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Survey of nonintrusive UQ methods:
Sampling
Local and global reliability
Stochastic expansions: polynomial chaos, stochastic collocation

Build on these algorithmic foundations:
Mixed aleatory-epistemic UQ, Opt/model calibration under uncertainty
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Uncertainty Quantification Algorithms @ SNL.:
New methods bridge robustness/efficiency gap

Latin Hypercube, Importance, Bootstrap, FSU
Monte Carlo Incremental Jackknife
Local: Mean Value, | Global: Efficient gradient- recursive Local:
First-order & global reliability enhanced emulation, Notre Dame,
second-order analysis (EGRA) TGP Global:
reliability methods Vanderbilt
(FORM, SORM)
PCE and SC with local h- hp-adaptive| Stanford,
uniform & _ refinement, discrete, Purdue,
dimension-adaptive | gradient- multi- Austr. Natl.,
p-/h-refinement enhanced physics FSU
Random fields/ Dimension Cornell,
stochastic proc. reduction Maryland
Interval-valued/ Opt-based interval | Bayesian Imprecise LANL,
Second-order prob.| estimation, probability UT Austin
(nested sampling) Dempster-Shafer
Importance factors,| Main effects, Stepwise LANL
Partial correlations | Variance-based regression
decomposition
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Algorithm R&D in Adaptive UQ

Drivers

 Efficient/robust/scalable core - adaptive methods, adjoint enhancement

« Complex random environments = epistemic/mixed UQ,
model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic expansions:

« Polynomial chaos expansions (PCE): known basis, compute coeffs
« Stochastic collocation (SC): known coeffs, form interpolants

« Adaptive approaches: emphasize key dimensions
— Uniform/dim-adaptive p-refinement: iso/aniso/generalized sparse grids
— Dimension-adaptive h-refinement with grad-enhanced interpolants

« Sparse adaptive global methods: scale as m'°9" with r << n

EGRA:
« Adaptive GP refinement for tail probability estimation

« Accuracy similar to exhaustive sampling at cost similar to
local reliability assessment

« Global method that scales as ~n?

Sampling:
* Importance sampling (adaptive refinement)
* Incremental MC/LHS (uniform refinement)

CDF Residual
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Algorithm R&D in UQ Complexity

Drivers
« Efficient/robust/scalable core - adaptive methods, adjoint enhancement
* Complex random env. = mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic sensitivity analysis

» Aleatory or combined expansions including nonprobabilistic dimensions s j=0
—> sensitivities of moments w.r.t. design and/or epistemic parameters

Design and Model Calibration Under Uncertainty o

Mixed Aleatory-Epistemic UQ

« SOP, IVP, and DSTE approaches that are more accurate and efficient
than traditional nested sampling

Random Fields / Stochastic Processes (Encore, PECOS)
Multiphysics (multiscale) UQ:

* Invert UQ & multiphysics loops - transfer UQ stats among codes

Bayesian Inference:
« Collaborations w/ LANL (GPM), UT (Queso), Purdue/MIT (gPC)

Model form:
« Multifidelity UQ (hierarchy), model averaging/selection (ensemble)
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Reliability Methods for UQ
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: UQ with Reliability Methods

Mean Value Method g = glpx) —
dg
i = T o) ) 0
rj Rough
Bogg = L% _ statistics
_ P o F _ = L= My - Jg.*'lar.'rff
= pl _ P, 3 = _
Bocar = Z = g 2 = g+ 0y8ccds
Tg N _/
. \ 4
MPP search methods )
T Failure
Reliability Index P, region Performance Measure
Approach (RIA) i, ut - MPP Approach (PMA)
minimize  u’u R FORM minimize +G(u)
subject to G(u) =2 > subject to uf'u = 3°
ul
Find min dist to G level curve \ < SORM " Find min G at radius

Used for fwd map z = p/p "ffiiz;-_.._-._.;Eéf;:, \ Used for inv map p/f 2> z

G(u)

Nataf x > u:  2(2i) = F(z) @ﬁaaggi:al

7z = Lu Laboratories
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*~ Reliability Algorithm Variations

Limit state approximations
AMV:  g(x) = g(px) + Veg(ps) " (x = )
u-space AMV:  G(u) = G(py) + VuG(pa)" (0 = py)
AMV+: Q{X) = Q{X*} + ‘Fl.g[x*}T{x - x")
u-space AMV+: G(u) = G(u*) + V,G(u*)" (u - u*)
FORM: no linearization

« 2nd-order local, e.g. x-space AMV?+:

g(x) = g(x") + Vog(x ) (x — x") 4+ = (x — x)TV2ig(x")(x — x¥)

5

)

» Hessians may be full/[FD/Quasi
* Quasi-Newton Hessians may be BFGS or SR1
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eliability Algorithm Variations

Limit state approximations

AMV:  g(x) = g(px) + Vay
u-space AMV: G(u) = G(pa) + V.,

AMV+: g(x) = g(x") + V4
u-space AMV+: G(u) = G(u*) + V|

FORM: no linearization

» 2nd-order local, e.g. x-space AN

g(x) = g(x") + Vag(x") (x — x") + 5(x

)

» Hessians may be full/[FD/Quasi

TR W o |
« Multipoint, e.g. TPEA, TANA:
g(x) = g(x2) —|—i % (x2) E}'Epf (2" — 2P ) + _,_L[X']i:[_?,:ﬂ _ P2
gix) uq / — A 2/ i d +i,2 9 / s g i,2
da i
-(%1)
p; = 1+1In EZ-_ l\] /111 [:]
x; (X2) i
x) Z
flx) = _— . —_— .
) Zl:l["]-lll.l - .‘-'!Il:ftl.:lz + Z-;'z]_[ﬂlll':‘ht - :?1?.I2.:|2
T l—p;
o o g T .
=1 ' k

