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Abstract

Finding the length of the longest increasing subsequence (LIS) is a classic algorithmic problem.
Let n denote the size of the array. Simple O(n log n) algorithms are known for this problem. What
can a sublinear time algorithm achieve? We develop a polylogarithmic time randomized algorithm
that for any constant δ > 0, estimates the length of the LIS of an array upto an additive error of
δn. More precisely, the running time of the algorithm is (log n)c(1/δ)O(1/δ) where the exponent
c is independent of δ. Previously, the best known polylogarithmic time algorithms could only
achieve an additive n/2 approximation.

The distance to monotonicity, which is the fractional size of the complement of the LIS, has
been studied in depth by the streaming and property testing communities. Our polylogarithmic
algorithm actually has a stronger guarantee, and gives (for any constant δ > 0) a multiplicative
(1 + δ)-approximation to the distance to monotonicity. This is a significant improvement over
the previously known 2-factor approximations.
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1 Introduction

Finding the length of longest increasing subsequence (LIS) of an array is a classic algorithmic problem
in computer science. We are given an array, represented by a function f : [n] → R. We will use the
terms array and function interchangably. An increasing subsequence of this array is a sequence of
indices i1 < i2 < · · · < ik such that f(i1) ≤ f(i2) ≤ · · · ≤ f(ik). An LIS is an increasing subsequence
of f having maximum size. Schensted [Sch61] first dealt with finding the LIS of arrays. The LIS
problem is one of the basic examples of dynamic programming in many basic algorithms textbooks,
and often ends up as a exercise problem [CLRS00]. Indeed, the LIS is exactly the longest common
subsequence between f and its sorted version. This yields an O(n2) algorithm. Fredman [Fre75]
gave an O(n logn) algorithm, which can be seen as a more clever way of maintaining the dynamic
program. Aldous and Diaconis [AD99] use the elegant algorithm of patience sorting to find the LIS.
Fredman [Fre75] gave a matching lower bound for comparison based algorithms that find the LIS.
Ramanan [Ram97] subsequently strengthened this bound for algebraic decision trees and showed
the Ω(n log n) lower bound holds even for determining the length of the LIS.

It is also interesting to consider the size of the complement of the LIS. This is referred to as the
(edit) distance to monotonicity, since it is minimum number of values that need to be changed to
make f monotonically increasing. Conventially, this number is divided by the total size n, so it is
represented as a fraction. For function f , it is denoted by εf . Letting λf be the size of the LIS as
a fraction of n, we have εf = 1 − λf . For exact algorithms, of course, finding λf is equivalent to
finding εf . Approximating these quantities can be very different problems.

In recent years, motivated by the increasing ubiquity of massive sets of data, there has been
considerable attention given to the study of approximate solutions of computational problems on
huge data sets by judicious sampling of the input. In the context of property testing it was shown
in [EKK+00,DGL+99,Fis01,ACCL07] that for any ε > 0, O(ε−1 log n) random samples are necessary
and sufficient to distinguish the case that f is increasing (εf = 0) from the case that εf ≥ ε.
Subsequently, results of [PRR06, ACCL07] gave multiplicative approximations to the distance to
monotonicity in (essentially) O(ε−1 log n). For any constant τ > 0, these algorithms output a value
that is in the range [εf , (2 + τ)εf ], which essentially gives a 2-approximation to εf .

While these algorithms give good approximations to the distance to monotonicity, they provide
little information about the LIS if λf is between 0 and 1/2. Note that in this case εf ≥ 1/2 and so
a 2-approximation to εf may output 1 as the estimate of εf , which only implies that the LIS has
size 0. Indeed, there are simple examples where εf = 1/2 and the algorithms of [PRR06,ACCL07]
returns an estimate of 1. The difficulty lies in the fact that a small value of εf means that f is
nearly increasing, and this structure can be used to strongly guide the algorithm. However when
λf is small (say 1/10), the structure of f is much less apparent. None of the previously known
algorithms are able to detect this structure. Indeed, getting multiplicative approximations to the
distance is much easier than getting approximations (even additive) to λf .

In this paper, we focus on getting an additive approximations to λf , i.e. outputting a value that
is between λf − δ and λf for some small fixed δ > 0. Notice that this is equivalent to getting an
additive δ-approximation for εf . The existing multiplicative 2-approximation algorithm for εf gives
the rather weak consequence of an additive 1/2-approximation for λf . Rather surprisingly, nothing
better was known.

We show that poly-logarithmic time is sufficient to get arbitrarily good additive approximations
to λf . For any constant δ, we get additive δ-approximations in poly-logarithmic time. We will use
with high probability to indicate probability at least 1−n−Ω(logn), where the Ω-notation hides some
fixed constant independent of any parameters.
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Theorem 1.1 Let f be an array of size n and λf the size of the LIS divided by n. There is a
randomized algorithm A(f, δ) which takes as input an array f and parameter δ > 0, and outputs,
with high probability, a real number κ such that λf ∈ [κ, κ + δ]. The running time is bounded by
(1/δ)O(1/δ)(log n)c, for some absolute constant c independent of n and δ.

Using our techniques, we also have a somewhat stronger algorithm, that provides a multiplicative
(1 + τ)-approximation to εf for any τ > 0. We note that this is the first improvement over the
(2 + τ)-approximations of [PRR06,ACCL07]. As before, c denotes some absolute constant.

Theorem 1.2 Let τ > 0 and εf > 0 be the distance to monotonicity for input array f . There exists
an algorithm with running time (1/εf )

O((1/τ) log(1/τ))(log n)c that computes a real number ε such that
(with high probability) εf ∈ [ε, (1 + τ)ε].

We will first present a somewhat weaker algorithm. The running times of this will be of the
forms (log n/δ)O(1/δ) and (log n/εf )

O(1/τ) respectively. Most of the technical ideas are present in the
analysis of this algorithm. Observe that even this weaker algorithm runs in polylogarithmic time
for constant δ and τ .

1.1 Related work and relation to other models

The field of property testing [RS96, GGR98] deals with finding sublinear, or even constant, time
algorithms for distinguishing whether an input has a property, or is far from the property (see
surveys [Fis01, Ron01, Gol98]). The property of monotonicity has been studied over a variety
of domains, of which the boolean hypercube and the set [n] have usually been of special inter-
est [GGL+00, DGL+99, FLN+02, HK03, ACCL07, PRR06, BGJ+09]. Our result can be seen as a
tolerant tester [PRR06], which can closely approximate the distance to monotonicity.

The LIS has been studied in detail in the streaming model [GJKK07,SW07,GG07,EJ08]. Here,
we are allowed a small number (usually, just a single) of passes over the array and we wish to esti-
mate either the LIS or the distance to monotonicity. The distance approximations in the streaming
model are based on the sublinear time approximations. The technique of counting inversions used in
the property testers and sublinear time distance approximators is a major component of these algo-
rithms. This problem has also been studied in the communication models where various parties may
hold different portions of the array, and the aim is to compute the LIS with minimum communication.
This is usually studied with the purpose of proving streaming lower bounds [GJKK07,GG07,EJ08].

There has been a body of work on studying the Ulam distance between strings [AK07,AK08,
AIK09,AN10]. For permutations, the Ulam distance is exactly the size of the complement of the
longest common subsequence. Note that Ulam distance between a permutation and the identity
permutation is the distance to monotonicity. Recently, a sublinear time algorithm for approximating
the Ulam distance between two permutations was discovered [AN10]. We again note that the
previous techniques for distance approximation play a role in these results. Our results may be
helpful in getting better approximations for these problems.

1.2 Obstacles to additive estimations of the LIS

A first natural approach to estimating the length of the LIS is to look at the LIS of a small random
sample s. We could try outputting λs, the fractional LIS length of the sample, as our estimate of
λf . A little consideration shows that there are inputs where this algorithm will answer 1 with high
probability even though λf is arbitrarily close to 0. Let K be a large constant and n = Kt. For
0 ≤ i ≤ t−1 and 0 ≤ j < K, set f(iK+ j+1) = iK− j. Refer to Figure 1. The LIS of this function
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Figure 1: Small random samples will almost always be totally increasing

is size t = n/K, but a small random sample will almost certainly be completely increasing. This is
because the scale of violations (pairs i < j with f(i) > f(j)) is too small for the sample to detect.
Violations can lie at any scale, and the algorithm needs to be able to find them wherever they are.
We refer to elements in the domain [n] as indices. A natural approach to algorithms for estimating
the LIS is to give an algorithm which, given an index i, classifies i as good or bad in such a way that:

• The good indices form an increasing sequence.

