited, fixed functionality

•  Kitten LWK addresses this limitation by
embedding a virtual machine monitor
(collaboration with Northwestern Univ.
and Univ. of New Mexico)

•  Allows users to “boot” full-featured guest
operating systems on-demand

•  System architected for low virtualization
overhead; takes advantage of Kitten’s
simple memory management

•  Conducted large scale experiments on
Red Storm using micro-benchmarks and
two full applications, CTH and Sage

For more information see IPDPS’10 + VEE’11 papers

HPC Virtualization Has Many Use Cases
• X-Stack researchers

–  Enable large-scale testing without requiring dedicated
system time

–  Emulate and evaluate novel hardware functionality
before it is available (e.g., global memory)

–  Enable hardware/software co-design
• End-users

–  Load full-featured guest OS, or app-specific OS
– Dynamically replace runtime with one more suitable for

the user’s workload (e.g., a massive number of small
jobs)

– Cyber-security experiments using commodity OSes, run
multiple OSes per compute node

–  System administrators test new vendor software without
taking machine out of production

Highlight Results from
Red Storm Virtualization Experiments

 0

 50

 100

 150

 200

 250

 300

 350

 400

 64 128 256 512 1024 2048 4096

T
im

e
 (

se
co

n
d
s)

Nodes

Native
Guest, Nested Paging

Guest, Shadow Paging
 0

 200

 400

 600

 800

 1000

 64 128 256 512 1024 2048 4096

T
im

e
 (

se
co

n
d
s)

Nodes

Native
Guest, Nested Paging

Guest, Shadow Paging

CTH
shaped charge, weak scaling

Sage
timing_c, weak scaling

Native is Catamount running on ‘bare metal’, Guest is Catamount
running as a guest operating system managed by Kitten/Palacios

Performance when executing in virtual machine
within 5% of native

Outline

• Introduction

• Kitten lightweight kernel overview

• Future directions

• Conclusion

Future Directions
• OS support for exascale runtime systems

– Functional partitioning of cores
(network progress engines, I/O, resiliency, …)

– Exploit SMARTMAP capability
– Continue to get out of the way, let runtime/app

manage resources
• Performance experiments

–  Infiniband performance, eliminate memory pinning
– Possibly target Cray XE6

• GPU support
• Continue work on HPC-focused virtual machine

monitor capability, Palacios

Conclusion

• Kitten is a modern, open-source LWK platform
that supports multi-core processors (N cores,
multiple threads per core), advanced intra-node
data movement (SMARTMAP), current multi-
threaded programming models (via Linux user-
space compatibility), commodity HPC networking
(Infiniband), and full-featured guest operating
systems (Palacios virtualization)

• Well-positioned for exascale HW/SW co-design
and collaboration

Acknowledgments

• Patrick Bridges (U. New Mexico)
• Ron Brightwell (Sandia)
• Peter Dinda (Northwestern U.)
• Kurt Ferreira (Sandia)
• Jack Lange (U. Pittsburgh)
• Mike Levenhagen (Sandia)
• Alex Merritt (Georgia Tech)

SHMEM 16-Core Message Rate Benchmark

 0.01

 0.1

 1

 10

 100

8 16 32 64 128 256 512 1K 2K

M
e
ss

a
g
e
 R

a
te

 P
e
r

P
E

 (
m

ill
io

n
 m

e
ss

a
g
e
s

p
e
r

se
co

n
d
)

Message Size (bytes)

CrayXE/Gemini
CrayXE/XPMEM

Linux/XPMEM
Kitten/SMARTMAP

Noise Only Becomes Issue at Large Node
Counts; Negligible at Small Scale

Latency for Dissemination-based Collectives (e.g., Allreduce)

Figure Credit: Torsten Hoefler, et al.,
“Characterizing the Influence of System Noise to Large-Scale Applications by Simulation

