

Overview of Uncertainty Quantification Algorithm R&D in the DAKOTA Project

Michael S. Eldred

Optimization and Uncertainty Quantification Dept.
Sandia National Laboratories, Albuquerque, NM

NIST UQ Workshop
Boulder, CO; August 1-4, 2011

Survey of nonintrusive UQ methods:

- Sampling
- Local and global reliability
- Stochastic expansions: polynomial chaos, stochastic collocation

Build on these algorithmic foundations:

- Mixed aleatory-epistemic UQ, Opt/model calibration under uncertainty

Uncertainty Quantification Algorithms @ SNL: New methods bridge robustness/efficiency gap

	Production	New	Under dev.	Planned	Collabs.
Sampling	Latin Hypercube, Monte Carlo	Importance, Incremental		Bootstrap, Jackknife	FSU
Reliability	Local: Mean Value, First-order & second-order reliability methods (FORM, SORM)	Global: Efficient global reliability analysis (EGRA)	gradient- enhanced	recursive emulation, TGP	Local: Notre Dame, Global: Vanderbilt
Stochastic expansion		PCE and SC with uniform & dimension-adaptive p/h-refinement	local h- refinement, gradient- enhanced	hp-adaptive, discrete, multi- physics	Stanford, Purdue, Austr. Natl., FSU
Other probabilistic		Random fields/ stochastic proc.		Dimension reduction	Cornell, Maryland
Epistemic	Interval-valued/ Second-order prob. (nested sampling)	Opt-based interval estimation, Dempster-Shafer	Bayesian	Imprecise probability	LANL, UT Austin
Metrics & Global SA	Importance factors, Partial correlations	Main effects, Variance-based decomposition	Stepwise regression		LANL

Uncertainty Quantification Algorithms @ SNL: New methods bridge robustness/efficiency gap

	Production	New	Under dev.	Planned	Collabs.
Sampling	Latin Hypercube, Monte Carlo	Importance, Incremental		Bootstrap, Jackknife	FSU
Reliability	Local: Mean Value, First-order & second-order reliability methods (FORM, SORM)	Global: Efficient global reliability analysis (EGRA)	gradient- enhanced	recursive emulation, TGP	Local: Notre Dame, Global: Vanderbilt
Stochastic expansion	Adv. Deployment Fills Gaps	PCE and SC with uniform & dimension-adaptive p/h-refinement	local h- refinement, gradient- enhanced	hp-adaptive, discrete, multi- physics	Stanford, Purdue, Austr. Natl., FSU
Other probabilistic		Random fields/ stochastic proc.		Dimension reduction	Cornell, Maryland
Epistemic	Interval-valued/ Second-order prob. (nested sampling)	Opt-based interval estimation, Dempster-Shafer	Bayesian	Imprecise probability	LANL, UT Austin
Metrics & Global SA	Importance factors, Partial correlations	Main effects, Variance-based decomposition	Stepwise regression		LANL

Algorithm R&D in Adaptive UQ

Drivers

- Efficient/robust/scalable core → adaptive methods, adjoint enhancement
- Complex random environments → epistemic/mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic expansions:

- Polynomial chaos expansions (PCE): known basis, compute coeffs
- Stochastic collocation (SC): known coeffs, form interpolants
- Adaptive approaches: emphasize key dimensions
 - Uniform/dim-adaptive **p-refinement**: iso/aniso/generalized sparse grids
 - Dimension-adaptive **h-refinement** with grad-enhanced interpolants
- Sparse adaptive global methods: scale as $m^{\log r}$ with $r \ll n$

EGRA:

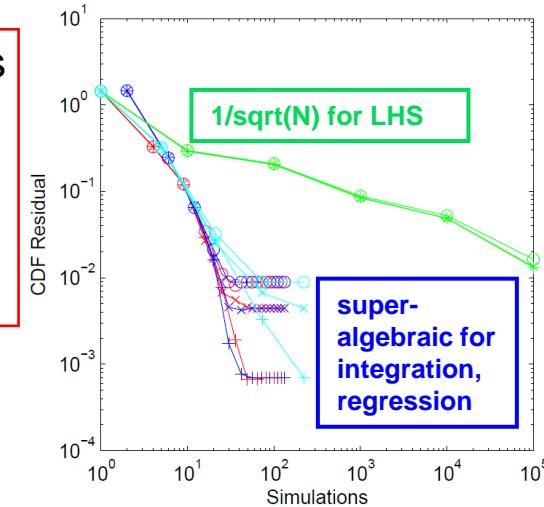
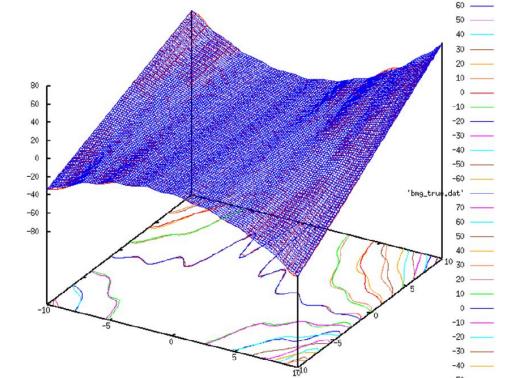
- Adaptive GP refinement** for tail probability estimation
- Accuracy similar to exhaustive sampling at cost similar to local reliability assessment
- Global method that scales as $\sim n^2$

Sampling:

- Importance sampling (**adaptive refinement**)
- Incremental MC/LHS (**uniform refinement**)

$$R = \sum_{j=0}^P \alpha_j \Psi_j(\xi)$$

$$R = \sum_{j=1}^{N_p} r_j \mathbf{L}_j(\xi)$$



Algorithm R&D in UQ Complexity

Drivers

- Efficient/robust/scalable core → adaptive methods, adjoint enhancement
- Complex random env. → mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic sensitivity analysis

- Aleatory or combined expansions including nonprobabilistic dimensions s → sensitivities of moments w.r.t. design and/or epistemic parameters

Design and Model Calibration Under Uncertainty

Mixed Aleatory-Epistemic UQ

- SOP, IVP, and DSTE approaches that are more accurate and efficient than traditional nested sampling

Random Fields / Stochastic Processes (Encore, PECOS)

Multiphysics (multiscale) UQ:

- Invert UQ & multiphysics loops → transfer UQ stats among codes

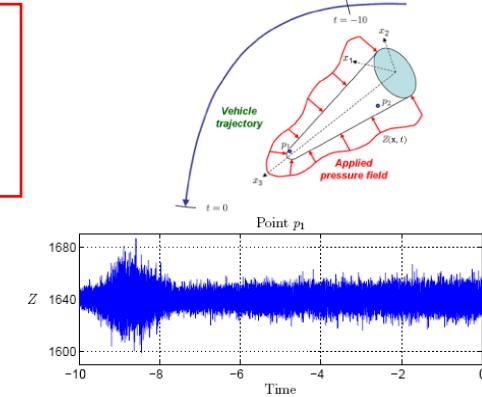
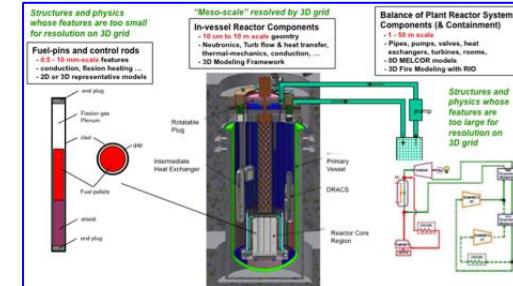
Bayesian Inference:

- Collaborations w/ LANL (GPM), UT (Queso), Purdue/MIT (gPC)

Model form:

- Multifidelity UQ (hierarchy), model averaging/selection (ensemble)

$$R(\xi, s) = \sum_{j=0}^P \alpha_j(s) \Psi_j(\xi)$$
$$R(\xi, s) = \sum_{j=0}^P \alpha_j \Psi_j(\xi, s)$$



Reliability Methods for UQ

UQ with Reliability Methods

Mean Value Method

$$\mu_g = g(\mu_x)$$

$$\sigma_g^2 = \sum_i \sum_j Cov(i, j) \frac{dg}{dx_i}(\mu_x) \frac{dg}{dx_j}(\mu_x)$$

$$\bar{z} \rightarrow p, \beta \left\{ \begin{array}{l} \beta_{cdf} = \frac{\mu_g - \bar{z}}{\sigma_g} \\ \beta_{ccdf} = \frac{\bar{z} - \mu_g}{\sigma_g} \end{array} \right.$$

$$\bar{p}, \bar{\beta} \rightarrow z \left\{ \begin{array}{l} z = \mu_g - \sigma_g \bar{\beta}_{cdf} \\ z = \mu_g + \sigma_g \bar{\beta}_{ccdf} \end{array} \right.$$

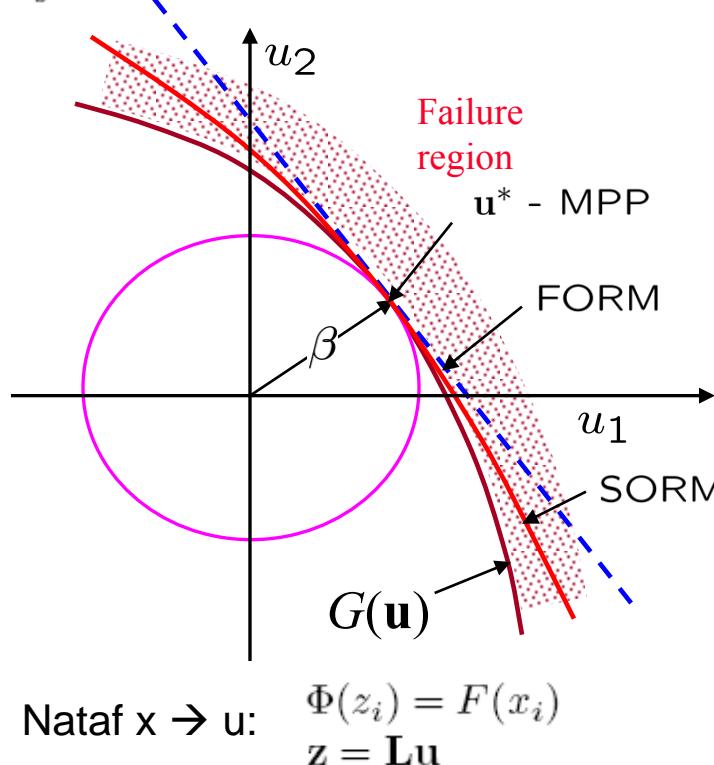
Rough statistics

MPP search methods

Reliability Index Approach (RIA)

$$\begin{aligned} & \text{minimize} && \mathbf{u}^T \mathbf{u} \\ & \text{subject to} && G(\mathbf{u}) = \bar{z} \end{aligned}$$

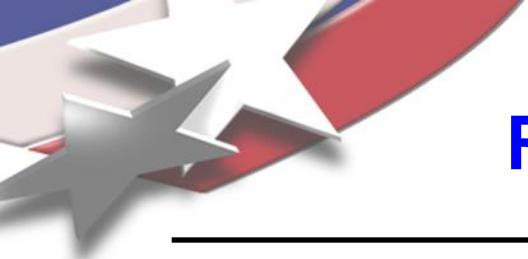
Find min dist to G level curve
Used for fwd map $z \rightarrow p/\beta$



Performance Measure Approach (PMA)

$$\begin{aligned} & \text{minimize} && \pm G(\mathbf{u}) \\ & \text{subject to} && \mathbf{u}^T \mathbf{u} = \bar{\beta}^2 \end{aligned}$$

Find min G at β radius
Used for inv map $p/\beta \rightarrow z$



Reliability Algorithm Variations

Limit state approximations

$$\text{AMV: } g(\mathbf{x}) = g(\mu_{\mathbf{x}}) + \nabla_x g(\mu_{\mathbf{x}})^T (\mathbf{x} - \mu_{\mathbf{x}})$$

$$\text{u-space AMV: } G(\mathbf{u}) = G(\mu_{\mathbf{u}}) + \nabla_u G(\mu_{\mathbf{u}})^T (\mathbf{u} - \mu_{\mathbf{u}})$$

$$\text{AMV+: } g(\mathbf{x}) = g(\mathbf{x}^*) + \nabla_x g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*)$$

$$\text{u-space AMV+: } G(\mathbf{u}) = G(\mathbf{u}^*) + \nabla_u G(\mathbf{u}^*)^T (\mathbf{u} - \mathbf{u}^*)$$