• The number of good indices is close to the size of the LIS, so the number of bad indices is
small.

This was the approach used in [ACCL07] and [PRR06]. To classify i, the algorithm considers
random samples in all intervals of the form [i− 2k, i+2k], for all k. This checks all scales efficiently.
The idea is that if at any one of these scales, i is involved in many violations then it should be bad.
This heuristic does well if εf is small, but does poorly otherwise. For the function shown in Figure 1,
even when K is 2 (so λf = 1/2), these algorithms will denote all indices as bad. The problem is
that all indices are involved in many violations in an interval of size K. These algorithms are unable
to observe that in the decreasing intervals of size K, a single index can be called good. A far more
complicated problem is that when the LIS is not most of the points, the decision about whether to
label a point as good may involve small scale properties of the sequence far from i. Consider the
following example: suppose n = 6k and divide the indices into three contiguous blocks, where the
first has size k, the second has size 2k and the third has size 3k. Consider the sequence f whose first
block is 100k+1, . . . , 101k, whose second block is 1, 101k+1, 2, 101k+2, . . . , k, 101k and whose third
block is some increasing subsequence of k + 1, . . . , 99k. Let f ′ be a sequence that agrees with f on
the first two blocks. The final 3k positions is some sequence with values in the range k+ 1, . . . , 99k
but looks like the function in Figure 1. Refer to Figure 2 for a pictorial representation of these
sequences.

Notice that the LIS of f has size 4k (and excludes the first block of elements) while the LIS for
f ′ has size 2k (and includes the first block of elements). Furthermore, in f , an increasing sequence
that uses any element from the first block has size at most 2k. Any good approximation algorithm
for the LIS must realize that elements from the first block are part of the LIS for f ′, but not for
f . But the only difference between f and f ′ is in very local properties in the third block. This is
because violations in the third block (for f ′) are only present at a very small scale. So, small scale
violations in the third block are critical to decisions made in the first block. Since one can build
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Figure 2: The sequences/functions f and f ′ where small scale properties in one block affect points
of a distant block

many variants of this example, where the size and location of the critical block is different, and the
important scale within the critical block may also vary, it seems that very global information at all
scales may be required to make a satisfactory decision about any particular index.

Another perspective is to consider the dynamic program that computes the LIS. The dynamic
program starts by building and storing small increasing sequences. Eventually it tries to join them
to build larger and larger sequences. Any one of the currently stored increasing sequences may
extend to the LIS, while the others may turn out to be incompatible with any increasing sequence
close in size to the LIS. Deciding among these alternatives requires accurate knowledge of how
partial sequences all over the sequence fit together. Any sublinear time algorithm that attempts to
approximate the LIS arbitrarily well has to be able to (at some level) mimic this. It seems almost
hopeless to do this in poly-logarithmic time. Indeed, the authors suffered for a long time in trying
to deal with these issues.

2 The algorithmic idea and intuition

In this section we give an overview of the algorithm. It is convenient to identify the array/function
f with the set of points {(i, f(i)} in R

2. We take the natural partial order where (a1, a2) � (b1, b2)
iff ∀i, ai � bi. The LIS is now the size of the longest chain in this partial order. Any chain can be
seen as a piecewise linear curve with positive slopes (where we just interpolate between consecutive
points of the chain). The axes of the plane will be denoted, as usual, by x and y. We use interval
to denote an interval of indices, which geometrically is an interval on the x-axis. We use value to
denote y-coordinates.

The first idea, which takes its inspiration from complexity theory, is to consider an interactive
protocol for approximating λf . (Note that we will not make any mention of these protocols in the
actual algorithm or in any proof but they are a nice picture to have in mind.) Suppose that we
have a sequence f and two players, a prover and verifier. The prover knows f completely and the
verifier has query access to f . The prover makes a claim of the form λf ≥ b for some b ∈ (0, 1). The
verifier wishes to check this claim by asking the prover questions and querying f on a small number
of indices. At the end of the interaction, the verifier either accepts or rejects. The proof must have
the following (usual) properties. If λf ≥ b, then there is a strategy of the prover that makes the
verifier accept with high probability. If the prover is lying and λf < b− δ, then for any strategy of
the prover it is unlikely that the verifier will accept.

The protocol works as follows. Imagine that the prover has some fixed LIS in mind. The verifier
maintains an interval I ⊆ [n] and a pair of values aL, aR. Initially I is equal to [n] and aL = 0 and
aR = ∞. The verifier asks the prover for a point in R

2 called a splitter. The x-coordinate of the
splitter must be in I, the y-coordinate must be in [aL, aR], and the splitter must not be a violation
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with any point of the LIS. We can think of the splitter as generating a partition of I into two
intervals IL < IR and having a value h ∈ [aL, aR]. We will alternatively refer to the triple (IL, IR, h)
as a splitter. All values of the LIS that belong to IL are ≤ h and all LIS values that belong to IR
are ≥ h. The verifier selects a uniformly random index1 i ∈ I and then sets I to be the one of IL
and IR that contains i. If IL is chosen, then aR is set to h and if IR is chosen. then aL is set to h.
The verifier proceeds until I is a singleton point i. The verifier then queries f(i) and calls the result
a success if aL ≤ f(i) ≤ aR and a failure otherwise. The verifier repeats this process some number
(say logn) of times. If the fraction of successes is at least b− δ/2, he accepts the proof. Otherwise,
he rejects the proof.

It is easy to check that if the prover is honest, then the verifier will accept with high probability
(since one run of the process is a success if and only if the final i lies on the LIS). We leave it as an
exercise to the reader to show that if the LIS is at most (b − δ)n, then the verifier will reject with
high probability.

The number of rounds of the algorithm depends on how balanced the splitters selected by the
prover are. As long as the splits are all α-balanced (both IL and IR have size at least α|I|) for
constant α > 0, then the number of rounds of the basic procedure will be at most O(logn/α).

This protocol leads to the following algorithmic idea: try to simulate the prover algorithmically.
Thus, we search for a reasonably balanced splitter. Consider a potential splitter (IL, IR, h) for I.
We say that an index i is a violation with this splitter if: i ∈ IL and f(i) > h or i ∈ IR and
f(i) < h. Naturally, we cannot hope to find the exact splitter in sublinear time. To give ourselves
room, we allow ourselves to find an “approximate” splitter. This is a splitter such that the number
of violations of the LIS (restricted to I) with this point is small. How small is small enough? If we
can guarantee that the fraction of violations of the LIS with the splitter is at most µ, then the total
error will be µ times the number of rounds which is O(logn/α). Hence, it would suffice to have µ
be a small fraction of α/ log n.

But since we do not know what the LIS is, how do we ensure that the number of violations
of the splitter with the LIS is small? One way is be conservative and to simply count violations
of the potential spliter with any index in I. Suppose we can find a splitter in I with less than
α|I|/ log n violations. Then, we can safely declare this as the approximate splitter and proceed with
the simulation. However, there is no guarantee that we can actually find such a splitter.

To deal with this situation, we need a new idea, that of boosting the quality of the approxi-
mation. Suppose we have an additive δ-approximation to λf . Can we use it to get an additive δ′-
approximation for some smaller δ′? If we could, then by using the known additive 1/2-approximation
algorithm as a starting point, we might be able to recursively combine these algorithms into one
that achieves any desired error. Suppose it were the case that we could find a partition IL, IR of I
with the property that for any h, (IL, IR, h) has at least µ|I| violations. Then we could proceed as
follows. Choose a polylog sample of possible h values (by sampling random y-coordinates of points
in I). With high probability, one of them is close to being the “real” splitter that comes from the
LIS. For each h, let IL(h) and IR(h) be the set of points in each half that are consistent with splitter
(IL, IR, h). Compute an additive δ-approximation to the LIS length in each of IL(h) and IR(h) and
take their sum. For the correct candidate splitter h, this sum is within δ(|IL(h)| + |IR(h)|) of the
true LIS. The key observation is that |IL(h)|+ |IR(h)| ≤ (1−µ)|I|, since (IL, IR, h) has at least µ|I|
violations. Hence, this error is at most δ(1−µ)|I|. We are able to boost an additive δ-approximation
algorithm to get a δ(1− µ) approximation. Essentially, because of strong property of the partition
IL, IR, we can conclude that the LIS length in I is at most (1− µ)|I|. Note the dynamic program-
ming nature of this approach. Each choice of h generates two subproblems, one to the left (IL(h))

1We stress that the source of randomness is hidden from the prover.
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and one to the right (IR(h)). We solve all these subproblems (with the δ-approximation) for each
choice of h. For each h, we associate the sum of estimates given by the δ-approximation for IL(h)
and IR(h). The h with the maximum such value should be a good approximate splitter.