* Quasi-Newton Hessians may be

Dl  UJo Ul JI'\1L

Inteqgrations
p(q E z} - ‘1’(—'3(_.{11 }
1st-order: #_, /
P'[:y = ZJI = q)(_-df:f:df}

MPP search algorithm

2nd_grder: Breit, Hohen-Rack, Hong

nn—1 . ..
1 Additional refinement:

p=0(-p) [ —
p=2(-F 1;[1 VI+PBr: IS, AIS, MMAIS

curvature correction

[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)

Warm starting (with projections)
When: AMV+ iteration increment,

What: linearization point & assoc.

z/p/Blevel increment, or design variable change o
nadia
responses (AMV+), MPP search initial guess @ National
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’Reliability Algorithm Variations:
Algorithm Performance Results

Analytic benchmark test problems: lognormal ratio, short column, cantilever

1+ 1
43 7 levels t 43 p levels
o0e 0.2
o7 I arl B
o S I
v 0.5 inhypercube sameles S0 in hypercube samples
i i
E 04t <« E 04
ok 03
0z 0.2
0.1 0.1
OfEmn & 1B of
o ¢ = Respﬂ;I:E Value ¢ e + * Hesp::e Value & ‘
RIA SQP Function  NIP Function CDF p Target = PMA SQP Function NIP Function CDF = Target p
Approach Evaluations Evaluations Error Norm  Offset Norm A pproach Evalnations Evaluations Error Norm  Offset Norm
MVFOSM 1 1 0.1548 0.0 MVFOSM 1 1 7.454 0.0
MWVSOSM 1 1 0.1127 0.0 MVSOSM 1 1 6,823 0.0
x-space AMV 45 45 0.009275 18.28 x-space AMV 45 45 0.9420 0.0
u-space AMV 45 45 0.006408 18.81 u-space AMV 45 45 0.5828 0.0
x-space AMV? 45 45 0.002063 2,482 x-space AMV? 45 45 2.730 0.0
u-space AMV?2 45 45 0.001410 2.031 u-space AMV? 45 45 2.828 0.0
x-space AMY 4 192 192 0.0 0.0 x-space AMV+ 171 179 0.0 0.0
u-space AMV 4+ 07 207 0.0 0.0 u-space AMV+ 205 205 0.0 0.0
x-space AMV?+ 125 131 0.0 0.0 x-space AMVZ4 135 142 0.0 0.0
u-space AMVZ4+ 122 130 0.0 0.0 u-space AMV24 132 139 0.0 0.0
x-space TANA 245 246 0.0 0.0 x-space TANA 203% 272 0.04259 1.598e-4
u-space TANA 206% 278* 5.082e-5 0,08014 u-space TANA 325% 311% 2.208 5.600e-4
FORM 626 176 0.0 0.0 FORM 720 192 0.0 0.0
SORM (69 219 0.0 0.0 SORM 535 191* 2.410 6.522e-4
Note: 2"d-order PMA with prescribed p level is harder m National )
Laboratories

problem - requires S(p) update/inversion



and Design of MEMS

Solution-Verified Reliability Analysis

* Problem: MEMS subject to substantial variabilities
— Material properties, manufactured geometry, residual stresses
— Part yields can be low or have poor durability
— Data can be obtained - aleatory UQ - probabilistic methods

» Goal: account for both uncertainties and errors in design

— Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore), I

adaptivity (SIERRA), nonlin mech (Aria) - MESA application
— Perform soln verification in automated, parameter-adaptive way
— Generate fully converged UQ/OUU results at lower cost

switch

contact

\ E, E\/
\_/ displacement

I:min( AW, Sr )

« AMV?+ and FORM converge to different
MPPs (+ and O respectively)

* Issue: high nonlinearity leading to
multiple legitimate MPP solns.

-6.87

r

+ Challenge: design optimization may
tend to seek out regions encircled by
the failure domain. 1st-order and even
2"d-grder probability integrations can
experience difficulty with this degree of
nonlinearity. Optimizers can/will exploit

-15.13

residual stress S_(MPa)

this model weakness.

-0.28 -0.2 -0.12 -0.04

width bias AW (uLm)

Parameter study
over 30 uncertain
variable range for
fixed design
variables d,,*.
Dashed black line
denotes g(x) =
Fmin(X) =-5.0.
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Efficient Global Reliability Analysis (EGRA)

* Address known failure modes of local reliability methods:

— Nonsmooth: fail to converge to an MPP
— Multimodal: only locate one of several MPPs

— Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP
« Based on EGO (surrogate-based global opt.), which exploits special features of GPs

— Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)

— Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

12

121

10

GP surrogate - -@--

Expected
Improvement

Vo

0o 2 4 6 8 10 12
From Jones, Schonlau, Welch, 1998

0.06
0.05
0.04
0.03
0.02
0.01
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Efficient Global Reliability Analysi
— 5 K-\ + ‘ + ‘ 5
4 4
3 3 -
Ve exploit
2 2
1 1
0 0
A -1
- -2
& = explore
-4 -4
~ ‘5‘ E:, 4R + 4 1
"t cp.out U/ U U
:;J =— 3 4 5 5 -4 =3 -2 e | 0 1 2 3 4 5
2 Reliahility Function First-Order py Second-Order py Sampling py
o Method Evaluations (% Error) (% Error) (% Error, Avg. Error)
G No Approximation 70 0.11797 (277.0%)  0.02516 (-19.6%) —
»— x-space AMV2+ 2 0.11707 (277.0%)  0.02516 (-19.6%) -
v— w-space AMV24 26 011777 (277.0%)  0.02516 (-19.6%) —
P u-space TANA 131 0.11797 (277.0%)  0.02516 (-19.6%) -
N LHS solution 10k — — 0.03117 (0.385%, 2.847%)
;Z = LHS solution 100k — — 0.03126 (0.085%, 1.397%)
®— LHS solution 1M — — 0.03129 ( truth , 0.339%)
40
P10 3, x-space EGRA 35.1 — — 0.03134 (0.155%, 0.433%)
f: = u-space EGRA 35.2 — — 0.03133 (0.136%, 0.206%)
0 —

)
-20
e
-40

50
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Stochastic Expansion Methods for UQ
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Polynomial Chaos Expansions (PCE)

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

ie. R:Zajwj(a) using

Wo(€) = vo(&r) vo(&2)
Ui(g) = (&) vo(&2)
Us(§) = vol&1) ¥1(&2)
U3(€) = (&) vo(&2)
Uy(&) = vi(&) va(&2)
Us(&) = vol(&1) ¥2(&)

1

IS
&o
&
131
&

-1
&2
—1

* Nonintrusive: estimate ¢; using sampling, regression,
tensor-product quadrature, sparse grids, or cubature

Oc’j—

(R, ) 1

<\711‘§)] G fSZR‘I’j o(§) d§

@ = JIw2)

i=1

Generalized PCE (Wiener-Askey + numerically-generated)

* Tailor basis: selection of basis orthogonal to input PDF avoids additional nonlinearity

Distribution  Density function Polynomial Weight function  Support range
Normal #E;‘T- Hermite He,, (2) e~ [—o0, ]
Uniform % Legendre P, (x) 1 [—1.1]

Beta (1—2)"(1+2)” Jacobi P(”"'ﬂ( ) (1 —2)"(1+a2) [—1,1]
¢ 20FFFIB(a+1,5+1) Ve n ) ?

Exponential e Laguerre L, (x) e 0, 0]
Gamma I "_;” Generalized Laguerre Lg,")(:z') e " [0, oc]

Additional bases generated numerically (discretized Stieltjes + Golub-Welsch)

* Tailor expansion form:

— Dimension p-refinement: anisotropic TPQ/SSG, generalized SSG
— Dimension & region h-refinement: local bases with global & local refinement

10

10

CDF Residual

107 ¢

107

10 ¢

1077}

1

0

% Usqrt(N) for LHS
N—

super-algebraic for num.

10

0

integration & regression

Simulations



A 4
~ , Stochastic Collocation

(based on interpolation polynomials)

Instead of estimating coefficients for known basis functions, B ‘
form interpolants for known coefficients R ZTJ j(f

* Global: Lagrange (values) or Hermite (values+derivatives)
 Local: linear (values) or cubic (values+gradients) splines

m T3 My mi,, |
i oy RE =) - ) (GG (Lo oLy)
«j;} Ji=1 Jn=1

Sparse interpolants formed using X of tensor interpolants

Advantages relative to PCE:

+ Somewhat simpler (no expansion order to manage separately)

» Often less expensive (no integration for coefficients)

+ Expansion only formed for sampling = probabilities (estimating moments of any order is straightforward)
» Adaptive h-refinement with hierarchical surpluses; explicit gradient-enhancement

Disadvantages relative to PCE:

 Less flexible/fault tolerant & structured data sets (tensor/sparse grids)

« Expansion variance not guaranteed positive (important in opt./interval est.)
* No direct inference of spectral decay rates

With sufficient care on PCE form, PCE/SC performance is essentially identical
for many cases of interest (tensor/sparse grids with standard Gauss rules)



Approaches for forming PCE/SC Expansions

Random sampling: PCE
Expectation (sampling):

— Sample w/i distribution of &
— Compute expected value of
product of R and each ¥

Linear regression
(“point collocation”):

— Sample w/i distribution of &

— Solves least squares data fit
for all coefficients at once:

Tensor-product quadrature: PCE/SC

AHINE =) (&) w]
j=1

My My,

QAIE) =@ @22 (NEO =3 - 3 FE &) (Wi @@ ul
ji=1

Jn=1

UL
— Every combination of 1-D rules Striniiiiiiiiiiiining

— Scales as m"

— 1-D Gaussian rule of order m
-> integrands to order 2m -1

— Assuming R of order 2p,

selectm=p+1 SHIiiriiiiiiiiiiiin
W

Smolyak Sparse Grid: PCE/SC

o (w,n) = Z (_1)“'+n—1( n—1

w+n—|i
w4+ 1<|i|<w+n | |

) (" w@

Pascal’s triangle (2D):

Cubature: PCE

Stroud and extensions (Xiu, Cools)

- Low order PCE [ o/
- global SA, anisotropy detection

Gaussiani=2->p=1

2rk 2rk
T xk_zrzx/jsin T

n-+ n41

Xk 2r—] = V2 cos

Arbitrary PDF | (k) _ I (k)
=—|Jycix"" —§
y[ ]
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Adaptive Collocation Methods

Drivers: Efficiency, robustness, scalability - adaptive methods, adjoint enhancement
Polynomial order (p-) refinement approaches:

» Uniform: isotropic tensor/sparse grids
* Increment grid: increase order/level, ensure change (restricted growth in nested rules)
« Assess convergence: L? change in response covariance

w+1<|i|<w4+n

Tensor-product quadrature | Smolyak sparse grid

1 1
05 | [H ~
P N L . . ol .