FORM: no linearization

- **2nd-order local, e.g. x-space AMV²⁺:**

$$g(\mathbf{x}) \cong g(\mathbf{x}^*) + \nabla_x g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \nabla_x^2 g(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*)$$

- **Hessians may be full/FD/Quasi**
- **Quasi-Newton Hessians may be BFGS or SR1**

Reliability Algorithm Variations

Limit state approximations

AMV: $g(\mathbf{x}) = g(\mu_{\mathbf{x}}) + \nabla_x g(\mu_{\mathbf{x}})^T (\mathbf{x} - \mu_{\mathbf{x}})$

u-space AMV: $G(\mathbf{u}) = G(\mu_{\mathbf{u}}) + \nabla_u G(\mu_{\mathbf{u}})^T (\mathbf{u} - \mu_{\mathbf{u}})$

AMV+: $g(\mathbf{x}) = g(\mathbf{x}^*) + \nabla_x g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*)$

u-space AMV+: $G(\mathbf{u}) = G(\mathbf{u}^*) + \nabla_u G(\mathbf{u}^*)^T (\mathbf{u} - \mathbf{u}^*)$

FORM: no linearization

- **Multipoint, e.g. TPEA, TANA:**

$$g(\mathbf{x}) \cong g(\mathbf{x}_2) + \sum_{i=1}^n \frac{\partial g}{\partial x_i}(\mathbf{x}_2) \frac{x_i^{1-p_i}}{p_i} (x_i^{p_i} - x_{i,2}^{p_i}) + \frac{1}{2} \epsilon(\mathbf{x}) \sum_{i=1}^n (x_i^{p_i} - x_{i,2}^{p_i})^2$$

$$p_i = 1 + \ln \left[\frac{\frac{\partial g}{\partial x_i}(\mathbf{x}_1)}{\frac{\partial g}{\partial x_i}(\mathbf{x}_2)} \right] / \ln \left[\frac{x_{i,1}}{x_{i,2}} \right]$$

$$\epsilon(\mathbf{x}) = \frac{H}{\sum_{i=1}^n (x_i^{p_i} - x_{i,1}^{p_i})^2 + \sum_{i=1}^n (x_i^{p_i} - x_{i,2}^{p_i})^2}$$

$$H = 2 \left[g(\mathbf{x}_1) - g(\mathbf{x}_2) - \sum_{i=1}^n \frac{\partial g}{\partial x_i}(\mathbf{x}_2) \frac{x_i^{1-p_i}}{p_i} (x_{i,1}^{p_i} - x_{i,2}^{p_i}) \right]$$

- **2nd-order local, e.g. x-space AMV+**

$$g(\mathbf{x}) \cong g(\mathbf{x}^*) + \nabla_x g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \nabla_x^2 g(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*)$$

- **Hessians may be full/FD/Quasi**

- **Quasi-Newton Hessians may be BFGS or SR1**

Integrations

1st-order:
$$\begin{cases} p(g \leq z) &= \Phi(-\beta_{cdf}) \\ p(g > z) &= \Phi(-\beta_{ccdf}) \end{cases}$$

MPP search algorithm

2nd-order: Breit, Hohen-Rack, Hong

$$p = \Phi(-\beta) \prod_{i=1}^{n-1} \frac{1}{\sqrt{1 + \beta \kappa_i}}$$

curvature correction

Additional refinement:
IS, AIS, MMAIS

[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)

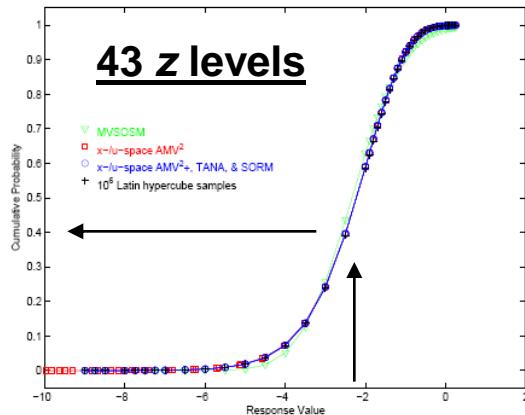
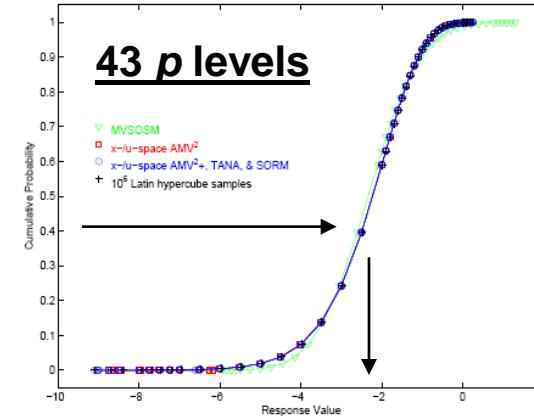
Warm starting (with projections)

When: AMV+ iteration increment, z/p/β level increment, or design variable change

What: linearization point & assoc. responses (AMV+), MPP search initial guess

Reliability Algorithm Variations: Algorithm Performance Results

Analytic benchmark test problems: lognormal ratio, short column, cantilever



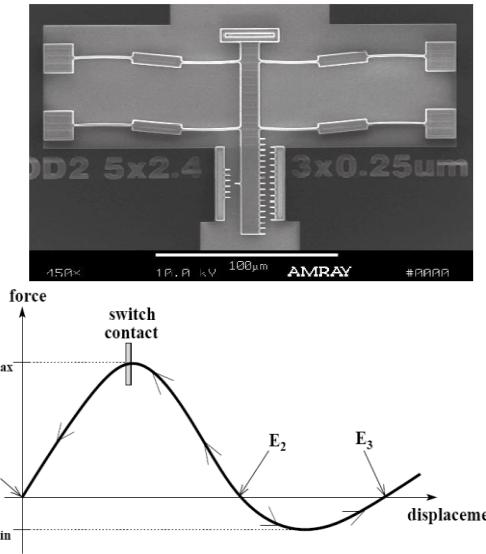
RIA Approach	SQP Function Evaluations	NIP Function Evaluations	CDF p Error Norm	Target z Offset Norm
MVFOSM	1	1	0.1548	0.0
MVSOSM	1	1	0.1127	0.0
x-space AMV	45	45	0.009275	18.28
u-space AMV	45	45	0.006408	18.81
x-space AMV ²	45	45	0.002063	2.482
u-space AMV ²	45	45	0.001410	2.031
x-space AMV+	192	192	0.0	0.0
u-space AMV+	207	207	0.0	0.0
x-space AMV ² +	125	131	0.0	0.0
u-space AMV ² +	122	130	0.0	0.0
x-space TANA	245	246	0.0	0.0
u-space TANA	296*	278*	6.982e-5	0.08014
FORM	626	176	0.0	0.0
SORM	669	219	0.0	0.0

PMA Approach	SQP Function Evaluations	NIP Function Evaluations	CDF z Error Norm	Target p Offset Norm
MVFOSM	1	1	7.454	0.0
MVSOSM	1	1	6.823	0.0
x-space AMV	45	45	0.9420	0.0
u-space AMV	45	45	0.5828	0.0
x-space AMV ²	45	45	2.730	0.0
u-space AMV ²	45	45	2.828	0.0
x-space AMV+	171	179	0.0	0.0
u-space AMV+	205	205	0.0	0.0
x-space AMV ² +	135	142	0.0	0.0
u-space AMV ² +	132	139	0.0	0.0
x-space TANA	293*	272	0.04259	1.598e-4
u-space TANA	325*	311*	2.208	5.600e-4
FORM	720	192	0.0	0.0
SORM	535	191*	2.410	6.522e-4

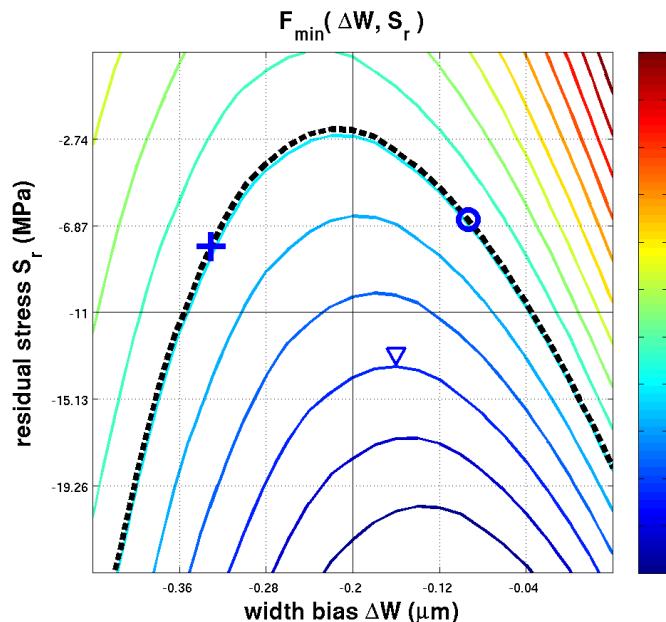
Note: 2nd-order PMA with prescribed p level is harder problem → requires $\beta(p)$ update/inversion

Solution-Verified Reliability Analysis and Design of MEMS

- **Problem:** MEMS subject to substantial variabilities
 - Material properties, manufactured geometry, residual stresses
 - Part yields can be low or have poor durability
 - Data can be obtained → aleatory UQ → probabilistic methods
- **Goal:** account for both uncertainties and errors in design
 - Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore), adaptivity (SIERRA), nonlin mech (Aria) → MESA application
 - Perform soln verification in automated, parameter-adaptive way
 - Generate fully converged UQ/OUU results at lower cost



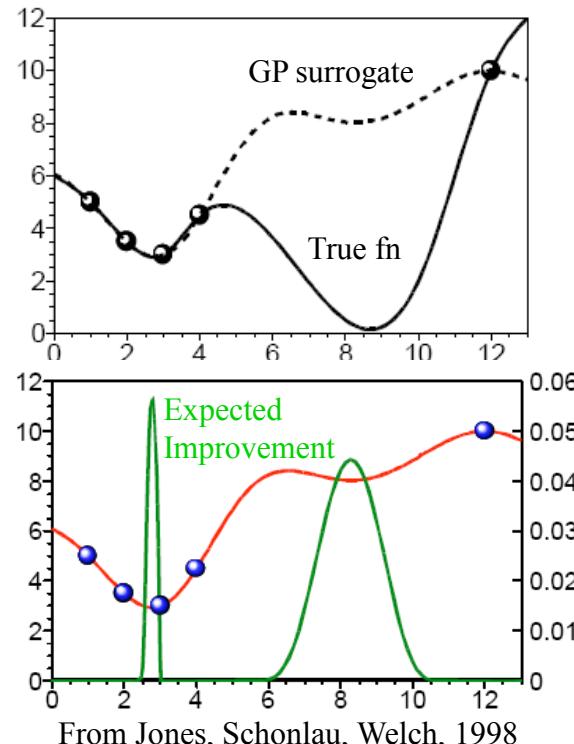
- AMV²⁺ and FORM converge to different MPPs (+ and O respectively)
- Issue: high nonlinearity leading to multiple legitimate MPP solns.
- Challenge: design optimization may tend to seek out regions encircled by the failure domain. 1st-order and even 2nd-order probability integrations can experience difficulty with this degree of nonlinearity. Optimizers can/will exploit this model weakness.