Thus it seems we have a useful dichotomy: if we have a good splitter value h for the partition
IL, IR (one having at most µ|I| violations with I), then we can proceed with the simulation of
the interactive proof. If, on the other hand, there is no such h, then we can boost an existing
approximation algorithm.

It is not clear how to put these together to get an algorithm, but there is a more significant
difficulty. For the simulation of the interactive protocol to work, we argued that µ should be
O(1/ log n). For the recursive boosting to work efficiently, we will need µ to be at least Ω(1/ log log n).
Why? For each level of recursion, we can improve the additive approximation from δ to δ(1−µ). So
we will need 1/µ levels of recursion to improve from δ to δ/2. At each level of the recursion, we make
at least 2 recursive calls, for the left and right subproblems generated by any choice of h. So the
total number of iterated recursive calls is exponential in 1/µ, forcing µ to be Ω(1/ log log n). Thus,
although the dichotomy is quite pleasing, we have a huge gap from an algorithmic perspective.

We seek ways to close this gap. Further consideration (and using past work in the area as a
guide) it seems fruitful to look for a splitter with a much weaker property. The present procedure
uses an excessively stringent condition to find a splitter. One could imagine an input where (say)
the first 99n/100 points form an increasing sequence, and the last n/100 points are violations with
all the previous points. Our current procedure would not find an appropriate splitter, but it is quite
believable that sublinear time procedures could find a good splitter. We redefine our notion of an
approximate splitter (IL, IR, h). We now allow large subintervals of IL and IR to contain many
violations, as long as the number of these violations is a small fraction of the subinterval. More
formally, a subinterval of IL is relevant if it contains the right endpoint of IL (we define analogously
for IR). Let µ and γ be some parameters. Any relevant subinterval of IL or IR of size at least γ|I|
contains at most a µ-fraction of violations with h. The advantage of this condition is that we can
set µ to be much larger than O(1/ log n). It can be shown that a splitter which satisfies the above
condition with a small constant µ and γ = O(1/ log n) is a sufficiently good splitter.

So this weaker property works with a constant value of µ, so we can ask: what if we have a
partition IL, IR for which there is no h that satisfies the above condition for µ and γ? Is this
enough to use the boosting algorithm? The answer, unfortunately, is no. But, by introducing a
more sophisticated version of the boosting algorithm, we are able to get the dichotomy we need.
For a given interval I either of the following holds: we can find a splitter (IL, IR, h) that satisfies
the above conditions for µ and γ (and so we can proceed with the simulation). Otherwise, we can
concrete evidence that the LIS in I has size at most (1−µ)|I|. Then, the more sophisticated boosting
algorithm can improve a given δ-approximation algorithm to a δ(1− µ)-approximation algorithm.

We finish this section by sketching the idea of the better boosting algorithm. Divide the interval
I into s equal-sized intervals I1, . . . , Is with s polylogarithmic in n. Suppose we can find values
h0, h1, h2, . . . , hs that are consistent with the LIS. This means that the values of LIS points in Ir are
at least hr−1 and at most hr. Refer to the left part of Figure 3. Using these values, we can estimate
the LIS length in I. For each subinterval Ir, we look at all input points in Ir with values between
hr and hr+1. For this set of points, we use an additive δ-approximation algorithm to approximate
the LIS length. We then add up these estimates over all h, to get our estimate for the LIS length in
I. Under the hypothesis that there is no good splitter for some balanced partition IL, IR of I, we
can show that this sum is a δ(1− µ)-approximation to the LIS.

Since we do not know the values h1, . . . , hs, we need to search for approximate versions of them.
This will be done by finding the longest path in a DAG, which can be solved by a dynamic program.
We choose a random sample of log2 n points from each Ii and let Hi denote the set of y-coordinates
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II

I1I1 I2I2 IsIs

h1

h2

hs−1

H0 H1 H2 Hs−1 Hs

Figure 3: The figure to the left shows the placement of possible values h1, h2, . . .. The black points
for the LIS and the grey points correspond to the h values. The figure to the right shows the
construction of the graph G, and the layers of vertices Hi. The arrows give the directed edges from
one vertex in layer H1.

of these points. The set Hi is the set of candidate hi values (for the boundary, we set H0 (resp.
Hs) to have the minimum (resp. maximum) value in I). We need to find the best hi values among
these candidates. We construct the following directed layered graph with (t+1) layers. Refer to the
right part of Figure 3. Layer i has vertices for each value in Hi. We put a directed edge between
hi ∈ Hi and hi+1 ∈ Hi+1 if hi ≤ hi+1. Consider the set of all points in Ii+1 with values in the range
[hi, hi+1]. We estimate the LIS length of this set using the δ-approximation, and set this to be the
weight of the edge (hi, hi+1). Observe that this graph has polylogarithmic size, and all weights can
be computed with polylogarithmically many calls to the additive δ-approximation algorithm. For a
path h0, h1, . . . , hr, the length is an estimate of the LIS consistent with these values. So it is natural
to use the longest path as our estimate for the total LIS in I. Since this graph is a DAG, the longest
path can found in time polynomial in the graph size, which is polylogarithmic in n.

These two ingredients - the simulation of the interactive protocol and the improved boosting
algorithm - are combined together to give our algorithm. There are various parameters such as
α, µ, γ involved in the algorithm, and we must choose their values carefully. We also need to
determine how many levels of boosting are required to get a desired approximation. A direct
choice of parameters leads to a (log n)1/δ approximation algorithm. The better algorithm claimed in
Theorem 1.1 is obtained by a more involved version of the algorithm, which involves modifying the
various parameters as the algorithm proceeds. This enables us to reduce the number of recursive
calls needed for the basic boosting algorithm from polylogarithmic to a constant depending on δ.
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B

U

st(B,U)

P

Q

Figure 4: The left figure shows a strip. The box B is contained in U , and is formed by points P and
Q. The strip st(B,U) is shown. The points P and Q are endpoints for the strip. The right figure
shows a grid. The grey boxes are all grid boxes. Note how they can span many horizontal lines but
are always between two vertical lines.

3 Preliminaries

We introduce our notation and define many key concepts. As mentioned earlier, it will be convenient
to think of the input as a set F of (geometric) points {(i, f(i))} in R

2, with x and y denoting the
axes. We will assume, wlog, that all coordinates are positive and distinct2. We take the natural
partial order where (a1, a2) � (b1, b2) iff ∀i, ai � bi. An increasing sequence is just a chain in this
partial order. A point P is to the left (resp. right) of Q, if the x-coordinate of P is less (resp. more)
than that of Q. We use capital letters to denote points, calligraphic letters for sets of points, and
bold letters for collections of sets of points. Two points P,Q are consistent if P ≺ Q or Q ≺ P .
Otherwise, they form a violation.

We now list out some basic definitions that will be used throughout the paper.

Box: A box B is the set of input points internal to an axis-parallel rectangle in the place. (We
do not include points on the boundary in B.) Although intuitively a box is a geometric object,
formally, it is just a set of points in F . Abusing notation, we will refer to corners of B as if it is
a axis-parallel rectangle in the plane. Our algorithm will represent and store a box B by just its
corners (a constant size representation), and will not explicitly store the set B. So when a box B is
passed as an argument, we just pass this representation.

The size of box B is the number of points, also denoted by |B|. We let εB denote the distance to
monotonicity for the input points in B. Given a pair of points (P,Q), P � Q, the box Box(P,Q) is
formed by taking the axis-parallel rectangle formed by points P and Q. We will say Box(P,Q) �
Box(P ′, Q′) if Q � P ′ (so all points in the first box are dominated by all points in the latter). We
also use F to also denote the box containing all points.

Chain: A chain of boxes is a sequence of boxes B1 � B2 � B3 · · · . A maximal chain of boxes is
a chain where the upper right corner of Bi has the same y-coordinate as the lower right corner of
Bi+1. The size of a chain is the total number of points in the chain.

Strip: Let B,U be boxes such that B ⊆ U . We use x(B) to denote the x-interval corresponding
by the B. The U -strip of a box B, denoted by st(B,U), is the box of all points in U with x-coordinates
in x(B). In other words, st(B,U) is a box formed by the x-extent of B and the y-extent of U . Refer
to Figure 4. The points (if any) contained in the left and right edges of the rectangle corresponding

2We use a simple tie-breaking rule for two y-coordinates that are the same. So for i < j if f(i) = f(j), the algorithm
will assume that f(i) < f(j).

