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Redox flow batteries (RFBs) offer a readily scalable solution to Nonaqueous Metal-BiPyridine Complexes
grid scale energy storage. Understanding ion transport through RFBs
enables design of more efficient, longer-lasting RFBs. Here we RFBs in nonaqueous solvents offer the advantage of higher operating potentials

than aqueous systems, but are often hindered by solvent membrane-interactions.
We investigated the effects of different solvents and salts on RFB performance,
using a metal-bipyridine redox pair and Fumasep anion exchange membrane.

leveraged previously explored concepts of ion crossover in RFBs to
identify key membrane properties in aqueous systems and use this
knowledge to improve a higher voltage nonaqueous system.
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