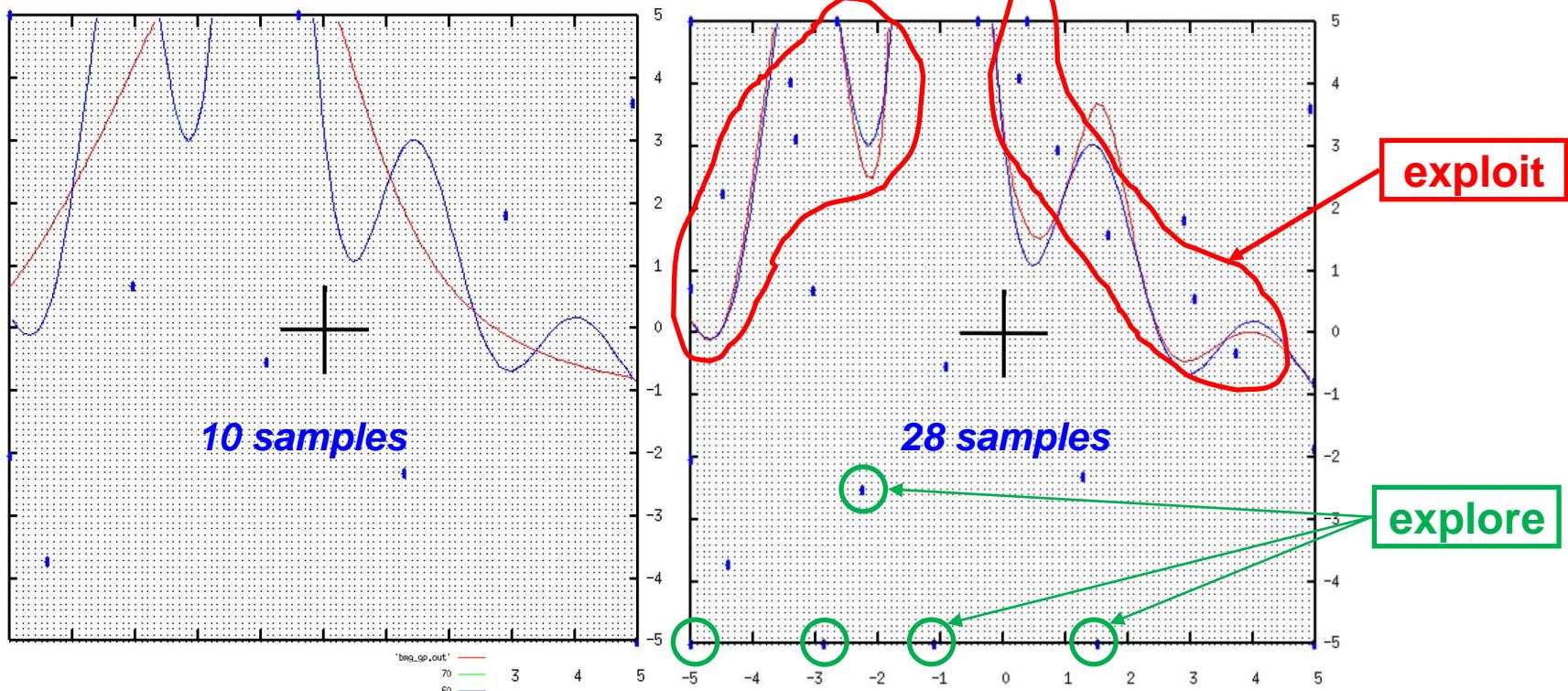
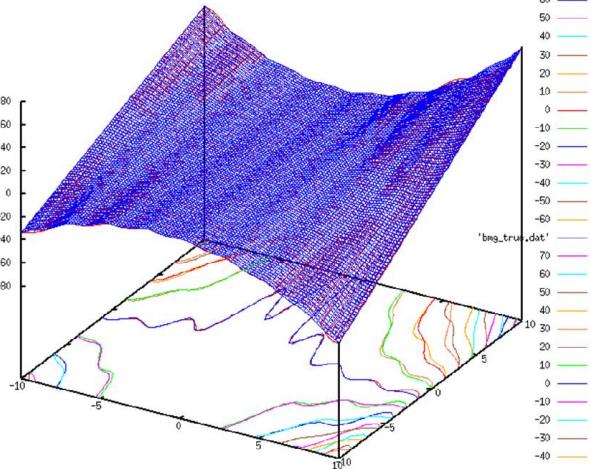
Parameter study over 3σ uncertain variable range for fixed design variables d_M^* . Dashed black line denotes $g(x) = F_{\min}(x) = -5.0$.

Efficient Global Reliability Analysis (EGRA)

- **Address known failure modes of local reliability methods:**
 - Nonsmooth: fail to converge to an MPP
 - Multimodal: only locate one of several MPPs
 - Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP
- **Based on EGO (surrogate-based global opt.), which exploits special features of GPs**
 - Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
 - Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)



Efficient Global Reliability Analysis



Reliability Method	Function Evaluations	First-Order p_f (% Error)	Second-Order p_f (% Error)	Sampling p_f (% Error, Avg. Error)
No Approximation	70	0.11797 (277.0%)	0.02516 (-19.6%)	—
x-space AMV ² +	26	0.11797 (277.0%)	0.02516 (-19.6%)	—
u-space AMV ² +	26	0.11777 (277.0%)	0.02516 (-19.6%)	—
u-space TANA	131	0.11797 (277.0%)	0.02516 (-19.6%)	—
LHS solution	10k	—	—	0.03117 (0.385%, 2.847%)
LHS solution	100k	—	—	0.03126 (0.085%, 1.397%)
LHS solution	1M	—	—	0.03129 (truth , 0.339%)
x-space EGRA	35.1	—	—	0.03134 (0.155%, 0.433%)
u-space EGRA	35.2	—	—	0.03133 (0.136%, 0.296%)

Stochastic Expansion Methods for UQ

Polynomial Chaos Expansions (PCE)

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

i.e.

$$R = \sum_{j=0}^P \alpha_j \Psi_j(\xi)$$

using

$$\begin{aligned} \Psi_0(\xi) &= \psi_0(\xi_1) \psi_0(\xi_2) = 1 \\ \Psi_1(\xi) &= \psi_1(\xi_1) \psi_0(\xi_2) = \xi_1 \\ \Psi_2(\xi) &= \psi_0(\xi_1) \psi_1(\xi_2) = \xi_2 \\ \Psi_3(\xi) &= \psi_2(\xi_1) \psi_0(\xi_2) = \xi_1^2 - 1 \\ \Psi_4(\xi) &= \psi_1(\xi_1) \psi_1(\xi_2) = \xi_1 \xi_2 \\ \Psi_5(\xi) &= \psi_0(\xi_1) \psi_2(\xi_2) = \xi_2^2 - 1 \end{aligned}$$

- **Nonintrusive:** estimate α_j using sampling, regression, tensor-product quadrature, sparse grids, or cubature

$$\alpha_j = \frac{\langle R, \Psi_j \rangle}{\langle \Psi_j^2 \rangle} = \frac{1}{\langle \Psi_j^2 \rangle} \int_{\Omega} R \Psi_j \varrho(\xi) d\xi$$

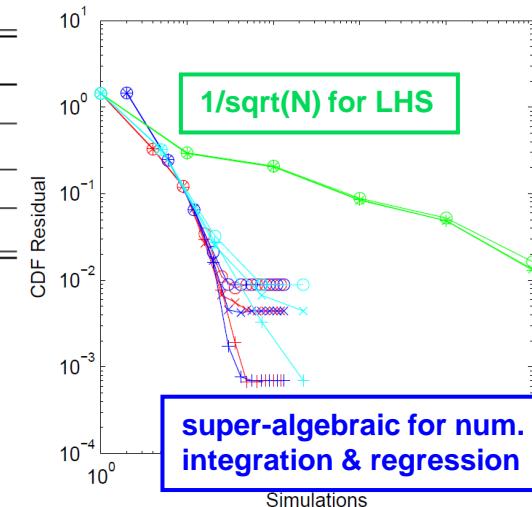
$$\langle \Psi_j^2 \rangle = \prod_{i=1}^n \langle \psi_{m_i}^2 \rangle$$

Generalized PCE (Wiener-Askey + numerically-generated)

- **Tailor basis:** selection of basis orthogonal to input PDF avoids additional nonlinearity

Distribution	Density function	Polynomial	Weight function	Support range
Normal	$\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	Hermite $He_n(x)$	$e^{-\frac{x^2}{2}}$	$[-\infty, \infty]$
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	$[-1, 1]$
Beta	$\frac{(1-x)^\alpha (1+x)^\beta}{2^{\alpha+\beta+1} B(\alpha+1, \beta+1)}$	Jacobi $P_n^{(\alpha, \beta)}(x)$	$(1-x)^\alpha (1+x)^\beta$	$[-1, 1]$
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0, \infty]$
Gamma	$\frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^\alpha e^{-x}$	$[0, \infty]$

Additional bases generated numerically (discretized Stieltjes + Golub-Welsch)



- **Tailor expansion form:**

- Dimension p-refinement: anisotropic TPQ/SSG, generalized SSG
- Dimension & region h-refinement: local bases with global & local refinement

Stochastic Collocation (based on interpolation polynomials)

Instead of estimating coefficients for known basis functions, form interpolants for known coefficients

$$R = \sum_{j=1}^{N_p} r_j L_j(\xi)$$

- **Global:** Lagrange (values) or Hermite (values+derivatives)
- **Local:** linear (values) or cubic (values+gradients) splines

$$L_i = \prod_{\substack{j=1 \\ j \neq i}}^m \frac{x - x_j}{x_i - x_j}$$

$$R(\xi) \cong \sum_{j_1=1}^{m_{i_1}} \cdots \sum_{j_n=1}^{m_{i_n}} r(\xi_{j_1}^{i_1}, \dots, \xi_{j_n}^{i_n}) (L_{j_1}^{i_1} \otimes \cdots \otimes L_{j_n}^{i_n})$$

Sparse interpolants formed using Σ of tensor interpolants

Advantages relative to PCE:

- Somewhat simpler (no expansion order to manage separately)
- Often less expensive (no integration for coefficients)
- Expansion only formed for sampling \rightarrow probabilities (estimating moments of any order is straightforward)
- Adaptive h-refinement with hierarchical surpluses; explicit gradient-enhancement

Disadvantages relative to PCE:

- Less flexible/fault tolerant \rightarrow structured data sets (tensor/sparse grids)
- Expansion variance not guaranteed positive (important in opt./interval est.)
- No direct inference of spectral decay rates

With sufficient care on PCE form, PCE/SC performance is essentially identical for many cases of interest (tensor/sparse grids with standard Gauss rules)

Approaches for forming PCE/SC Expansions

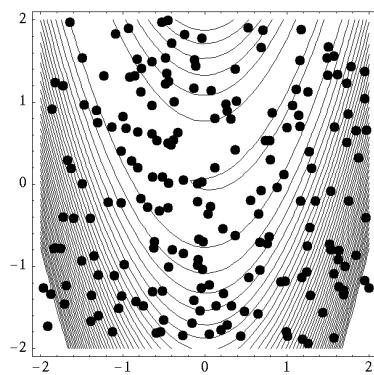
Random sampling: PCE

Expectation (sampling):

- Sample w/i distribution of ξ
- Compute expected value of product of R and each Ψ_j

Linear regression (“point collocation”):

- Sample w/i distribution of ξ
- Solves least squares data fit for all coefficients at once:



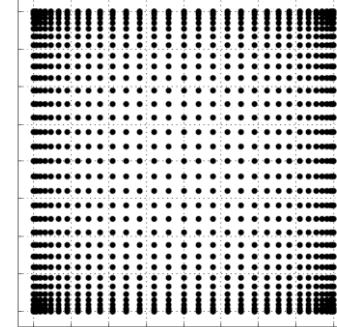
$$\Psi \alpha = R$$

Tensor-product quadrature: PCE/SC

$$\mathcal{U}^i(f)(\xi) = \sum_{j=1}^{m_i} f(\xi_j^i) w_j^i$$

$$\mathcal{Q}_i^n f(\xi) = (\mathcal{U}^{i_1} \otimes \dots \otimes \mathcal{U}^{i_n})(f)(\xi) = \sum_{j_1=1}^{m_{i_1}} \dots \sum_{j_n=1}^{m_{i_n}} f(\xi_{j_1}^{i_1}, \dots, \xi_{j_n}^{i_n}) (w_{j_1}^{i_1} \otimes \dots \otimes w_{j_n}^{i_n})$$