8



to st(B,U) are the endpoints of the strip. (By the uniqueness of coordinates, the left and right
endpoints, if they exist, are unique.) The width of box B is the size of the strip st(B,F) and is
denoted by w(B).

Grid: Consider a box B. Let ry < rx < 1 be positive parameters. The grid, GridB(rx, ry), is
formed by a set of vertical and horizontal lines inside this box. GridB(rx, ry) has a crucial property:
the number of B-points between two adjacent vertical lines is at most rx|B|. The total number of
vertical lines is at most 2/rx. The number of B-points between adjacent horizontal lines is at most
ry|B|. There are at most 2/ry horizontal lines. A grid point is simply a point that is an intersection
point for some vertical and horizontal line of that grid. A grid box for GridB(rx, ry) is a box formed
by taking two consistent grid points on adjacent vertical lines. Note that grid boxes can overlap,
but their x-intervals never have a non-trivial intersection. Refer to Figure 4.

The only points that we will ever deal with are either input points (in F) or grid points. Hence-
forth, we will just use point for an input point. For clarity, we will always use grid point for the
corresponding concept.

An important definition is that of safeness of points. Since it involves many parameters and the
reader may have to come back to it often, we put it in a separate environment. This definition is
inspired from [ACCL07] (which is in turn based on ideas from [EKK+00]). The parameter α should
just be thought of as a small constant.

Definition 3.1 Let B ⊆ U . A point P ∈ B is (B,U , γ, µ)-safe if the following is true: for any
U-strip S having P as an endpoint such that S ⊆ st(B,U) and |S| ≥ γ|st(B,U)|, the number of
violations with P in this strip is at most µ|S|+ (α2/ logn)w(B).

A point P is (B,U , γ, µ)-unsafe if the above does not hold: some strip with endpoint P and size
≥ γ|st(B,U)| has at least µ|S|+ (α2/ log n)w(B) violations with P .

Finally, we list out some auxiliary procedures used by our LIS estimation algorithm. These
can be derived from some fairly routine sampling calculations. Hence, we will not describe these
completely here, but merely state the relevant claims. The proofs of these claims are placed towards
the end in Section 7.1, so that they do not impede the flow of the paper.

We just state one of the slight technical issues with these procedures. We often need to get a
random sample from a box B. Unfortunately, since the input F is represented as an array, this is
not possible. However, we can sample from st(B,F), since this is just an interval of the array. As
long as |B| is a large enough fraction of w(B), we can sample randomly from B. If not, then we
must analyze these boxes in a different way. This leads to the following definition.

Definition 3.2 A box B is disposable if |B| ≤ α2w(B)/ log n.

We now state the claims about various auxiliary procedures used. Our procedures sometime
output labels, usually indicating some kind of corner case. These will be represented in typewriter
typeface. Greek letters will always represent parameters taking values in (0, 1). We express the
running times using the big-Oh notation, and stress that this only hides absolute constants. We do
not consider any of our parameters to be constants.

Claim 3.3 (Size) There is a procedure Size(B) that outputs either outputs an estimate of |B|
or labels B as disposable. The running time is (log n/α)O(1) and the following hold with high
probability. If an estimate is output, then it is correct upto an additive α3w(B)/ log n. If the label is
output, then B is disposable.
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Claim 3.4 (Sample) There is a procedure Sample(B, k) that outputs either a set of k points in
B or labels B as disposable. The running time is (k logn/α)O(1) and the following hold with high
probability. If a set is output, then each point in the set is an independent random sample from B.
If the label is output, then B is disposable.

Claim 3.5 (Grid) There is a randomized procedure Grid(B, rx, ry) that with high probability, either
outputs GridB(rx, ry) or labels B correctly as disposable. The running time is (log n/ry)

O(1) time.

Claim 3.6 (Find) There is a procedure Find(B,U , γ, µ, ρ) that outputs either a point s, the label
sparse, or the label disposable. The running time is at most (log n/(αγµρ))O(1) and the following
hold with high probability. If the output is s, then s is (B,U , 2γ, µ + α)-safe and there are at
least ρ|B|/5 points in B both to the left and right of s. If the output is sparse, the number of
(B,U , γ, µ−α)-safe points in B is at most ρ|B|/2. If the output is disposable, then B is disposable.

4 The basic algorithm

We begin by describing the weaker algorithm. The output guarantee in its most general form is
both a multiplicative and additive approximation to the distance to monotonicity. We first state the
main theorem of this section that gives this guarantee. We can derive the desired purely additive
approximation for the LIS and purely multiplicative approximation for the distance by a simple
choice of parameters.

Theorem 4.1 Let f : [n] → R be an array and εf be the distance to monotonicity. Let positive
parameters δ, τ be at most some small constant, and δ ≤ τ .

There exists a procedure that, given oracle access to f , outputs a real number ε such that with
high probability εf ∈ [ε, (1 + τ)ε+ δ]. The running time of this procedure is (log n/δ)O(1/τ).

Corollary 4.2 Let f : [n] → R be an array, and δ, τ be positive parameters bounded above by a
small constant.

• There exists a procedure that estimates the LIS of f upto an additive error of δn. The running
time of this procedure is (log n/δ)O(1/δ).

• There exists a procedure that outputs a (1 + τ)-multiplicative approximation to εf . This pro-
cedure has running time (log n/εf )

O(1/τ).

Let us see the choice the parameters in Theorem 4.1 that lead to this corollary. For convenience,
let the parameters in Theorem 4.1 be τ ′ and δ′, so we get an output ε such that εf ∈ [ε, (1+τ ′)ε+δ′].
If we set τ ′ = δ′ = δ/2, then we get an estimate ε such that ε ≤ εf ≤ (1 + τ ′)ε + δ′ ≤ ε + δ. So
n(1− ε) is an additive δn-approximation for the LIS.

For the second part of Corollary 4.2, we need to set δ′ to be O(τεf ). Using [ACCL07], we can
get ε′, such that εf ∈ [ε′, 2.1ε′], in time (log n/εf )

O(1). We set τ ′ = τ/2 and δ′ = τε/7 ≤ τεf/3.
This shows the second part. The running times follow immediately.

4.1 The procedures ApproxLIS and Classify

We are now ready to describe the procedure ApproxLIS. Since we have an iterative boosting
technique, we actually have a suite of procedures ApproxLISt, for positive integer t > 0. These form
a sort of hierarchy of procedures. The aim of this procedure ApproxLISt(U) is to output an estimate
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for the LIS length in the box U . For convenience, it also outputs an estimate to εU . ApproxLISt
indirectly uses ApproxLISt−1 as a subroutine, and provides an improved approximation.

The heart of the algorithm is actually the procedure Classifyt(P,U). This procedure decides
whether point P should be present on the LIS in U or not. Concretely, it labels the points in U a
point as goodt or badt. The goodt points form an increasing sequence and the number of badt points
is an approximation of the distance εU .

The procedure Classifyt(P,U) begins by calling a procedure Unsplittable. This procedure tries
to run the interactive protocol described earlier. It tries to find a splitter in U . Suppose it is
successful and P is consistent with this splitter. Then it goes to a smaller box containing P and
tries to find a splitter again. This process is repeated until either P turns out to be inconsistent
with a splitter, or P is located in an unsplittable box. This is a box where Find fails to locate a
splitter. So Unsplittable either returns a label reject, indicating that P is inconsistent with some
splitter, or a box B ∋ P that contains very few (too few to sample) potential splitters.

This box B is returned to Classifyt. A logarithmic-sized grid is built on B and thenApproxLISt−1

is invoked on all the (logarithmically many) grid boxes. The outputs of these calls are used to de-
termine the structure of an approximate LIS. Finally, if P is potentially on the approximate LIS, a
call to Classifyt−1(P, C) (for an appropriate grid box C) is made to determine whether to label P
as goodt.

For the base case for Classify and ApproxLIS, we use trivial algorithms. The procedure
ApproxLIS0 always outputs 0 as the estimated length of the LIS. The procedure Classify0 always
labels a point as bad0.

We observe that ApproxLISr (for various values r) is invoked on many different boxes. So we
estimate the LIS length on various boxes and piece the information together to estimate the overall
LIS. This leads to a fairly complex recursive scheme. Hence, there will be an array of different
parameters that are used by these procedures. These are intimately related to the approximation
guarantees that will be finally provided. The parameters ζt, ξt, ψt quantify the approximation guar-
antee of the various ApproxLISt’s. The parameter α is just some sort of error parameter and is
chosen depending on the final desired approximation. The reader should just think of this as some-
thing extremely small. If we invoke some ApproxLISt, we will always choose α so that it is at most
ζ2t /30. The parameters µt and γ are used by Find. The following values are the only choice of
arguments that will be used by the various procedures. The value d is a sufficiently large constant.