(] 05 1 15 F 25 3 ] 08 1




Adaptive Collocation Methods

Drivers: Efficiency, robustness, scalability - adaptive methods, adjoint enhancement
Polynomial order (p-) refinement approaches:
« Uniform: isotropic tensor/sparse grids
* Increment grid: increase order/level, ensure change (restricted growth in nested rules)
» Assess convergence: L? change in response covariance
« Dimension-adaptive: anisotropic tensor/sparse grids
+ PCE/SC: variance-based decomp. - total Sobol’ indices = anisotropy (dimension preference)
» PCE: spectral coefficient decay rates - anisotropy (index set weights)

wy <i-y<wy+ |7

Tensor-product quadrature Smolyak sparse grid

> 05\ ns\ﬂ
1 15 2 25 3 [ 13 15 2 25 s 1
x! ®1 1
x 15/ x 1 x x
:




Adaptive Collocation Methods

Drivers: Efficiency, robustness, scalability - adaptive methods, adjoint enhancement
Polynomial order (p-) refinement approaches:

« Uniform: isotropic tensor/sparse grids

* Increment grid: increase order/level, ensure change (restricted growth in nested rules)

« Assess convergence: L? change in response covariance
« Dimension-adaptive: anisotropic tensor/sparse grids

« PCE/SC: variance-based decomp. - total Sobol’ indices - anisotropy

wy <i-y<wy+ |y

« PCE: spectral coefficient decay rates = anisotropy

» Goal-oriented dimension-adaptive: generalized sparse grids
* PCE/SC: change in QOI induced by trial index sets on active front

1. Initialization: Starting from reference grid
(often w = 0 grid), define active index sets using
admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set,
evaluate tensor grid, form tensor expansion,
update combinatorial coefficients, and combine
with reference expansion. Perform necessary
bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that
induces largest change in statistical QOI.

4. Update sets: If largest change > tolerance, then
promote selected trial set from active to old and
compute new admissible active sets; return to 2.

If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets
to old set, update combinatorial coefficients, and
perform final combination of tensor expansions to
arrive at final result for statistical QOI.

| Smolyak sparse grid

e 410 eV

1 L L L L 1 L
0 1 2 3 4 5 6

(Gerstner, 2003)

Fine-grained control:
frontier not limited by
prescribed shape of
index set constraint
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Numerical Experiments

Short Column (n=5)

]

=

4 M
bh2Y

P
b*h?Y?

9(x) =1~

b = U[5,15], h = U[15,25],
P =N(500, 100), M = N(2000, 400),
Ppy= 0.5, Y =1ogN(5, 0.5)

0
10

2
10

-4
10

6
10

-8
10

-10
10

-12
10

Convergence for Short Column using PCE/SC SSG uniform/adaptive
3 3 3

—— SC SSG uniform

—<— SC SSG adaptive Sobol
—8— SC SSG adaptive generalized
—=— PCE SSG uniform N
—+#— PCE SSG adaptive Sobol
—+— PCE SSG adaptive decay
—<— PCE SSG adaptive generalized

T T

2
10

Simulations

1
10

Error

4
10

Cantilever Beam (n=6)

Y
y‘— L=100" ——
/ f
A W
. 600 v~ 600
s = My 80 < R
L3
D = /&P +(E? < Do
w t, R E X Y:U[1,10], U[1,10],
N(4E4, 2E3), N(2.9E7, 1.45E6),
N(500, 100), N(1E3, 100); D, = 2.2535"

Convergence for Cantiever Beam Stress using PCEISC SSG urform/adapive

—%— SC SSG unl'orm

—<— SC SSG adaptive Sobol
—8— SC SSG adaptive generalized
—#— PCE SSG uniform

—+— PCE SSG adaptive Sobol
—+— PCE SSG adapive decay
—©— PCE SSG adaptive generaiized

Displacement Sparse

2 3 4 5 6
10 10 10 10

Simulations

10

s 10k

Ishigami (n=3)

f(x) = sin(2rz1 — 7)
4+ Tsin? (2mxe — m)
+0.1(2n@g — w)* sin(2wzy — )

X}, X5, X3 iid U[0, 1]

+ Designed to be challenging for global SA:
term cancellations at mid-point & bounds

» Premature convergence in adaptive methods
-> start from higher-order grid

100 Convergence for Ishigami using PCE/SC SSG umform/adaptlve
T

—v— SC SSG umform

—<— SC SSG adaptive Sobol
—8— SC SSG adaptive generalized
—#— PCE SSG uniform

—P>— PCE SSG adaptive Sobol
—+— PCE SSG adaptive decay
—©— PCE SSG adaptive generalized

10° |

Sparse

Error

10° 10

Simulations

2
10 10

10



* Linear regression with derivatives To5(&) L&) 74 (&) i) i
- - Te (&) gt Zet () q(m+1.) o
« Gradients/Hessians > addtnl. egns. _ G v ¢
sC: Tl(€) TELE) o GG || A || g
« Gradient-enhanced interpolants - \
* Local: cubic Hermite splines yrrey
* Global: Hermite interpolation polynomials
1-0 ) o
€z -1 (33
EGRA:
— 05 | .
« Gradient-enhanced kriging/cokriging 7
. . H,
+ Interpolates function values and gradients o0l €1
« Scaling:n2>n e o0 10
(€=
-0-5L 1