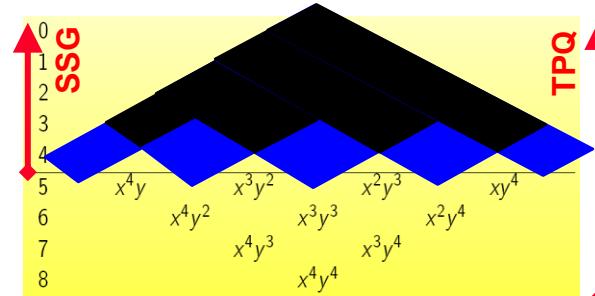
- Every combination of 1-D rules
- Scales as m^n
- 1-D Gaussian rule of order m → integrands to order $2m - 1$
- Assuming $R \Psi_j$ of order $2p$, select $m = p + 1$



Smolyak Sparse Grid: PCE/SC

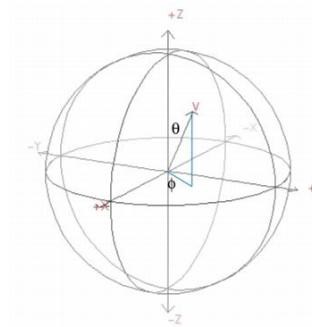
$$\mathcal{A}(w, n) = \sum_{w+1 \leq |\mathbf{i}| \leq w+n} (-1)^{w+n-|\mathbf{i}|} \binom{n-1}{w+n-|\mathbf{i}|} \cdot (\mathcal{U}^{i_1} \otimes \dots \otimes \mathcal{U}^{i_n})$$

Pascal's triangle (2D):



Cubature: PCE

Stroud and extensions (Xiu, Cools)
 → Low order PCE
 → global SA, anisotropy detection



Gaussian $i = 2 \rightarrow p = 1$

$$x_{k,2r-1} = \sqrt{2} \cos \frac{2rk\pi}{n+1}, \quad x_{k,2r} = \sqrt{2} \sin \frac{2rk\pi}{n+1}$$

Arbitrary PDF

$$t^{(k)} = \frac{1}{\gamma} [\sqrt{\gamma c_1} x^{(k)} - \delta]$$

Adaptive Collocation Methods

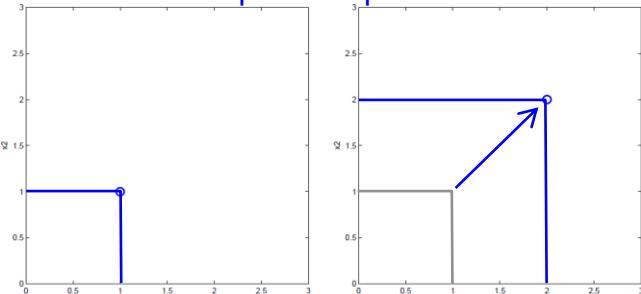
Drivers: Efficiency, robustness, scalability → adaptive methods, adjoint enhancement

Polynomial order (p -) refinement approaches:

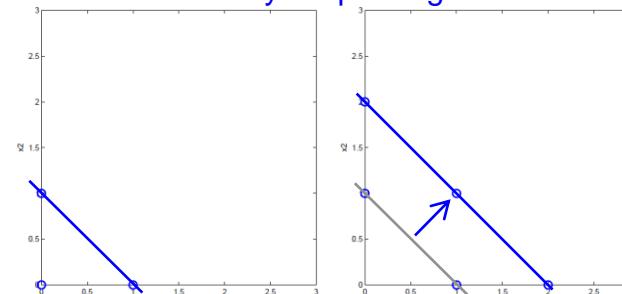
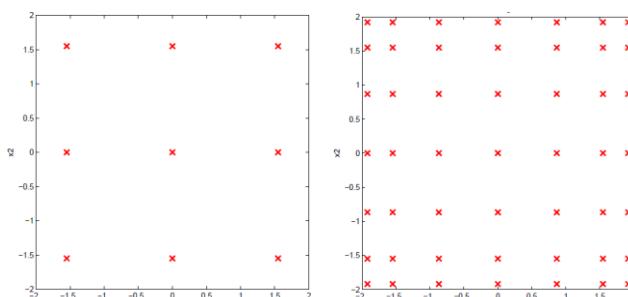
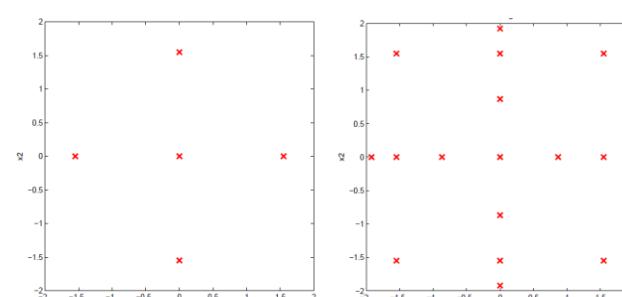
- **Uniform:** isotropic tensor/sparse grids
 - *Increment grid:* increase order/level, ensure change (restricted growth in nested rules)
 - *Assess convergence:* L^2 change in response covariance

$$w+1 \leq |\mathbf{i}| \leq w+n$$

Tensor-product quadrature



Smolyak sparse grid



Adaptive Collocation Methods

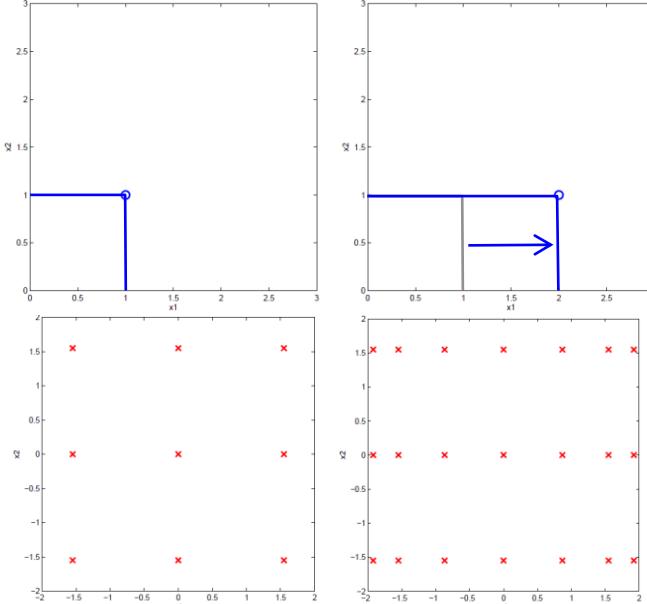
Drivers: Efficiency, robustness, scalability → adaptive methods, adjoint enhancement

Polynomial order (p -) refinement approaches:

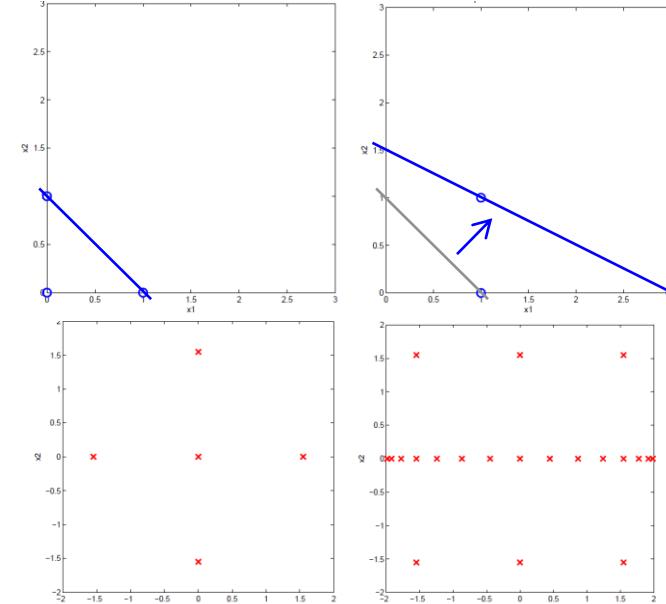
- **Uniform:** isotropic tensor/sparse grids
 - *Increment grid:* increase order/level, ensure change (restricted growth in nested rules)
 - Assess convergence: L^2 change in response covariance
- **Dimension-adaptive:** anisotropic tensor/sparse grids
 - **PCE/SC:** variance-based decomp. → total Sobol' indices → anisotropy (dimension preference)
 - **PCE:** spectral coefficient decay rates → anisotropy (index set weights)

$$w\underline{\gamma} < \mathbf{i} \cdot \gamma \leq w\underline{\gamma} + |\gamma|$$

Tensor-product quadrature



Smolyak sparse grid



Adaptive Collocation Methods

Drivers: Efficiency, robustness, scalability → adaptive methods, adjoint enhancement

Polynomial order (p -) refinement approaches:

- **Uniform:** isotropic tensor/sparse grids
 - *Increment grid:* increase order/level, ensure change (restricted growth in nested rules)
 - Assess convergence: L^2 change in response covariance
- **Dimension-adaptive:** anisotropic tensor/sparse grids $w\underline{\gamma} < \mathbf{i} \cdot \underline{\gamma} \leq w\underline{\gamma} + |\underline{\gamma}|$
 - PCE/SC: variance-based decomp. → total Sobol' indices → anisotropy
 - PCE: spectral coefficient decay rates → anisotropy
- **Goal-oriented dimension-adaptive:** generalized sparse grids
 - PCE/SC: change in QOI induced by trial index sets on active front

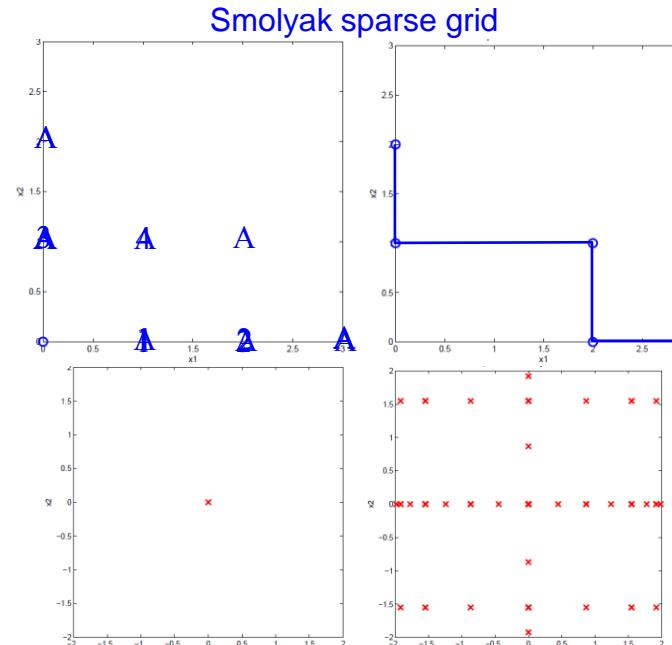
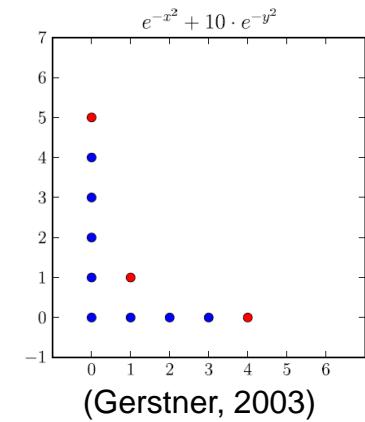
1. Initialization: Starting from reference grid (often $w = 0$ grid), define active index sets using admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set, evaluate tensor grid, form tensor expansion, update combinatorial coefficients, and combine with reference expansion. Perform necessary bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that induces largest change in statistical QOI.

4. Update sets: If largest change > tolerance, then promote selected trial set from active to old and compute new admissible active sets; return to 2. If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets to old set, update combinatorial coefficients, and perform final combination of tensor expansions to arrive at final result for statistical QOI.