• β = α2/ log n, γ = α2/ log n

• ζ2 = 3.1, ζt = ζt−1 − ζ2t−1/40

• ξ2 = 0, ξt = (1 + ζt)ξt−1 + dα

• ψ2 = 0, ψt = (1 + ζt)ψt−1 + dβ + dα/ log n.

• µt = ζt/5

ApproxLISt(U) (t > 0)

1. Run Sample(U , c log2 n/α2) and call Size(U) to get estimate u. If Sample or Size outputs
disposable, output 1 as estimated distance and 0 for LIS estimate. Terminate procedure.
Otherwise, we have a random sample R.

2. Call Classifyt(P,U) for each P ∈ R and let the fraction of badt points be ε.

3. Output ε as the estimate of εU and (1− ε)u times as the estimate of the LIS in U .
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Classifyt(P,U) (t > 0)

1. Run Unsplittablet(P,U ,U). If this outputs reject, output bad t and terminate. Otherwise,
we get box B.

2. If w(B) ≤ log n/α, find the LIS of B. If P is on the LIS output good t, otherwise output bad t.
Terminate procedure.

3. Call Grid(B, α3/ logn, α4/ log n) to generate a grid for B. For each grid box C, call
ApproxLISt−1(C) to get an estimate on the LIS length in C. Let this estimate be the length
of the C.

4. Determine the longest length grid chain (by dynamic programming) C′
1, C

′
2, · · · . If P does not

belong to the longest grid chain, output badt. Otherwise, let C′
j be the grid box containing P .

Run Classifyt−1(P, C
′
j). If P is goodt−1, output goodt. Otherwise, output badt.

Unsplittablet(P,B,U)

1. Run Find(B,U , γ, µt, α). If the output is disposable, output reject and terminate proce-
dure.

2. If Find(B,U , γ, µt, α) outputs point S: Call this the splitter for B.

(a) If P is a violation with S, output reject and terminate procedure.

(b) Let B be Box(Bl, Br). Set Bl = Box(Bl, S) and Br = Box(S,Br). Let B′ be the box
among these that contains P . (If P = S, then set B′ arbitrarily.)

(c) Recursively call Unsplittablet(P,B
′,U).

3. If Find(B,U , γ, µt, α) outputs sparse, output B.

We observe that Classifyt(P,B) labels a point P with respect to a box B. We will use a shorthand
for saying that the output of Classifyt(P,B) is goodt. We will just say that P is labeled goodt(B)
(or badt(B)). We refer to t as the level number, since it denotes the number of levels of recursion
used.

Before we state our main claims, it is important to look at the use of randomness by these
procedures. This is a somewhat subtle point and we discuss it in the next subsection. Then, we
shall be ready to state our main approximation boosting lemma.

4.1.1 The use of randomness

Randomess is used through the invocations of Sample, Find, and Grid. It will be important for
us that these procedures give the same output when given the same arguments. This will ensure
consistency over various calls to the procedures. Since these are randomized algorithms, independent
calls to them could give different outputs. To avoid this, we associate a fixed random seed for a
given procedure with a given set of arguments.

All calls to a procedure made during a fixed level t with the same arguments will use the same
random seed. Calls made in different levels always use different random seeds. For example, there
is a fixed random seed associated with Find(B,U , γ, µt, α), for a fixed choice of these arguments.
Every call to this procedure will use the same random seed, thereby ensuring the output is always
the same. We will always assume that t ≤ log n.
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Claim 4.3 With high probability over the choice of random seeds, no invocation to Find, Grid,
Size, or Sample made by any call to ApproxLISt, Classifyt, or Unsplittablet will fail.

Proof: This holds by a simple union bound. The total number of boxes B is O(n2). The total
number of possible parameters is t ≤ log n. For a given setting of arguments (for one of these
procedures), by Claims 3.4, 3.5, 3.6, the probability of failure is low. There are totally only a poly-
nomial number of possible arguments. So a union bound shows that the probability that any of
these procedures fails for any choice of arguments in any level is low. 2

Suppose we focus on a fixed t. For every possible of call to Find, Grid, Size, or Sample, every
level number ≤ t, and every possible choice of arguments, we can write down a random seed. The
total list of these random seeds is the seed for ApproxLISt. Every call to ApproxLISt(U) (for any
set U) behaves deterministically for a fixed random seed. We do not really have to know the whole
seed in advance, but can generate the relevant parts of it as ApproxLISt proceeds. The key is
that the random seed is reused, whenever an auxiliary procedure is repeatedly called with the same
argument. Note a major benefit of this approach. For a level r and box B, the labels goodr(B) and
badr(B) are now fixed. Since this labeling is now static, it is convenient to make arguments about
these points.

Definition 4.4 A random seed of ApproxLISt is sound if the following hold. No call to any
auxiliary procedure with any choice of arguments fails. For box U and level r, let gr(U) (resp.
br(U)) be the number of goodr(U) (resp. badr(U)) points. Let the LIS estimate of ApproxLISr(U)
be ℓ(U) and the distance estimate be ε(U). For all boxes U and r ≤ t, we have

|ε(U)|U| − br(U)| ≤ α|U|+ βw(U) |ℓ(U)− gr(U)| ≤ α|U|+ 2βw(U)

Claim 4.5 Let t ≤ log n. With probability at most n−Ω(logn), a seed for ApproxLISt chosen uni-
formly at random is unsound.

Proof: By Claim 4.3, we can assume that with high probability no auxiliary procedure fails. Fix a
box U and level r. The procedure Sample(U , ·) invoked by ApproxLISr(U) does not fail. If Sample
or Size outputs disposable, then gr(U) ≤ |U| ≤ α2w(U)/ log n = βw(U). Similarly, ||U|− br(U)| ≤
βw(U). So ApproxLISr outputs good estimates. Otherwise Sample outputs a random sample of
M = c log2 n/α2 points from U . Note that the randomness used for Sample(U , ·) is independent
of any randomness used for the classification (by Classifyr) of points in U . Let the number of
goodr(U) points in the sample be X. An additive Chernoff bound gives us: Pr[|(X/M)|U|−gr(U)| >
α|U|] < exp(−α2M) ≤ n−Ω(logn). So, the estimated fraction of good points is accurate. An
identical argument works for the estimated fraction of bad points. Hence, with high probability
|ε(U)|U| − br(U)| ≤ α|U|+ βw(U).

ApproxLISr(U) outputs an estimate for the LIS length (not the fraction), and has to estimate
|U|. By Claim 3.3, we get an additive α3w(U)/ log n estimate u for |U| with high probability. The
estimate output by ApproxLISr(U) is (X/M)u. We have |(X/M)u − (X/M)|U|| ≤ α3w(U)/ log n
≤ βw(U). Combining this with the previous bound, we get the desired bound on the LIS length
estimate of ApproxLISr(U). Since all of this holds with high probability, a union bound over all U
and r completes the proof. 2

Henceforth, we will assume that a sound random seed is one that is sound for a sufficiently large
value of t (say log n). This means that, using this random seed, all calls to any of our procedures will
succeed. We will assume that such a sound random seed is fixed, so all procedures are deterministic.
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4.2 Terminal and critical boxes

We now introduce the notion of terminal and critical boxes. These are very important for the
analysis, and will also give us a greater understanding of how Classifyt works. Through the use of
Unsplittablet, Classifyt(·,U) essentially breaks U into a chain of boxes and searches for an approx-
imate LIS inside this chain. It is very important for these definitions that we have a fixed random
seed. So, we reiterate, all procedures are now deterministic. In the following, we fix a box U and
look at calls to Classify(P,U), for all P ∈ U .

U-splitters: Consider a call to Unsplittablet(P,U ,U). In the course of its running, many split-
ters in U are found. These are U-splitters for level t. Each splitter is associated with the box B in
which it is found (so Unsplittablet(P,B,U) “finds” splitter S). The complete set of splitters found
over all calls (over all P ∈ U) is the set of U -splitters for level t. For convenience, we always consider
the lower left and upper right corner of U to be splitters.