Extend Scalability through

Adjoint Derivative-Enhancement

|(f(.'.'(.rb(rse Xy} & initial (A\'.9)| -—

Step A: L
d 2
R, :R(xl,x‘):Hexp[—b‘j‘xlj—x;‘ ]
j=1 ’
A Tp-11y-117Tp-! Ry
A= RIR Yy el
5 1 ~ . 5 e ’
0 =~ -1H)R(-15) Ry
Step B: 0
) . 0 1TV (1 T update
11u11:ﬁ1£5‘£:(7j|ij s!ldxn'(m{.l R Jnlr :rr.l(ixﬂ (Ax.0)




Gradient-Enhanced PCE

Straightforward regression approach.

(o [ )

mo (&) mg&) o m(&) im.j) i « unweighted LLS by SVD

—

TG FHE) o @ || aema) gi; (LAPACK GELSS)
: : : : 4 = :  equality constrained LLS by QR
%{‘{;) %(5) o &r_.pi({—;) Z(mtne.j) éa_aL (LAPACK GGLSE) when under-
| | Otn bng determined by values alone

Dene BEng

2 AU S U

Vandermonde-like systems known to suffer from ill-conditioning

12 Grad-Enhanced PCE: SVD Condition for Pt Colloc ratio = 2 104 Gradient-Enhanced PCE: Rosenbrock Moments

10 T T T T T T € r £ £ t ¢
—4— Rosenbrock no grads g e
—<— Rosenbrock grads K 2 {

—4—— Short col no grads
10™°H —— Short col grads

—— Cant beam no grads 74 10” -

~— Cant beam grads ¥ | —*—punograds cr2

—<— p grads GELSS cr2

2
8 10 1 | —=— pgrads GGLSE cr2
10 1 LHS 2X Oversample —©— o nograds cr2
z % 0% | 71 | =—*— o grads GELSS cr2
E s —<— o grads GGLSE cr2
z /4
5 10 7 § 10-6 L —# —pnograds crl
=4 Z s —— pgrads GELSS crl
g / “— p grads GGLSE cr1
-8
© 7~ 10 | & nograds crl
10* | g & grads GELSS crl
10 o grads GGLSE crl
12
10° - ] 10°°F
14 N
10 : : : : : :
0 2 4 6 8 10 12 14
100 . r . r . r Expansion Order
0 2 4 6 8 10 12 14

Expansion Order Error growth as we over-resolve exact solutions
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Dimension-adaptive h-refinement for SC:

» Local spline interpolants: linear Lagrange (value-based),
cubic Hermite (gradient-enhanced)

» Global grids: iso/aniso tensor, iso/aniso/generalized sparse

* h-refinement: uniform, adaptive, goal-oriented adaptive

Basis formulations: nodal, hierarchical

Multivariate tensor product to arbitrary derivative order (Lalescu):

m
l L n,l
SO (@@, ep) = Y, Y [ ,ip Haﬁ V()
I1,..lp=01iy,...,ip=0,1
N Convergence for Gersmer anlso3 for sparse gr|ds under un|form refinement
_ 1o ® o) 10°
f - Z fiHi (Xl)Hi (XZ)Hi (XS) + +PCE Global Legendre
i=1 i —<+— SC Global Lagrange
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and similar for higher-order moments

Error in Reliability Index
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Build on efficient/scalable UQ core

Stochastic sensitivity analysis

« Aleatory or combined expansions including nonprobabilistic dimensions s
—> sensitivities of moments w.r.t. design and/or epistemic parameters

P

- % - {%} - [r(s) = Zﬂ a; (V;(€. 8))e
BEs) =3 o0& )| 4o 2 gp |BESD =D 09T o
7=0 s 221 s ) = oh(s) = D) ojan(T(E 8)Tk(€.8))e — pi(s)
I §=0 k=0
Design and Model Calibration Under Uncertainty Add resp stats s, (1, o, z/Ap)
. min  f(d) + Wsu(d)
> < <
da = S.t. g1 < g9(d) < gu
- h(d) = hy
dl % dp < d < dy
— a; < A su(d) < ay
\ ) Ae Su(d) — at
: : i epistemic
Mixed Aleatory-Epistemic UQ sampling
« Approaches that are more accurate/efficient than nested sampling  (\\r----------------- :
* Interval-valued probability (IVP), aka PBA aleatory

Increasing epistemic
« Dempster-Shafer theory of evidence (DSTE) structure (stronger

« Second-order probability (SOP), aka PoF assumptions)

sampling




Mixed Aleatory-Epistemic UQ: IVP, DSTE, and SOP

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge epistemic
uncertainty): insufficient info to specify objective probability distributions sampling

Traditional approach: nested sampling

aleatory
sampling

» Expensive sims - under-resolved
sampling (especially @ outer loop)

o

~

al
1

« Under-prediction of credible outcomes

Cum Prob
o
e

¥ valued and
second-order
statistics

o

N

g
|

F—————=—====-==-=-

o
3

Algorithmic approaches response metric

* Interval-valued probability (IVP), aka probability bounds analysis (PBA) Increasing epistemic

- Dempster-Shafer theory of evidence (DSTE) structure (stronger
assumptions)

« Second-order probability (SOP), aka probability of frequency

Address accuracy and efficiency
minimize M{(s)

* Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined) subject to s; <5 < s
* OUter Ioop: maximize M(s)
- VP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) =) [subject to 51 =5 < sv
« SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)




Ermor

Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Interv Est uQ Expansion Evaluations 1 m ; ; ; ; : :
Approach Approach ‘ariables (Fn, Grad) Area B th o oo gggggxiggg'ﬂ
. . DTS L LHS 100/LHS 100 Belief
IVP SC SSG Aleatory: ginterval converged to 5-6 digits by 300-400 evals O LS 000 100 e
T [ n — LHS 1000/LHS 1000 Plaus ||
EGO SCSSGw = 1 Aleatory (84791, 0/0) 75.0002, 374.000]  [-2.26264, 11.8623] 5 d
ECO SC SSC w = 2 Aleatory (372/403, 0/0) 75.0002, 374.999]  [-2.18735, 11.5900] zort b i ]
EGO SC SSGw =23 Aleatory (1260,/1365, 0/0) 75.0002, 374.999] [-2.18732, 11.5900] E IIT\ MUItIple Ce”S
EGO SCSSGw =4  Aleatory (3564/3861, 0/0) 75.0002, 374.999]  [-2.18732, 11.5000] £ oo *.‘ within DSTE
NPSOL SCSsG w =1 Aleatory 21/77, 21/77) 75.0000, 375.000]  [-2.26264, 11.8623] il i |
NPSOL SC SSGw =2 Aleatory (93/341, 93/341) 75.0000, 375.000 [-2.18735, 11.5901] % ’ "
NPSOL SC SSGw =3 Aleatory (315/1155, 315/1155) 75.0000, 375.000 [-2.18732, 11.5900] £ 04l Ll ]
NPSOL SC SSG w = 4 Aleatory  (891/3267, 891/3267)  [75.0000, 375.000]  [-2.18732, 11.5900] 3 1
. . ] , .. ) ) 2 o3} L i
IVP nested LHS sampling: converged to 2-3 digits by 108 evals g
LHS 100 LHS 100 N/A (10*/10%, 0/0) [80.5075, 338.607]  [-2.14505, 5.64801] Eoor ]
LHS 1000 LHS 1000 N/A (105/10°, 0/0) (76.5030, 368.225]  [-2.10883, 11.2353] ol |
LHS 10% LHS 10% N/A (1087108, 0/0) (76.4755, 373.935]  [-2.16323, 11.5503]
. _ . _ 0 . ‘ ‘ .
Fully converged area interval = [75., 375.], B interval = [-2.18732, 11.5900] S I
Convergence rates for combined expansions 0 : ‘ ‘ : T — |
o | 1l ' . Analytic C~ A Discontinuous C°
107 N Rational [ e .
107 % R TR ] 10t t I ]
e . .
o | ~_~>_ || L*metrics: el |
~p VP m|Xed, E, -, Wixed VP SC w=1-10 107} E
" A DSTE mixed  o®H B, Mxedivp scw=1-10 )
10° 1 B, Mixed VP PCE w=1-10
A ﬁL Mixed IVP SC w:_Q—E B, Mixed IVP PCE w=1-10
. —— B, Mixed IVP SC ‘”’i'? 107 oy Mixed SOP SCw=1-9 E =, Mired VP SCw=2-10
10 + By Mixed IVP PCE w=2-8 g o, Mixed SOP SCw=1-9 1070 B Mixed IVP SCw=2-10 ]
By Mixed IVP PCE w=2-8 ‘ p; Mixed SOP PCE w=1-9 ﬁ? Mixed IVP PCE w=2-10
o +ii x‘;: zgz zi::i:z 1072 a, Mixed SOP PCE w=1-9 L 1 B, Mixed IVP PCE w=2-10
10T u_:measoppcw:H | L2 metrics: . B A A B . T R enton ot ts
UﬁMIXed SOP PCE w=2-8 o = = = " 10 = = - —
10-12_ —— P Aleatory SC w=2-8 i Aleatory’ 1 " ° S\mulatmnsm ° b " ° Simulati1n?15 b °
—— B Aleatory PCE w=2-8 SOP m|Xed Sandia
10° 10° 10* 10° National
Simulations Laboratories



Ermor

Mixed Aleatory-Epistemic UQ:

IVP, SOP, and DSTE based on Stochastic Expansions

Interv Est
Approach

uQ

Approach

Expansion

Variables

Evaluations
(Fn, Grad)

Area

3

IVP SC SSG Aleatory: ginterval converged to 5-6 digits by 300-400 evals

EGO SCSSGw =1 Aleatory (84791, 0/0) 75.0002, 374.000]  [-2.26264, 11.8623]
EGO SC SSG w = 2 Aleatory (372/403, 0/0) 75.0002, 374.999]  [-2.18735, 11.5000]
EGO SC SSGw =3 Aleatory (126071365, 0/0) 75.0002, 374.999] [-2.18732, 11.5900]
EGO SC SSG w =4 Aleatory (3564,/3861, 0/0) 75.0002, 374.999]  [-2.18732, 11.5900]
NPSOL SCSSGw=1 Aleatory (21/77, 21/77) 75.0000, 375.000 [-2.26264, 11.8623]
NPSOL SC SSGw =2 Aleatory (93/341, 93/341) 75.0000, 375.000 [-2.18735, 11.5901]
NPSOL SC SSGw =23 Aleatory (31571155, 315/1155) 75.0000, 375.000 [-2.18732, 11.5900]
NPSOL SC SSGw =14 Aleatory (891/3267, 891/3267) 75.0000, 375.000 [-2.18732, 11.5900]
IVP nested LHS sampling: converged to 2-3 digits by 108 evals

