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Redox flow batteries (RFBs) offer a readily scalable solution to
grid scale energy storage. Understanding ion transport through RFBs
enables design of more efficient, longer-lasting RFBs. Here we
leveraged previously explored concepts of ion crossover in RFBs to
identify key membrane properties in aqueous systems and use this
knowledge to improve a higher voltage nonaqueous system.
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Membranes for Aqueous Soluble
Organic Flow Batteries
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Across several commercial membrane
chemistries we observe a systematic
trend that membrane resistivity is
controlled by the ratio of membrane
water content to ion exchange
content (IEC).

In turn, the membrane
resistance is linearly related to 25

the flow battery voltage
efficiency, even after 100 cycles 0
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Metal-oxide Clusters as Charge
Carriers for RFBs
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Radialene Radicals for
Active Species in RFBs

Prof. Christopher Bejger
4601 UNC Charlotte
20

0

characterization

\_y

375 425

Wavelenght

analysis of stability, solubility,
and electrokinetic parameters

Structure-activity Relationships

feedback loop to yield informed
design strategies

electrochemical

analysis

1
Synthetic modifications yield
optimization of properties for

high energy densities

Nonaqueous Metal-Bipyridine Complexes
RFBs in nonaqueous solvents offer the advantage of higher operating potentials
than aqueous systems, but are often hindered by solvent membrane-interactions.
We investigated the effects of different solvents and salts on RFB performance,
using a metal-bipyridine redox pair and Fumasep anion exchange membrane.
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Fe2+ <-> Fe3+ + e-

Flow Battery Performance for Different Supporting Electrolytes
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Use of triflate (0Tf) anion resulted in significant capacity loss vs. BF4- anion.
Similarly, propylene carbonate performed better than acetonitrile.
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Future Work
• How does cation vs. anion size influence bipyridine RFB

performance?
• Measure diffusion coefficients of bipyridine complex in

different supporting salts
• Membrane resistance / RFB voltage efficiency
• Supporting salt solubility effects

• Identify, understand, and minimize capacity decay mechanisms in
nonaqueous RFB

• Test new membranes from Cy Fujimoto (SNL) in aqueous and
nonaqueous environments.
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