Invoked and Terminal boxes: Consider a call to Unsplittablet(P,U ,U) made by Classifyt(P,U).
The recursive nature of Unsplittablet leads to a sequence of (recursive) calls Unsplittablet(P,B0,U),
Unsplittablet(P,B1,U), · · · , Unsplittablet(P,Bk,U), where B0 = U . All of the boxes Bi are called
U-invoked boxes for level t. Note that we have the containment B0 ⊃ B1 ⊃ B2 · · · . Every invoked
box (except for the last one Bk) contains a splitter, which is found in Step 2.

Suppose the last procedure Unsplittablet(P,Bk,U) returns in Steps 1 or 3. This means that
P ∈ Bk, and Bk cannot be “split” further. The box Bk is a U-terminal box for level t. The set of
U -terminal boxes can be determined by considering all calls to Unsplittablet(P,U ,U), for all P ∈ U .

Terminal boxes are of three types: disposable, tiny, and proper. Disposable terminal boxes are
those labeled so in Step 1 of Unsplittablet. A tiny box B is one for which w(B) ≤ log n/α. For such
a box, Classifyt finds the LIS in B (in Step 2). All other terminal boxes are proper. For these
boxes, a grid is constructed in them and the longest length grid chain is determined (Steps 3 and 4
of Classifyt).

A U -terminal strip for level t is of the form st(B,U), where B is a corresponding terminal box.

Critical boxes: Consider a call to Classifyt(P,U) and suppose it proceeds to Step 4. The
longest grid chain C′

1, C
′
2, · · · is then found. All these boxes are U-critical for level t. Also, if a box

B is a tiny terminal box, then it is also U -critical. Analogous to terminal strips, we can also define
critical strips.

The following claims are fairly easy to prove, given the algorithm description. It is helpful to have
these formally stated, so we can refer to them later. The proofs for these are given in Section 7.2.

Claim 4.6 For any two U-invoked boxes for level t B and B′, either B ⊆ B′ or B and B′ are
comparable. Hence, the set of U-invoked boxes for level t form a tree (called the U-invoked tree for
level t) by containment, and the leaves are exactly the set of corresponding terminal boxes. The
depth of this tree is at most 10 log n/α.

Claim 4.7 Let the U-splitters for level t be S0, S1, · · · , in increasing order of x-coordinate. The
U-terminal boxes for level t are exactly boxes of the form Box(Si, Si+1). Furthermore, all these
splitters are consistent, and hence the terminal boxes form a maximal chain.

Claim 4.8 The U-critical boxes for level t form a chain of boxes contained in the chain of U-terminal
boxes for level t. All goodt(U) points for U lie inside this chain, and form an increasing sequence.
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A basic induction argument shows that the running time of ApproxLISt(U) is polylogarithmic
in n.

Claim 4.9 For any box U , the running time of ApproxLISt(U) is (log n/α)O(t).

Proof: We first observe that ApproxLISt invokes Sample once and Classifyt poly(log n/α) times.
So the running time of ApproxLISt is at most (log n/α)a times the running time of Classifyt, for
some constant a. Let c be a constant much larger than a.

We will show that the running time of Classifyt is (log n/α)ct, by induction on t. The run-
ning time of Classify0 is just constant. Assume the bound holds for Classifyt. Now consider
Classifyt+1. First, there is a call to Unsplittablet+1. A call to Unsplittablet+1 calls Find once and
then potentially makes a recursive call. The sequence of recursive calls follows some path of boxes in
the tree of invoked boxes. Since the depth of this tree is 10 log n/α (by Claim 4.6), the running time
of Unsplittablet+1 is at most 10 log n/α times the running time of Find. By Claim 3.6, the running
time for Unsplittablet+1 is at most (log n/α)c. The running times for Steps 2 and 3 of Classifyt+1

is at most (log n/α)c.
This leaves the running time for Step 4 of Classifyt+1. Since c is a sufficiently large constant,

this involves at most (log n/α)c/3 calls to ApproxLISt (one call for each grid box). By the induction
hypothesis, each call takes time (log n/α)ct+a. The total time is at most (log n/α)ct+c/2.

The procedure now has to find the longest length grid chain. This is done by dynamic program-
ming. Construct the following layered directed graph G. The vertices form layers L1, L2, · · · . The
vertices of Li are the grid points in the ith (leftmost) vertical line of the grid. Connect a vertex of
Li to a vertex in Li+1 by a directed edge if the corresponding grid points form a grid box. Note
that G is a DAG, and a chain of boxes corresponds to a directed path in G. The longest length grid
chain is just the longest path in G and can be found by dynamic programming. The time required is
polynomial in the size of G, which is at most (log n/α)c. Finally, there could be a call to Classifyt,
which by the induction hypothesis requires at most (log n/α)ct time. Summing up all these running
times, the running time for Classifyt is at most (log n/α)ct+c. This completes the proof. 2

The following claim is a very important consequence of using sound random seeds.

Claim 4.10 Let B be a terminal box for Classifyt(·,U). Let G be a grid chain in B, and gt−1(C)
be the number of goodt−1(C) points. Set g =

∑

C∈G gt−1(C). Then at least g− 2α|st(B,U)| − 4βw(B)
points in B are labeled goodt(U).

Proof: If B is tiny, then all points of the LIS in B are labeled goodt. If B is disposable, then the
size of B is at most βw(B). So in both these cases, the claim is trivially true.

Assume that B is a proper terminal box. Focus on calls to Classifyt that terminate in B.
In Step 3 of Classifyt, the length of each grid box C is set as ApproxLISt−1(C). Denote this
by ℓ(C) and let gt−1(C) be the number of goodt−1(C) points. By the soundness of the random
seed and Definition 4.4, |ℓ(C) − gt−1(C)| ≤ α|C| + 2βw(C). Consider any grid chain G. Let ℓ(G)
be the length of this chain. We have g =

∑

C∈G gt−1(C). By summing the bound over all C,
|ℓ(G) − g| ≤ α|st(B,U)| + 2βw(B). Let GL denote the longest grid chain found in Step 4. Note
that gt−1(G

L) is exactly the number of points labeled goodt(U) in B. We have ℓ(GL) ≥ ℓ(G). Hence
gt−1(G

L) ≥ g − 2α|Ti| − 4βw(Ti). 2
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4.3 Iterative boosting

The proof of Theorem 4.1 is done essentially through an induction argument. Assuming that
Classifyt−1 has some good guarantee, we want to show that Classifyt has a better guarantee.
By quantifying this improvement, we can determine what the value of t should be for some desired
approximation. We state the boosting lemma. This first has a base case, expressing the guarantee
of Classify1. Then, we have a claim that is the induction step, showing how approximations are
improved. It will actually be convenient for the analysis to express the approximation guarantee of
Classifyt−1 using ζt and ξt (instead of the (t− 1)-subscript versions).

Lemma 4.11 Fix a sound seed.

• The number of bad1(U) points is at most (1 + ζ2)εU |U|+ ξ2|U|+ ψ2w(U).

• Suppose, for any box B, the number of badt−1(B) points is at most (1+ζt)εB|B|+ξt|B|+ψtw(B)
in number. Then, for any box U , the number of badt(U) points is at most (1 + ζt+1)εU |U| +
ξt+1|U|+ ψt+1w(U) in number.

Theorem 4.1 follows fairly directly from this lemma. But we will first need the following technical
claim.

Claim 4.12 The parameters satisfy the following bounds: ζt ≤ O(1/t), ξt ≤ αtO(1), and ψt ≤ βtO(1).

Proof: We prove, by induction on t, that ζt ≤ c/t, for suitably large constant c. For ζ2 = 3.1, this
is trivially true. Suppose ζt ≤ c/t. We have ζt+1 = ζt − ζ2t /40. The function z − z2/40 is increasing
for all 0 ≤ z ≤ 1. So we have ζt+1 ≤ (c/t)(1− c/40t) = c(40t− c)/40t2. Since c is sufficiently large,
(40t− c)/(40t2) ≤ 1/t− 1/t2 ≤ 1/(t+ 1). Hence, ζt+1 ≤ c/(t+ 1).

We now bound ξt. (An identical argument works for ψt.) We first show that ξt ≤ dαt
∏

r≤t(1+ζr),
by induction on t. This is trivially true for t = 2, since ξ2 = 0. We have ξt+1 = (1 + ζt+1)ξt + dα.
Using the induction hypothesis, ξt+1 ≤ dαt

∏

r≤t+1(1 + ζr) + dα. Since the ζr’s are positive, ξt+1 ≤
dα(t+ 1)

∏

r≤t+1(1 + ζr). For the final bound, we observe that

∏

r≤t

(1 + ζr) ≤
∏

r≤t

(1 + c/r) ≤ ec log t = tc

2

Proof: (of Theorem 4.1) By Claim 4.5, the random seed is sound with high probability. By a
simple induction argument using Lemma 4.11, for any box U , the number of badt(U) points is at
most [(1 + ζt+1)εU + ξt+1]|U|+ c(t+1)βw(U). By Claim 4.8, all goodt(U) points form an increasing
sequence in U , so the number of badt(U) points is at least εU |U|.