Fine-grained control: frontier not limited by prescribed shape of index set constraint

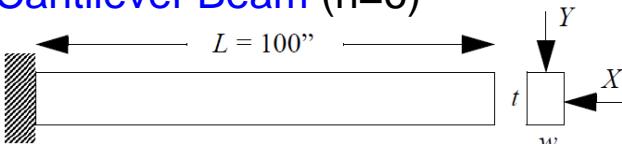
Numerical Experiments

Short Column (n=5)

$$g(\mathbf{x}) = 1 - \frac{4M}{bh^2Y} - \frac{P^2}{b^2h^2Y^2}$$

$b = U[5,15]$, $h = U[15,25]$,
 $P = N(500, 100)$, $M = N(2000, 400)$,
 $\rho_{P,M} = 0.5$, $Y = \log N(5, 0.5)$

Cantilever Beam (n=6)



$$\begin{aligned} S &= \frac{600}{wt^2}Y + \frac{600}{w^2t}X \leq R \\ D &= \frac{4L^3}{Ewt} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{w^2}\right)^2} \leq D_0 \end{aligned}$$

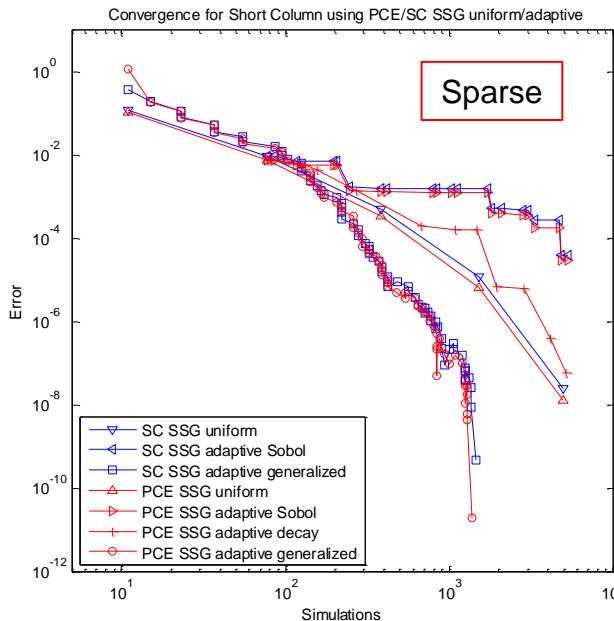
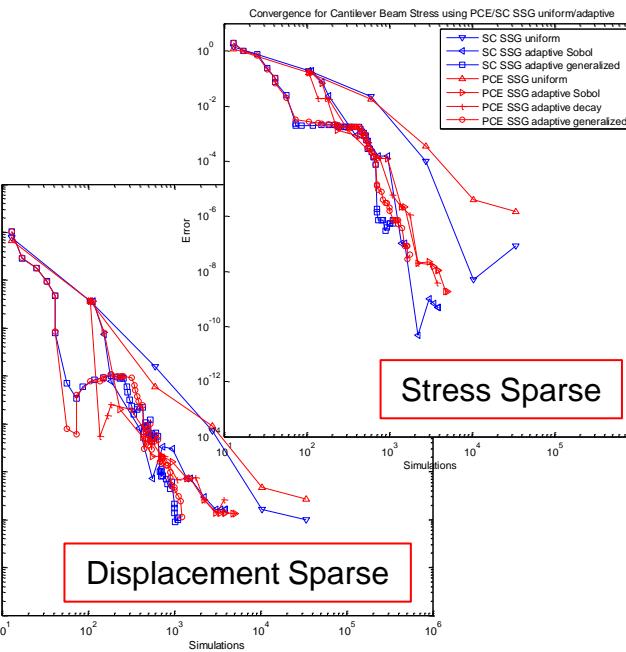
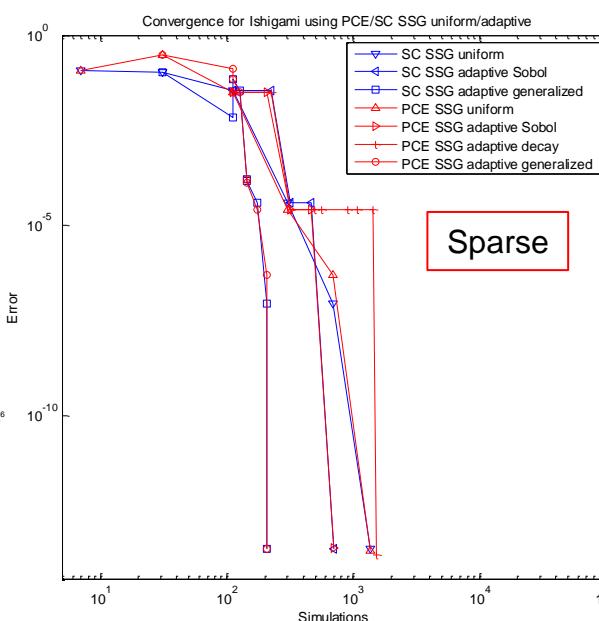
$w, t, R, E, X, Y: U[1,10], U[1,10],$
 $N(4E4, 2E3), N(2.9E7, 1.45E6),$
 $N(500, 100), N(1E3, 100); D_0 = 2.2535''$

Ishigami (n=3)

$$\begin{aligned} f(\mathbf{x}) &= \sin(2\pi x_1 - \pi) \\ &+ 7 \sin^2(2\pi x_2 - \pi) \\ &+ 0.1(2\pi x_3 - \pi)^4 \sin(2\pi x_1 - \pi) \end{aligned}$$

$x_1, x_2, x_3: iid U[0, 1]$

- Designed to be challenging for global SA: term cancellations at mid-point & bounds
- Premature convergence in adaptive methods
 \rightarrow start from higher-order grid



Extend Scalability through Adjoint Derivative-Enhancement

PCE:

- Linear regression with derivatives
 - Gradients/Hessians → addtnl. eqns.

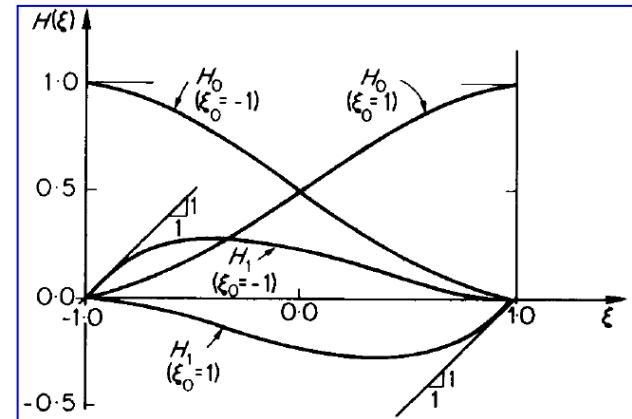
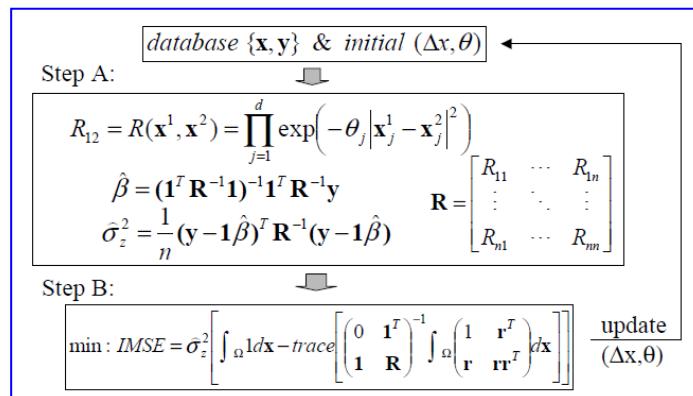
SC:

- Gradient-enhanced interpolants
 - Local: cubic Hermite splines
 - Global: Hermite interpolation polynomials

EGRA:

- Gradient-enhanced kriging/cokriging
 - Interpolates function values and gradients
 - Scaling: $n^2 \rightarrow n$

$$\begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \pi_{0,j}(\vec{\xi}_i) & \pi_{1,j}(\vec{\xi}_i) & \cdots & \pi_{P,j}(\vec{\xi}_i) \\ \frac{\partial \pi_{0,j}}{\partial \xi_1}(\vec{\xi}_i) & \frac{\partial \pi_{1,j}}{\partial \xi_1}(\vec{\xi}_i) & \cdots & \frac{\partial \pi_{P,j}}{\partial \xi_1}(\vec{\xi}_i) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \pi_{0,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) & \frac{\partial \pi_{1,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) & \cdots & \frac{\partial \pi_{P,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{pmatrix} \vec{u}^{(m,j)} \\ \vec{u}^{(m+1,j)} \\ \vdots \\ \vec{u}^{(m+n_\xi,j)} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \vec{u}_i \\ \frac{\partial \vec{u}_i}{\partial \xi_1} \\ \vdots \\ \frac{\partial \vec{u}_i}{\partial \xi_{n_\xi}} \\ \vdots \end{pmatrix}$$



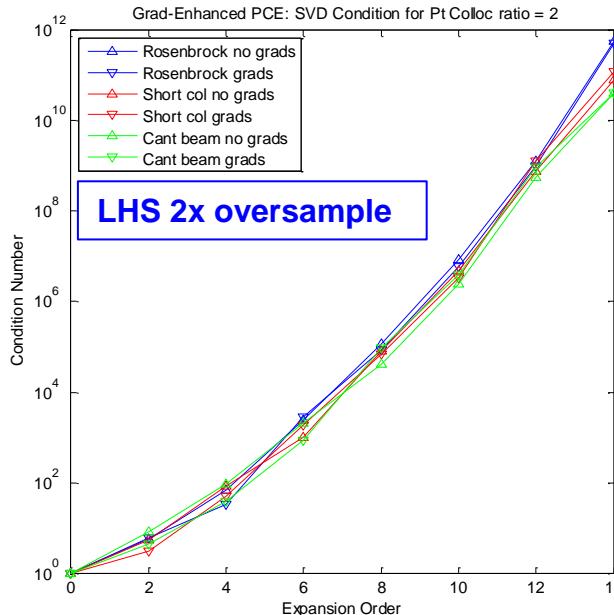
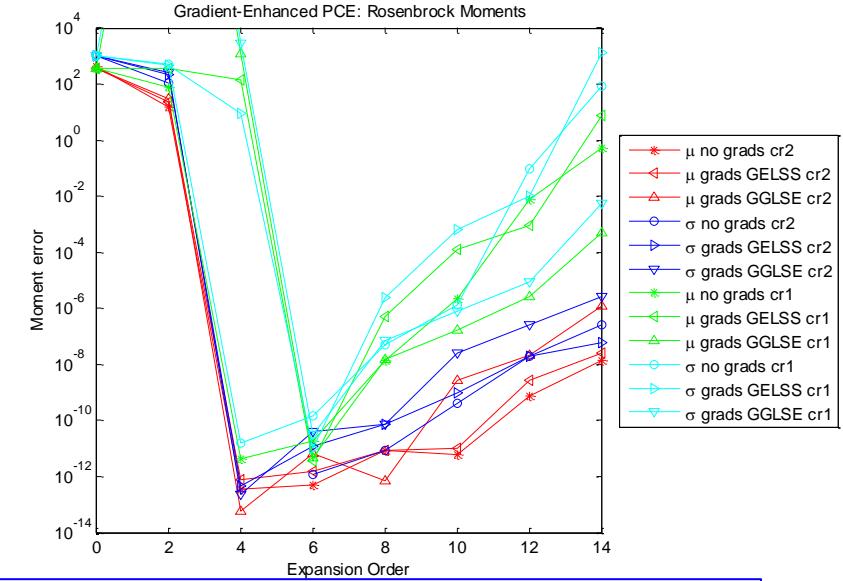
Gradient-Enhanced PCE

Straightforward regression approach:

$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \pi_{0,j}(\vec{\xi}_i) & \pi_{1,j}(\vec{\xi}_i) & \cdots & \pi_{P,j}(\vec{\xi}_i) \\ \frac{\partial \pi_{0,j}}{\partial \xi_1}(\vec{\xi}_i) & \frac{\partial \pi_{1,j}}{\partial \xi_1}(\vec{\xi}_i) & \cdots & \frac{\partial \pi_{P,j}}{\partial \xi_1}(\vec{\xi}_i) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \pi_{0,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) & \frac{\partial \pi_{1,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) & \cdots & \frac{\partial \pi_{P,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) \\ \vdots & \vdots & & \vdots \end{bmatrix} \begin{pmatrix} \vec{u}^{(m,j)} \\ \vec{u}^{(m+1,j)} \\ \vdots \\ \vec{u}^{(m+n_\xi,j)} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \vec{u}_i \\ \frac{\partial \vec{u}_i}{\partial \xi_1} \\ \vdots \\ \frac{\partial \vec{u}_i}{\partial \xi_{n_\xi}} \\ \vdots \end{pmatrix}$$

- unweighted LLS by SVD (LAPACK GELSS)
- equality constrained LLS by QR (LAPACK GGLSE) when under-determined by values alone

Vandermonde-like systems known to suffer from ill-conditioning



Error growth as we over-resolve exact solutions

Dimension-adaptive h-refinement with gradient-enhanced interpolants

Dimension-adaptive h-refinement for SC:

- Local spline interpolants: linear Lagrange (value-based), cubic Hermite (gradient-enhanced)
- Global grids: iso/aniso tensor, iso/aniso/generalized sparse
- h-refinement: uniform, adaptive, goal-oriented adaptive
- Basis formulations: nodal, hierarchical

Multivariate tensor product to arbitrary derivative order (Lalescu):

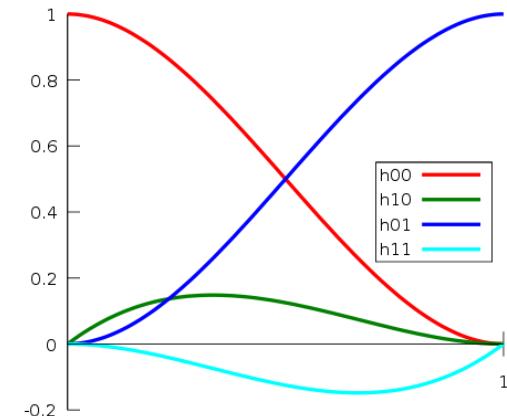
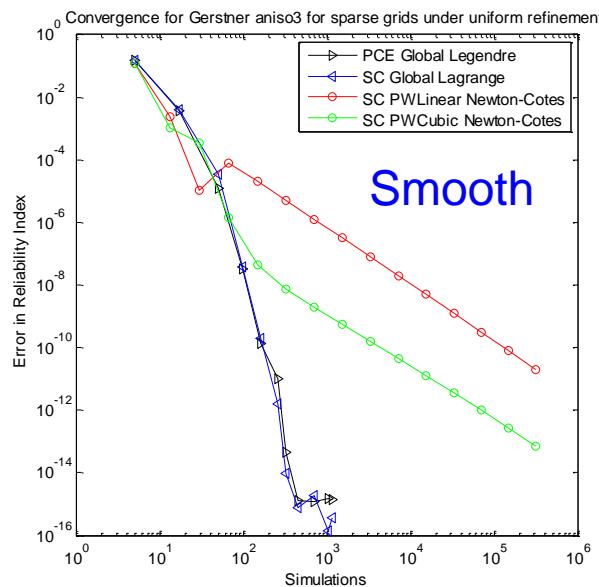
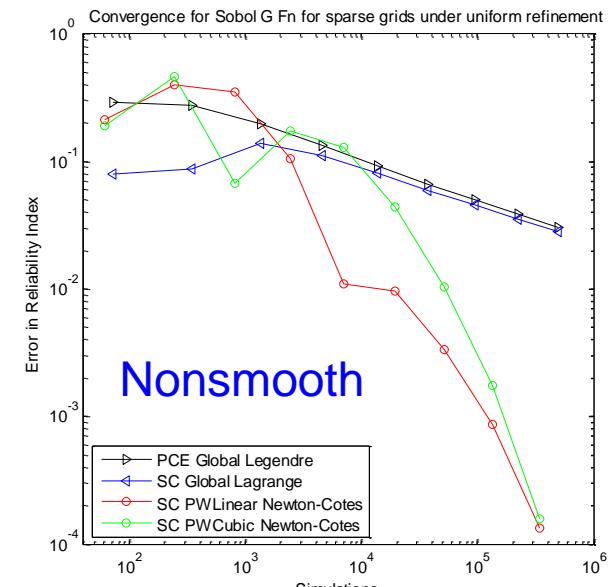
$$s^{(n)}(x_1, x_2, \dots, x_D) = \sum_{l_1, \dots, l_D=0}^m \sum_{i_1, \dots, i_D=0,1} f^{(l_1, \dots, l_D)}(i_1, \dots, i_D) \prod_{k=1}^D \alpha_{i_k}^{(n, l_k)}(x_k)$$

$$f = \sum_{i=1}^N f_i H_i^{(1)}(x_1) H_i^{(1)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^N \frac{df_i}{dx_1} H_i^{(2)}(x_1) H_i^{(1)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^N \frac{df_i}{dx_2} H_i^{(1)}(x_1) H_i^{(2)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^N \frac{df_i}{dx_3} H_i^{(1)}(x_1) H_i^{(1)}(x_2) H_i^{(2)}(x_3)$$

$$\mu = \sum_{i=1}^N f_i w_i^{(1)} w_i^{(1)} w_i^{(1)} + \sum_{i=1}^N \frac{df_i}{dx_1} w_i^{(2)} w_i^{(1)} w_i^{(1)} + \sum_{i=1}^N \frac{df_i}{dx_2} w_i^{(1)} w_i^{(2)} w_i^{(1)} + \sum_{i=1}^N \frac{df_i}{dx_3} w_i^{(1)} w_i^{(1)} w_i^{(2)}$$

and similar for higher-order moments

Cubic shape fns: type 1 (value) & type 2 (gradient)



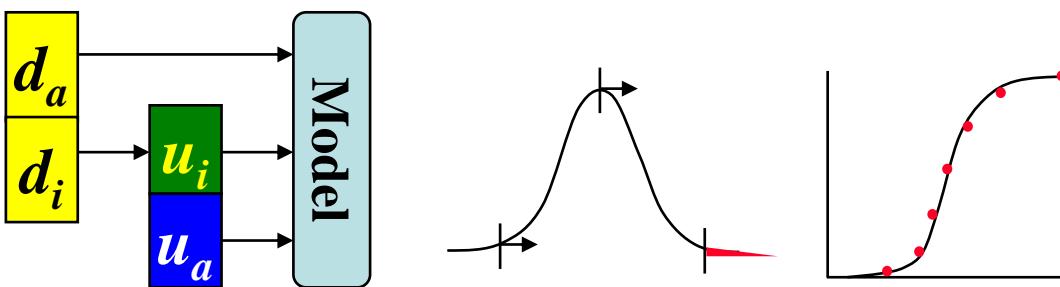
Build on efficient/scalable UQ core

Stochastic sensitivity analysis

- Aleatory or combined expansions including nonprobabilistic dimensions s
 → sensitivities of moments w.r.t. design and/or epistemic parameters

$$R(\xi, s) = \sum_{j=0}^P \alpha_j \Psi_j(\xi, s) \quad \left\{ \begin{array}{l} \frac{d\mu_R}{ds} = \langle \frac{dR}{ds} \rangle \\ \frac{d\sigma_R^2}{ds} = 2 \sum_{j=1}^P \alpha_j \langle \frac{dR}{ds}, \Psi_j \rangle \end{array} \right. \quad R(\xi, s) = \sum_{j=0}^P \alpha_j(s) \Psi_j(\xi) \quad \left\{ \begin{array}{l} \mu_R(s) = \sum_{j=0}^P \alpha_j \langle \Psi_j(\xi, s) \rangle_\xi \\ \sigma_R^2(s) = \sum_{j=0}^P \sum_{k=0}^P \alpha_j \alpha_k \langle \Psi_j(\xi, s) \Psi_k(\xi, s) \rangle_\xi - \mu_R^2(s) \end{array} \right.$$

Design and Model Calibration Under Uncertainty



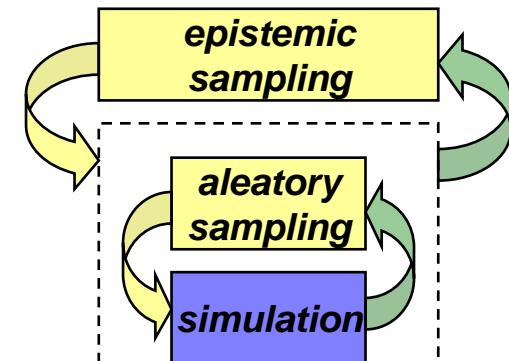
Add resp stats s_u ($\mu, \sigma, z/\beta/p$)

$$\begin{aligned} \min \quad & f(d) + W s_u(d) \\ \text{s.t.} \quad & g_l \leq g(d) \leq g_u \\ & h(d) = h_t \\ & d_l \leq d \leq d_u \\ & a_l \leq A_i s_u(d) \leq a_u \\ & A_e s_u(d) = a_t \end{aligned}$$

Mixed Aleatory-Epistemic UQ

- Approaches that are more accurate/efficient than nested sampling
 - Interval-valued probability (IVP), aka PBA
 - Dempster-Shafer theory of evidence (DSTE)
 - Second-order probability (SOP), aka PoF

Increasing epistemic structure (stronger assumptions)

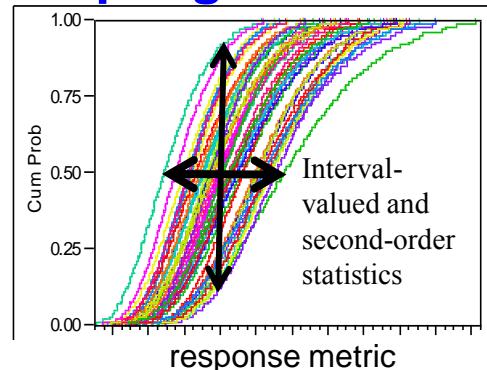
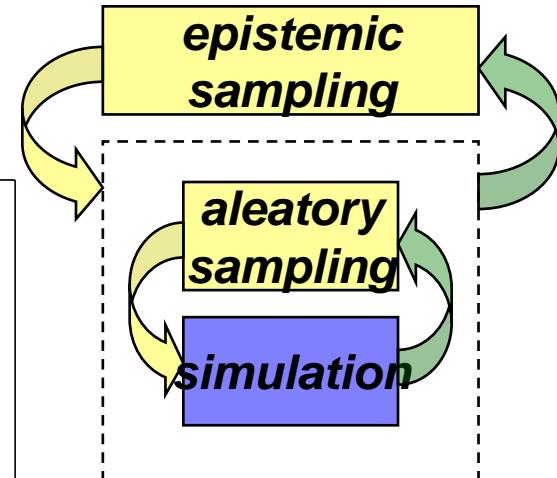


Mixed Aleatory-Epistemic UQ: IVP, DSTE, and SOP

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge uncertainty): insufficient info to specify objective probability distributions

Traditional approach: nested sampling

- Expensive sims \rightarrow under-resolved sampling (especially @ outer loop)
- Under-prediction of credible outcomes



Algorithmic approaches

- Interval-valued probability (IVP), aka probability bounds analysis (PBA)
- Dempster-Shafer theory of evidence (DSTE)
- Second-order probability (SOP), aka probability of frequency

Increasing epistemic structure (stronger assumptions)

Address accuracy and efficiency

- Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined)
- Outer loop:
 - IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) \rightarrow
 - SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)

$$\begin{aligned} & \text{minimize} && M(s) \\ & \text{subject to} && s_L \leq s \leq s_U \end{aligned}$$

$$\begin{aligned} & \text{maximize} && M(s) \\ & \text{subject to} && s_L \leq s \leq s_U \end{aligned}$$

Mixed Aleatory-Epistemic UQ: IVP, SOP, and DSTE based on Stochastic Expansions

Interv Est Approach	UQ Approach	Expansion Variables	Evaluations (Fn, Grad)	Area	β
---------------------	-------------	---------------------	------------------------	------	---------