LHS 100 LHS 100 N/A (10%/10%, 0/0) [80.5075, 338.607]  [-2.14505, 8.64891]

LHS 1000 LHS 1000 N/A (10%/10%, 0/0) [76.5030, 368.225]  [-2.10883, 11.2353]

LHS 10? LHS 10? N/A (10%/10%, 0/0) [76.4755, 373.035]  [-2.16323, 11.5593]

Fully converged area interval = [75., 375.], B interval = [-2.18732, 11.5900]

Convergence rates for combined expansions

T
it
0 | ;
10 & Rational
—
-2 %Aﬂ- .
10 e | A
RN &
. S L* metrics:
10 Ry )
IVP mixed,
ol DSTE mixed
o B, Mixed IVP S5C w=2-8
= By, Mixed IVP SC w=2-8
1wk B, Mixed IVP PCE w=2-8
B, Mixed IVP PCE w=2-8
s W, Mixed SOP SC w=2-8
-10| | _4  a, Mixed SOP SC w=2-8 .
10 u_:Mueu SOP PCE w=2-8 L2 metrics:
UﬁMIXed SOP PCE w=2-8
10—12 | | —*=— B Aleatory SC w=2-8 Aleatory,
—— B Aleatory PCE w=2-8 SOP mixed

10° 10°

Simulations

Complementary Cumulative Belief/Plausibility Functions
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Global Opl/SC w=3 Belief
Global Opt/SC w=3 Plaus

LHS 100/LHS 100 Belief [

LHS 100/LHS 100 Plaus
LHS 1000/LHS 1000 Belief

LHS 1000/LHS 1000 Plaus [

Multiple cells -
within DSTE |

L L L
-2 0 2

4
Reliability Index

L
6

Impact: render mixed UQ studies
practical for large-scale applications
Current:

Global or local opt. for epistemic intervals

-> accuracy or scaling w/ epistemic dimension

Global or local UQ for aleatory statistics

-> accuracy or scaling w/ aleatory dimension
Future:
adaptive and adjoint-enhanced global methods

- accuracy and scaling




Concluding Remarks

R&D Drivers: efficient/robust/scalable core, complex random environments

Survey of core UQ algorithms: strengths, weaknesses, research needs

Sampling (nongradient-based)
« Strengths: Simple and reliable, convergence rate is dimension-independent
» Weaknesses: 1/sqrt(N) convergence - expensive for accurate tail statistics

Local reliability (gradient-based)
« Strengths: computationally efficient, widely used, scalable to large n (w/ efficient derivs.)

+ Weaknesses: algorithmic failures for limit states with following features
* Nonsmooth: fail to converge to an MPP * Multimodal: only locate one of several MPPs
* Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP

Global reliability (typically nongradient-based)
+ Strengths: handles multimodal and/or highly nonlinear limit states

* Weaknesses:
« Conditioning, nonsmoothness - ensemble emulation (recursion, discretization)
» Scaling to large n -> adjoints, additional refinement bias

Stochastic expansions (typically nongradient-based)
+ Strengths: functional representation, exponential convergence rates for smooth problems
* Weaknesses:

* Nonsmoothness -> basis enrichment, h-refinement, Pade approx.
» Scaling to large n -> adaptive refinement, adjoints
Build on algorithmic foundations
. . : . Sandia
Design under uncertainty, Mixed UQ with IVP/SOP/DSTE National

Laboratories



DAKOTA Software

DAKOTA
Optimization

y

Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

6Iack box:
Sandia simulation codes
Commercial simulation codes
Library mode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,

SIERRA (multiphysics) )

Model
Parameters

Releases: Major/Interim, Stable/VOTD; 5.1 released 12/10

Modern SQE: Linux/Unix, Mac, Windows; Nightly builds/testing;
subversion, TRAC, autotools/Cmake

GNU LGPL: free downloads worldwide
(>7000 total ext. registrations, ~3500 distributions last yr.)

Community development: open checkouts now available
Community support: dakota-users, dakota-help

Design
Metrics

Iterative systems analysis
Multilevel parallel computing

Simulation management

http://dakota.sandia.gov

Manuals, Publications, Training matls. online

-@ & (% [® nitpitwm s sandia.govidekotal | B | |[Gl+ | print screen windows

[} ccHp [ csuInformation (] SEEMS web Mai ] SNL Directory [ SNL Index [ | Techweb Ful € Techweblie () Reportvils

The DAKOTA Project () sencia National Laboratries

Large-Scale Engineering Optimization and Uncertainty Analysis

Welcome to the DAKOTA Project
Home Page

The current release update is: 4.1
Released: September 21, 2007
The DAKOTA (Desig it for Download DAKOTA 4.1 now.

tty. By employing object-oriented desion to implement abstractions
analyses, the DAKOTA toolkit provides a
r design and performance analysis of
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DAKOTA Framework

Model:

Iterator
aramstery——{ tortace J—> R
DoFE LeastSq -
= Design Application Functions
|I ;DACEIF ECD/BBl |NLSSOL| |GN| gfmtinUOUS system objectives
Ei | Iscrete fork constraints
QMC/CVT L2SOL Uncertain direct least sq. terms
- ParamStudy normal/logn grid generic
|Opt1mlzer - E?;Logmgfgu Approximation Gradients
STE |Yector| |[:1st| exp/beta/gamma globlal B nun?er_ical
- - EVI, 11, 1 polynomial 1/2/3, NN, analytic
IRehablhtyl IPCE/ SC enterl |Mult1D| histogram kriging, MARS, RBF Hessiyatns
interval multipoint — TANA3 ical
State local — Taylor series 2::2?;:'56'
ti multifidelity .
IDOT|ICONMIN|NPSOL|INLPQLJOPT++|COLINY|JEGA) ominous RO quasi
Strategy: control of multiple iterators and models
Coordination: Strategy)
Iterator Nested
Layered
Model Cascaded — -
Concurrent |Opt1mlzat10n| |Uncerta1nty LeastSq
Iterator <@ Adaptive/Interactive \ /
‘ \ Parallelism: |§ybr1d| |Othn derUn C|
>  Model Asynchronous local \ IModelCalUnderUnc]
Message passing UncOfOptima|
Iterator Hybrid [Pareto/MStart]

4 nested levels with
Master-slave/dynamic
Peer/static

Ry

Model

EndOrderProbl

IBranch&Bound/ PICOl

Sandia
National
Laboratories



Deployment Initiative: JAGUAR User Interface

 Eclipse-based rendering of
full DAKOTA input spec.

« Automatic syntax updates
» Tool tips, Web links, help
« Symbolics, sim. interfacing

Flat text editor for
experienced users

Keyword completion

Automatically synchronized
with GUI widgets

« Simplified views for high-use
applications (“Wizards”)

esource - proji/mydak. lapuar
e Edit

Fi Mavigate Project Window Help
.

L 4
Eﬁ‘l@ Resource |

 Jaguar Editor &3
Problem definition and execution

Sections E method

To define a problem for DAKGTA to solve, you
must first define a model, a wariable set, an

& method specifies the name and cantrols of an iterative procedurel
hittp: f fusuvy. s, sandia.0ov/DAKOT Aflicensingivotdihtml-ref [Methad

interface set and a response set, Then you must
select a methad that performs a task such as

- Methad set identifier {String)
optimization,

type Filker text [ model nointer

o [ utput verbosity
[ Maximum iterations (Integer)

& STRATEGY
(=t MODEL
0 Model A (204)
e nested (1/2)
£ Model B (2/4)
o nested (1/2)

[] Maxirum function evaluations (Integer)
[] Speculative gradients and Hessians

[] Corwergence tolerance (Real)

=% METHCD [] Constraint tolerance (Real)
=]
[=aan nond_global_relisbility (4/7) [1] Sealing Flag
e U_gaussian_process (0/0) saw  Pickone: unspecified

distribution (171}
@ praobability_levels (0j1)
@ gen_reliability_levels {0/1)
(=0 VARIABLES
WarsSetl {1719}
(=t INTERFACE
interface (28)
=t RESPONSES
=] RespSet] (4/5)
sam num_least_squares_terms (0j6)
saw analytic_gradients (0/0)
saw analytic_hessians (0/0)

< >

mydak.i | Problem Definition

P ome

ModelCalibration

Resource - JAG!
Eile Edit

Mavigate Project
C-He
Ejl\.(:, Resource |

% *constropt.l £3

# DAKOTA INFUT FILE - dakota texthook.in
strategy
graphics
single_wethod
method
max_iterations 50
convergence tolerance 0.0001
dot_rmfd
variables
continuous_design 2
initial poinc 0.9 1.1
lower hounds 0.5 -2.9
upper_hounds 5.8 2.2

Window Help
=)

descriptors 'xl' ‘=2
interface
analysis drivers 'text book'
direct
responses

num_objective functions 1

num_nonlinesar ineguality consctraints 2
numerical gradiencs

method_source

dakota

interval_ type

central

fd_step_size 0.0001
no_hessians

Source | Define Problem | Define FlowiIteration | Execute Problem | Yisualize Results

P e

kota LHS Wizard

Specify Variables
Specify the table contents

Uniform Uncertainty
samples 100

1 uriform_uncerkain 2

lower_bounds* upper_bounds*

[A] descriptors

IIDD

1 Add rowis) | First row

Delete selected row(s)

Duplicated selected row | First row

(%) Generate samples

() 5ave input deck

< Back ” Mext =

‘density’

Cancel




Deployment Initiative: Embedding

Make DAKOTA natively available within application codes
« Streamline problem set-up, reduce complexity, and lower barriers
— A few additional commands within existing simulation input spec.
— Eliminate analysis driver creation & streamline analysis (e.qg., file 1/0)
— Simplify parallel execution
« Integrated options for algorithm intrusion ——> | ModelEvaluator Levels

Non-intrusive

SNL Em bedding ModelEvaluator: systems analysis
+ All residuals eliminated, coupling satisfied
+ DAKOTA optimization & UQ

« Existing: Xyce, Sage, Albany (TriKOTA)
« New: ALEGRA, SIERRA (TriKOTA) = STK

ntrusive to coupling
ModelEvaluator: multiphysics

External Embeddmg * Individual physics residuals eliminated;
 Existing: ModelCenter, university applications coupling enforced by opt/UQ

. New: QUESO (UT Austin), R7 (INL) * DAKOTA 0ptiUQ & MOOCHO opt

« Expanding our external focus: ntrusive to physics
— GPL = LGPL; svn restricted - open network ModelEvaluator: single physics
— Tailored interfaces & algorithms « No residuals eliminated

* MOOCHO opt., Stokhos UQ, NOX, LOCA