We set α = δτ c
′
(for large enough constant c′). By Claim 4.12, there is a t = O(1/τ) such that

ζt+1 ≤ τ , ξt+1 ≤ δ/6, and ψt+1 ≤ δ2/ log n. We will claim that ApproxLISt (almost) outputs the
desired approximation. Although the fraction of badt points is a good (one-sided) approximation
for εf , we remind the reader that ApproxLISt has to itself approximate this fraction. So, we have
the account for this additional error.

Consider ApproxLISt(F), where F is the box containing all points of the function f . Note
that w(F) = |F| = n. Let ε′ be the output distance estimate and b be the number of badt(F)
points. By the choice of i, b ≤ (1 + τ)εfn + δn/3. Since the seed is sound, by Definition 4.4,
|ε′− b/n| ≤ α+β < δ/6. We have b/n ∈ [εf , (1+ τ)εf + δ/3]. Therefore, εf ≤ b/n ≤ ε′+ δ/6. More
importantly, εf ≥ (1 + τ)−1(b/n − δ/6) ≥ (1 + τ)−1(ε′ − δ/2). Set ε = (1 + τ)−1(ε′ − δ/2), so we
have εf ∈ [ε, (1 + τ)ε+ δ]. 2
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5 Analysis

Our ultimate aim is to prove Lemma 4.11. This will require a significant amount for preparation.
We will fix a box U and a level t.

5.1 Grid chains and the main dichotomy

In this subsection, we prove a key tool that shows the dichotomy between finding a splitter and
approximation boosting. As we mentioned earlier in Section 2, we want to show that if a splitter
cannot be found, then we can deduce that LIS must be small. Step 4 in Classifyt is where this
will be exploited. Consider the situation when this step is executed. We have found a box B
where the fraction of potential splitters is extremely small. We break B into grid boxes, and use
ApproxLISt−1 to estimate the LIS length in each grid box. Why should the longest chain give
a better approximation than ApproxLISt−1(B)? Indeed, if we knew nothing about the grid, this
would not be true. We introduce the following definition.

Definition 5.1 A grid chain in B is a chain of grid boxes in GridB. Let G be a maximal grid chain
in box B. Consider P ∈ G := st(B,U) \ G. If P is a violation with Q ∈ P such that Px < Qx, then
p is above G. If Px > Qx, then P is below G.

The key observation is that when a box B contains almost no splitters, no grid chain in the
B can contain too many points. This immediately implies that the LIS cannot contain too many
points, since the LIS must be contained in some grid chain. Hence, this grid “certifies” that the LIS
is small. The longest path chain uses ApproxLISt−1 to estimate the LIS in that chain, but because
we run ApproxLISt−1 on a provably smaller instance, we can boost the approximation.

The following lemma shows that any grid chain with many points must contain many safe points.
By Claim 3.6, if many safe points exists, Find will find one of them that can used as a splitter. The
proof of this lemma is identical to the charging argument used in Lemma 2.3 of [ACCL07].

Lemma 5.2 In GridB, let G be a maximal chain of boxes with size at least (1− µ+ 3α)|st(B,U)|.
Set γ = α2/ logn. Then there exists at least α|st(B,U)| (B, γ, 1− µ+ α)-safe points in B.

Therefore, if Find(B,U , γ, µt, α) outputs sparse, then no chain in B has size more than (1 −
µ+ 3α)|st(B,U)|,

Proof: We partition the points in st(B,U) \ G into two sets, Ga and Gb. The former (resp. latter)
contains the points in st(B,U) above (resp. below) G. Abusing notation, we will let [P,Q] denote
the U -strip formed with P and Q as endpoints.

We bound the total number of right-unsafe points in B by [(1 − (µ − 2α))/(µ − 2α)|Gb|. The
proof is analogous for left-unsafe points. We charge points in Gb with a credit scheme. First assign
one unit of credit for each right-unsafe point. We will process all the right-unsafe points in reverse
order (rightmost to leftmost). Processing a point will involve moving its credit to some points in
Gb. Finally, at the end of the processing, we will show an upper bound on the credit that each point
in Gb possesses. This will give us our desired bound.

Here is how we process P . Consider the left end P and let QP be the point such that the
strip [P,QP ] contains more than a (µ − α)-fraction of violations (with P ). This strip is larger
than γ|st(B,U)| = α2|st(B,U)|/ logn. The only points of G that P can be in violation with are
in the chain box containing P . By the spacing between the vertical lines in GridB, these are at
most α3|st(B,U)|/ log n. That is at most an α-fraction of the strip [P,QP ]. This means that the
strip [P,QP ] contains at least a (µ − 2α)-fraction of violations, all of which are in Gb. We will call
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these Gb-violations. Spread one credit among all these violations (with P ) in [P,QP ]. We use the
word “spread” because we do not simply drop one unit of credit into one account. Let the set of
Gb-violations (with P ) in this strip be V . We keep adding credit (infinitesimally) to the points in V
that have the minimum amount of charge. So, if the charge on some point in V crosses x, then all
points in V have charge at least x.

We now show that no point in Gb ever receives more than u = [1 − (µ − 2α)]/(µ − 2α) units
of credit. Suppose by contradiction that this were the case. Let this happen just after processing
right-unsafe P . Some point Q ends up with more than u units of credit. This point Q must be
a Gb-violation with P . By the charging process, all Gb-violations with P in [P,QP ] must have
more than u units of credit. There are at least (µ − 2α)|[P,QP ]| Gb-violations. The total amount
of credit on these violations is at least u(µ − 2α)|[P,QP ]|. On the other hand, the only credit
contribution to these points comes from chain points in [P,QP ]. The total number of them is at
most [1− (µ− 2α)]|[P,QP ]|. So

[1− (µ− 2α)]|[P,QP ]| > u(µ− 2α)|[P,QP ]| =⇒ u < [1− (µ− 2α)]/(µ− 2α)

That contradicts the choice of u. Applying an analogous argument for left-unsafe points, the total
number of unsafe points is at most {[1− (µ− 2α)]/(µ− 2α)}|Ga|.

Since |G| ≥ (1 − µ + 3α)|st(B,U)|, |G| < (µ − 3α)|st(B,U)|. The number of safe points in B
(actually in G), as a fraction of |st(B,U)| is at least

(1− µ+ 3α)−
(µ− 3α)(1− (µ− 2α))

µ− 2α
> α

2

5.2 Bounding the number of bad points: the proof of Lemma 4.11

At long last, we come to main technical portion, the proof of Lemma 4.11. We need to bound the
number of points labeled badt by Classifyt(P,U). Throughout this subsection, we focus on the
behavior of Classifyt on U . For convenience, when we refer to just good or bad, we mean goodt(U)
or badt(U). Any other labels (such as goodt−1(B)) will be explicitly stated. When we use the term
strip, we always means a U -strip. For the various parameters ζt, ξt, ψt, µt, we will drop the subscript
t.

It is convenient to talk in terms of losses. Fix some LIS L (in case there are many) in U . The
number of badt points is denoted by LossA, and the number of points not on L is LossL. Of
course, LossL is exactly εU |U|. The number of bad points in the U -strip S is denoted by LossA(S).
Similarly, LossL(S) is the number of points in S not on L.

Lemma 4.11 has two cases, t = 1 and t > 1. We will prove both these cases here. The initial set
up of the proof is the same for both cases. The final charging argument has different calculations.
We will take care of these cases in separate subsections. Even though it is possible to provide a
single unified proof, the authors believe that t = 1 case is a nice warm-up to understand how LossA
can be related to LossL. For t > 1, we will assume the basic premise of Lemma 4.11. So, for any
box B, the number of badt−1(B) points is at most [(1 + ζt)εB + ξt]|B|+ ψtw(B).

The proof of Lemma 4.11 will require a careful partition of the points in L into various sets. By
getting an upper bound on these sets, we can lower bound LossL. Let the ordered (left to right)
list of splitters generated by Classifyt be S0, S1, . . .. We define the following notation.

• Ti: The terminal U -strip generated by Si and Si+1 is Ti. This will be an open strip that does
not contain the endpoints.
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• Bi: The terminal box Box(Si, Si+1) is Bi.

• Ii: The U -strip of the box in which Si is found is Ii.