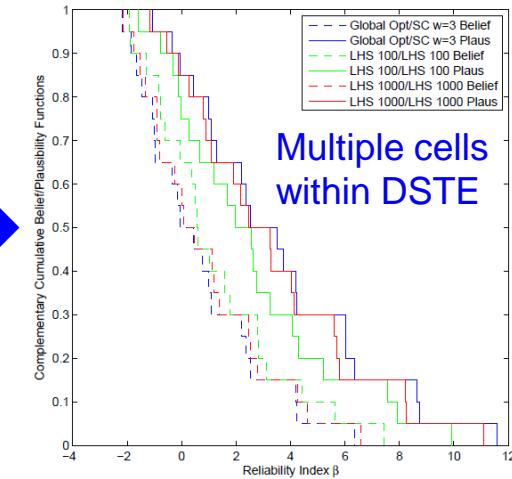
IVP SC SSG Aleatory: β interval converged to 5-6 digits by 300-400 evals

EGO	SC SSG w = 1	Aleatory	(84/91, 0/0)	[75.0002, 374.999]	[-2.26264, 11.8623]
EGO	SC SSG w = 2	Aleatory	(372/403, 0/0)	[75.0002, 374.999]	[-2.18735, 11.5900]
EGO	SC SSG w = 3	Aleatory	(1260/1365, 0/0)	[75.0002, 374.999]	[-2.18732, 11.5900]
EGO	SC SSG w = 4	Aleatory	(3564/3861, 0/0)	[75.0002, 374.999]	[-2.18732, 11.5900]
NPSOL	SC SSG w = 1	Aleatory	(21/77, 21/77)	[75.0000, 375.000]	[-2.26264, 11.8623]
NPSOL	SC SSG w = 2	Aleatory	(93/341, 93/341)	[75.0000, 375.000]	[-2.18735, 11.5901]
NPSOL	SC SSG w = 3	Aleatory	(315/1155, 315/1155)	[75.0000, 375.000]	[-2.18732, 11.5900]
NPSOL	SC SSG w = 4	Aleatory	(891/3267, 891/3267)	[75.0000, 375.000]	[-2.18732, 11.5900]

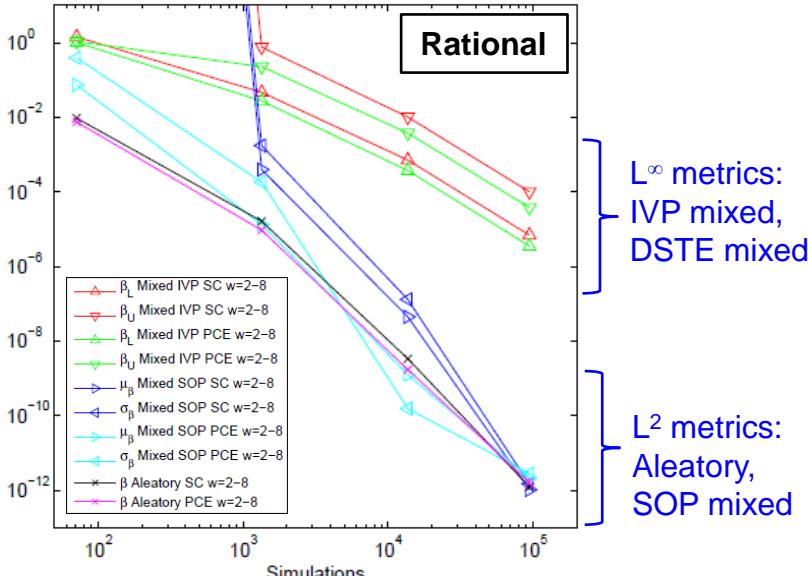
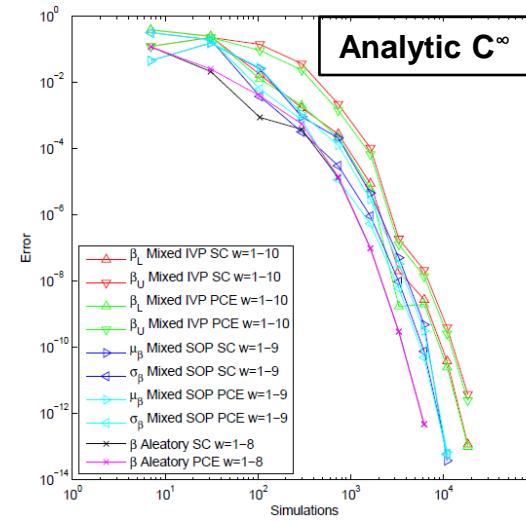
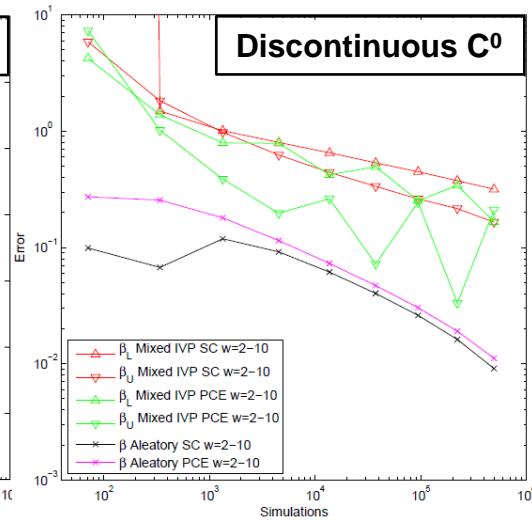
IVP nested LHS sampling: converged to 2-3 digits by 10^8 evals

LHS 100	LHS 100	N/A	$(10^4/10^4, 0/0)$	[80.5075, 338.607]	[-2.14505, 8.64891]
LHS 1000	LHS 1000	N/A	$(10^6/10^6, 0/0)$	[76.5939, 368.225]	[-2.19883, 11.2353]
$LHS 10^4$	$LHS 10^4$	N/A	$(10^8/10^8, 0/0)$	[76.4755, 373.935]	[-2.16323, 11.5593]

Fully converged area interval = [75., 375.], β interval = [-2.18732, 11.5900]



Convergence rates for combined expansions



Mixed Aleatory-Epistemic UQ: IVP, SOP, and DSTE based on Stochastic Expansions

Interv Est Approach	UQ Approach	Expansion Variables	Evaluations (Fn, Grad)	Area	β
---------------------	-------------	---------------------	------------------------	------	---------

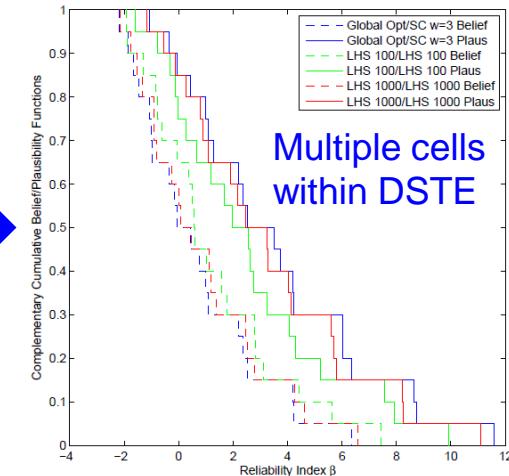
IVP SC SSG Aleatory: β interval converged to 5-6 digits by 300-400 evals

EGO	SC SSG w = 1	Aleatory	(84/91, 0/0)	[75.0002, 374.999]	[-2.26264, 11.8623]
EGO	SC SSG w = 2	Aleatory	(372/403, 0/0)	[75.0002, 374.999]	[-2.18735, 11.5900]
EGO	SC SSG w = 3	Aleatory	(1260/1365, 0/0)	[75.0002, 374.999]	[-2.18732, 11.5900]
EGO	SC SSG w = 4	Aleatory	(3564/3861, 0/0)	[75.0002, 374.999]	[-2.18732, 11.5900]
NPSOL	SC SSG w = 1	Aleatory	(21/77, 21/77)	[75.0000, 375.000]	[-2.26264, 11.8623]
NPSOL	SC SSG w = 2	Aleatory	(93/341, 93/341)	[75.0000, 375.000]	[-2.18735, 11.5901]
NPSOL	SC SSG w = 3	Aleatory	(315/1155, 315/1155)	[75.0000, 375.000]	[-2.18732, 11.5900]
NPSOL	SC SSG w = 4	Aleatory	(891/3267, 891/3267)	[75.0000, 375.000]	[-2.18732, 11.5900]

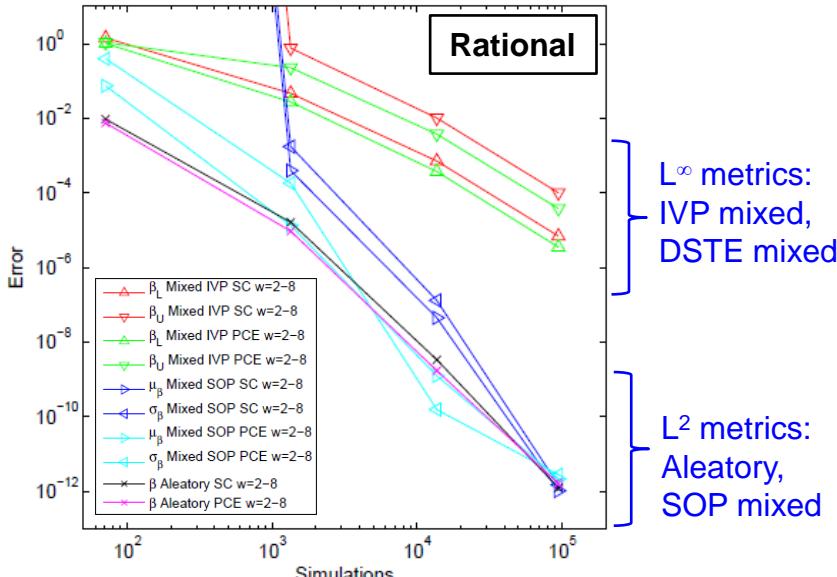
IVP nested LHS sampling: converged to 2-3 digits by 10^8 evals

LHS 100	LHS 100	N/A	$(10^4/10^4, 0/0)$	[80.5075, 338.607]	[-2.14505, 8.64891]
LHS 1000	LHS 1000	N/A	$(10^6/10^6, 0/0)$	[76.5939, 368.225]	[-2.19883, 11.2353]
$LHS 10^4$	$LHS 10^4$	N/A	$(10^8/10^8, 0/0)$	[76.4755, 373.935]	[-2.16323, 11.5593]

Fully converged area interval = [75., 375.], β interval = [-2.18732, 11.5900]



Convergence rates for combined expansions



Impact: render mixed UQ studies practical for large-scale applications

Current:

- Global or local opt. for epistemic intervals
→ accuracy or scaling w/ epistemic dimension
- Global or local UQ for aleatory statistics
→ accuracy or scaling w/ aleatory dimension

Future:

- adaptive and adjoint-enhanced global methods
→ accuracy and scaling

Concluding Remarks

R&D Drivers: efficient/robust/scalable core, complex random environments

Survey of core UQ algorithms: strengths, weaknesses, research needs

Sampling (nongradient-based)

- **Strengths:** Simple and reliable, convergence rate is dimension-independent
- **Weaknesses:** $1/\sqrt{N}$ convergence \rightarrow expensive for accurate tail statistics

Local reliability (gradient-based)

- **Strengths:** computationally efficient, widely used, scalable to large n (w/ efficient derivs.)
- **Weaknesses:** algorithmic failures for limit states with following features
 - Nonsmooth: fail to converge to an MPP
 - Multimodal: only locate one of several MPPs
 - Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP

Global reliability (typically nongradient-based)

- **Strengths:** handles multimodal and/or highly nonlinear limit states
- **Weaknesses:**
 - Conditioning, nonsmoothness \rightarrow ensemble emulation (recursion, discretization)
 - Scaling to large n \rightarrow adjoints, additional refinement bias

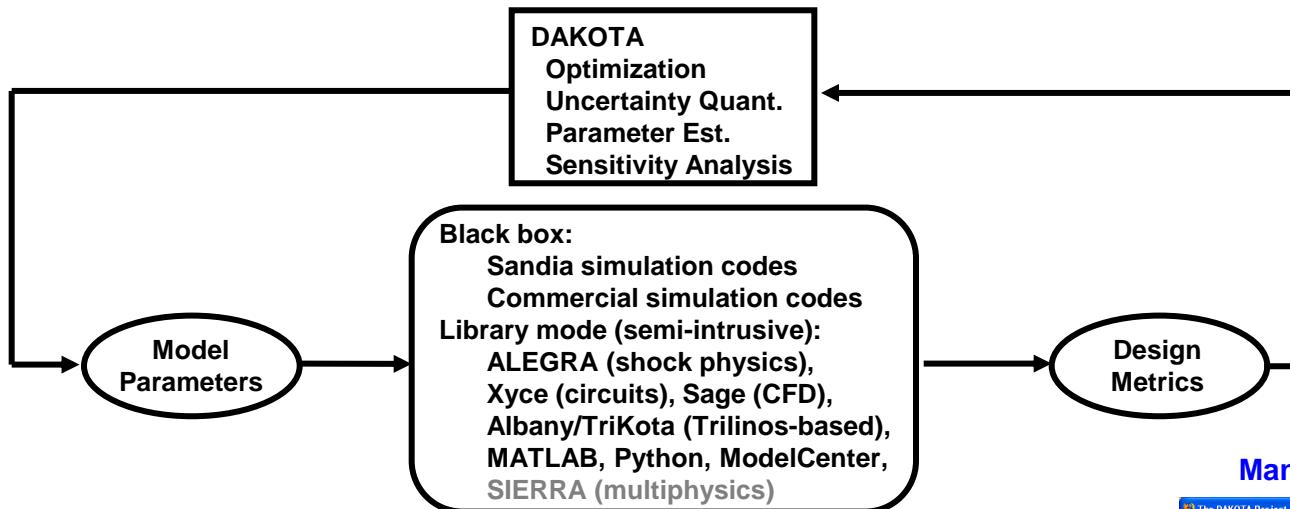
Stochastic expansions (typically nongradient-based)

- **Strengths:** functional representation, exponential convergence rates for smooth problems
- **Weaknesses:**
 - Nonsmoothness \rightarrow basis enrichment, h-refinement, Pade approx.
 - Scaling to large n \rightarrow adaptive refinement, adjoints

Build on algorithmic foundations

Design under uncertainty, Mixed UQ with IVP/SOP/DSTE

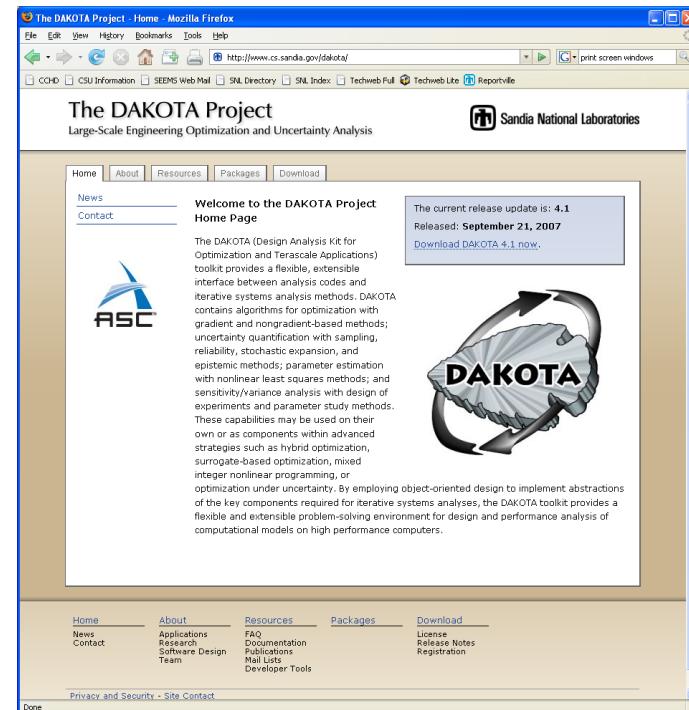
DAKOTA Software



*Iterative systems analysis
Multilevel parallel computing
Simulation management*

<http://dakota.sandia.gov>

Manuals, Publications, Training mats. online



Releases: Major/Interim, Stable/VOTD; 5.1 released 12/10

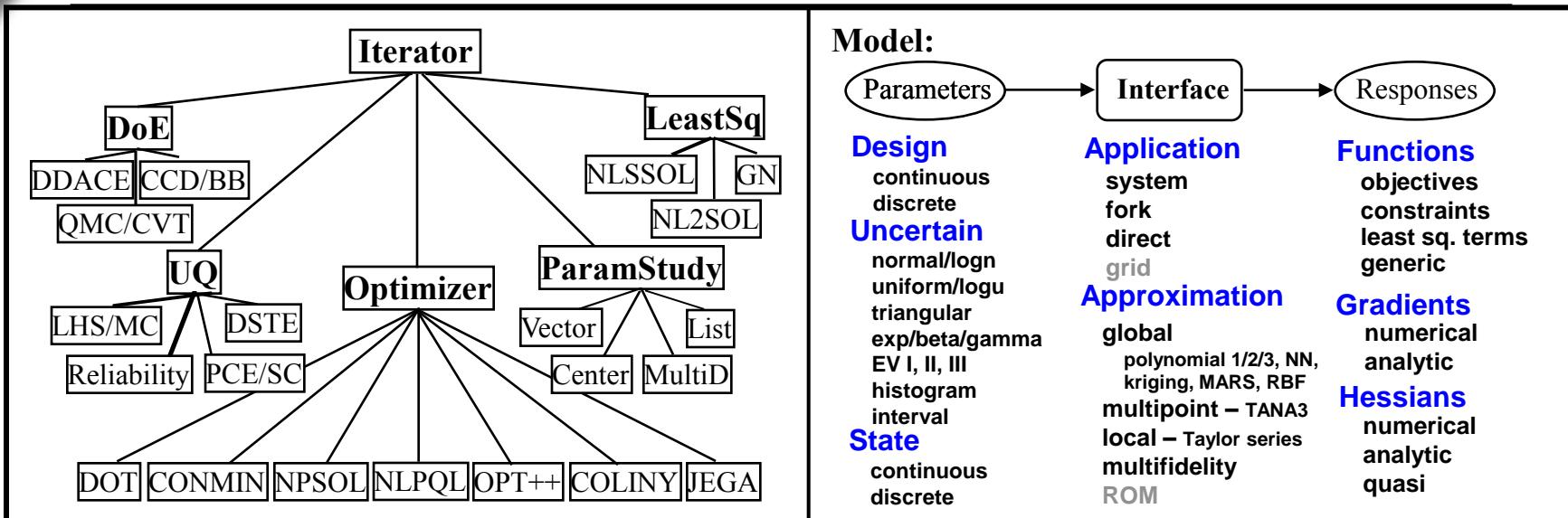
Modern SQE: Linux/Unix, Mac, Windows; Nightly builds/testing;
subversion, TRAC, autotools/Cmake

GNU LGPL: free downloads worldwide
(>7000 total ext. registrations, ~3500 distributions last yr.)

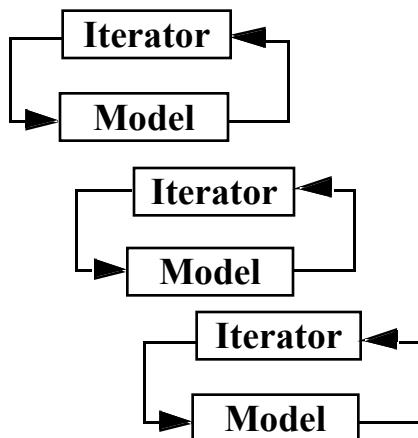
Community development: open checkouts now available

Community support: dakota-users, dakota-help

DAKOTA Framework

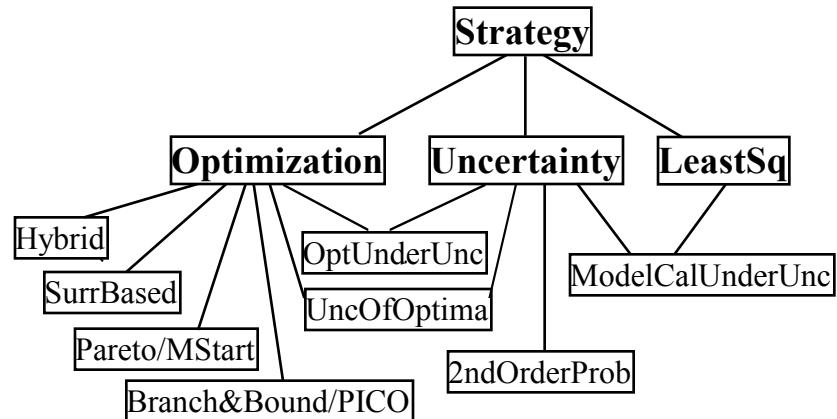


Strategy: control of multiple iterators and models



Coordination:
 Nested
 Layered
 Cascaded
 Concurrent
 Adaptive/Interactive

Parallelism:
 Asynchronous local
 Message passing
 Hybrid
 4 nested levels with
 Master-slave/dynamic
 Peer/static



Deployment Initiative: JAGUAR User Interface

- Eclipse-based rendering of full DAKOTA input spec.
- Automatic syntax updates
- Tool tips, Web links, help
- Symbolics, sim. interfacing

- Flat text editor for experienced users
- Keyword completion
- Automatically synchronized with GUI widgets

- Simplified views for high-use applications (“Wizards”)

Resource - proj1/mydak.i - Jaguar

Resource - JAGUAR/jaguar/misc_files/constropt.i - Jaguar

Dakota LHS Wizard

Specify Variables
Specify the table contents

Uniform Uncertainty

lower_bounds*	upper_bounds*	descriptors
0.5	1	'alpha' 'density'
100		

Add row(s) **First row**

Delete selected row(s)

Duplicated selected row **First row**

Generate samples

Save input deck

Deployment Initiative: Embedding

Make DAKOTA natively available within application codes

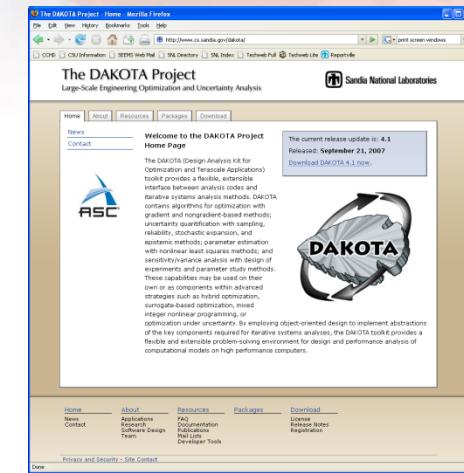
- Streamline problem set-up, reduce complexity, and lower barriers
 - A few additional commands within existing simulation input spec.
 - Eliminate analysis driver creation & streamline analysis (e.g., file I/O)
 - Simplify parallel execution
- Integrated options for algorithm intrusion

SNL Embedding

- Existing: Xyce, Sage, Albany (TriKOTA)
- New: ALEGRA, SIERRA (TriKOTA) → STK

External Embedding

- Existing: ModelCenter, university applications
- New: QUESO (UT Austin), R7 (INL)
- Expanding our external focus:
 - GPL → LGPL; svn restricted → open network
 - Tailored interfaces & algorithms



ModelEvaluator Levels

Non-intrusive

ModelEvaluator: systems analysis

- All residuals eliminated, coupling satisfied
- DAKOTA optimization & UQ

Intrusive to coupling

ModelEvaluator: multiphysics

- Individual physics residuals eliminated; coupling enforced by opt/UQ
- DAKOTA opt/UQ & MOOCHO opt.

Intrusive to physics

ModelEvaluator: single physics

- No residuals eliminated
- MOOCHO opt., Stokhos UQ, NOX, LOCA