• Li: L ∩ Ti, The portion of the LIS in Ti is Li (which is L ∩ Ti).

• L−
i ,L

0
i ,L

+
i : The set of points in Li below Si is L

−
i . The points in Li contained in B, is called

L0
i (= Li ∩ B). Finally, we have the set of points L+

i above Si+1.

• D(S),D(Ti): These are destroyed strips. For a splitter S, consider the points of L that violate
it and are in a terminal strip ending at S. Note that all these points are either to left or to the
right of S. Among these violations, let F be the point that is the farthest (by x-coordinate).
Let the U -strip formed by F and S as endpoints be called the destroyed strip and denoted by
D(S). This will be called a left or right strip depending on whether F is to the left or right of
S. So D(Si) is a left strip iff D(Si) ⊆ Ti−1, and D(Si) is a right strip iff D(Si) ⊆ Ti. We also
set D(Ti) = (D(Si) ∪ D(Si+1)) ∩ Ti.

The sets Li almost form a partition of L, but do not include the splitters Si. Since these splitters
do not contribute to LossA, this is not a problem. The strip Ii contains both Ti−1 and Ti. This is
because Si must be found in some invoked box, and this box contains both Bi−1 and Bi. Observe
that since destroyed strips are contained in terminal strips, two left (or right) destroyed strips cannot
intersect. But we can also say a little more, giving us an important property.

Observation 5.3 If D(Si) is a left (resp. right) strip, then L−
i (resp. L+

i−1) is empty.
If D(Si) is a right strip and D(Si+1) is a left strip, they cannot intersect. Hence, all destroyed

strips are disjoint.

Proof: If D(Si) is a left (resp. right) strip, all violations to Si are in Ti−1 (resp. Ti).
If D(Si) and D(Si+1) intersect, then some point must be between Si and Si+1 and a violation

with both of them. This implies that Si and Si+1 form a violation. Contradiction. 2

We are now ready to bound the lengths L−
i and L+

i in terms of the destroyed strips.

Claim 5.4 |L−
i ∪ L+

i | ≤ (µ+ α)|D(Ti)|+ γ|Ii|+ γ|Ii+1|

Proof: We first show that |L−
i | ≤ (µ + α)|D(Si) ∩ Ti| + γ|Ii|. If D(Si) ∩ Ti = ∅, then L−

i = ∅,
so this trivially holds. If not, then D(Si) ⊆ Ti and L−

i is completely contained in D(Si). Suppose
the splitter Si was found in box C. Since Si is a splitter, it must be (C,U , γ, µ + α)-safe. Note
that Ii = st(C,U). By definition, all points of L−

i are violations with Si. Also D(Si) ⊆ Ti ⊆ Ii. If
|D(Si)| ≥ γ|Ii|, then the number of violations with in Si in D(Si) is at most (µ+α)|D(Si)|. Hence,
we get an upper bound of (µ+ α)|D(Si) ∩ Ti|+ γ|Ii|.

Similarly, we can prove that |L+
i | ≤ (µ + α)|D(Si+1) ∩ Ti| + γ|Ii+1|. Adding these bounds, we

complete the proof. 2

We now deal with L0
i , which is really the interesting part. The next claim shows a fairly simple

calculation showing for L0
i can be “rounded” in the grid on Bi. We get a grid chain that almost

contains L0
i completely. Now, the dichotomy of Section 5.1 enters the picture. Since we are dealing

with (proper) terminal boxes, we can argue that this grid chain is small compared to Bi. So this
shows that L0

i cannot be very large, and must exclude quite a few points of Bi. This sets the stage
for the approximation boosting. We will state the following claim is slightly more general terms, so
that it can be applied further on in the paper.
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P

Q

Figure 5: This shows the rounding procedure of Claim 5.5. The LIS points are colored in black.
The points P and Q are shown, and the grid chain is the collection of grey boxes.

Claim 5.5 Let Bi be a proper terminal box and M be an increasing sequence in Bi. Consider the
grid on Bi. There exists a maximal grid chain Gi disjoint from D(Ti) such that the number of points
of M outside G is at most (2rx + 2ry/rx)|Ti|. Furthermore, |Gi| ≤ (1− µ+ 3α)|Ti|.

Proof: We will now perform a rounding of M in the grid of Bi. Refer to Figure 5 for a pictorial
representation of what follows. The points of M form some increasing sequence in Bi. Consider the
leftmost vertical grid line that has some point of M to its left. Let the lowest grid point on this
line be P . Similarly, consider the rightmost vertical grid line that has some point of M to its right.
The highest grid point on this line is Q. By the vertical distance between grid lines, at most 2rx|Ti|
points of M are not in Box(P,Q). All points of L to the right of P are consistent with P . So D(Si)
cannot contain P . Similarly, D(Si+1) does not contain Q. The box Box(P,Q) is disjoint to D(Ti).

The grid chain Gi will be contained completely in Box(P,Q). Consider the vertical grid lines
v1, v2, . . . that contained in Box(P,Q). If there are grid points on vj that is consistent with M,
denote one of them to be Pj . Otherwise, let the highest grid point lower than M be Pi. The
maximal grid chain created by the sequence of boxes Box(P, P1), Box(P1, P2), . . . , Box(Pk, Q) is
the desired G.

The points of M violated by Pj are exactly those that are above and to the left of Pj . The grid
point just above Pj (on vj) is above M. So, all these violated points lie between two horizontal grid
lines. The total number of these is the vertical spacing ry|Bi|. The total number of points of M
not in Gi is at most ry|Ti| multiplied by the total number of vertical lines, 2/rx. This completes the
proof of the first part.

The second part is very easy to prove, but is an extremely important piece in the whole analysis.
So, we recommend the reader to pause to digest the import of this bound. Since Bi is a proper
terminal box, we know that Find(Bi,U , γ, µ, α) output sparse. By Lemma 5.2, no chain in the grid
of Bi can have size more than (1− µ+ 3α)|Ti|. 2

To give cleaner formulae, we define the error term for a terminal strip.

Definition 5.6 ∆i := γ|Ii|+ γ|Ii+1|+ (ξ + 4α)|Ti|+ (ψ + 4β)w(Ti)

We will prove that in each strip, LossA(Ti) is comparable to LossL(Ti), upto an additive ∆i.
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Hence, this is the “error term” associated with a strip. Eventually, we will have to add up all these
errors. This is a very small term, as shown in the next claim.

Claim 5.7
∑

i∆i ≤ (ξ + 24α)|U|+ (ψ + 4β)w(U).

Proof: Since the strips Ti are disjoint,
∑

i |Ti| ≤ |U| and
∑

iw(Ti) ≤ w(U). Dealing with
∑

i γ|Ii|
is the main non-trivial part. Observe that i 6= j, Ii 6= Ij . Let us focus on the number of strips Ii
that contain a fixed point. This can be at most 10 log n/α, the depth of the tree of boxes (Claim 4.6.
Let χ(P, i) be the indicator for point P ∈ U being contained in Ii. So we have

∑

i

γ|Ii| = γ
∑

i

∑

P∈U

χ(P, i) = γ
∑

P∈U

∑

i

χ(P, i)

≤ γ(10 log n/α)|U| ≤ (α2/ log n)(10 log n/α)|U| ≤ 10α|U|

Summing all these terms, we get the desired bound. 2

The crux of the approximation boosting is the following lemma. Using this, Lemma 4.11 will
follow quite easily.

Lemma 5.8 For t = 1, LossA(Ti) ≤ 4.1(LossL(Ti) + ∆i). For t > 1, LossA(Ti) ≤ (1 + ζt −
ζ2t /40)(LossL(Ti) + ∆i).

This yields the following claim.

Claim 5.9 Let Υ < 5. If for all Ti, LossA(Ti) ≤ Υ(LossL(Ti) + ∆i), then

LossA ≤ ΥLossL + (Υξ + 120α)|U|+ (Υψ + 20β)w(U)

Proof: We sum the bound in Lemma 5.8 over all terminal strips Ti. We note that LossA =
∑

i LossA(Ti). This is because the strips Ti are disjoint and the union
⋃

i Ti only excludes the
splitters (which do not contribute to LossA). We trivially have LossL ≥

∑

i LossL(Ti). So we get

LossA ≤ Υ(LossL + ξ|U|+ ψ|w(U)|) + 120α|U|+ 20βw(U)

2

Combining Lemma 5.8 with Claim 5.9, Lemma 4.11 follows immediately. For t = 1, the value of
Υ for Claim 5.9 is 4.1. For t > 1, Γ = 1 + ζt − ζ2t /40.

It now remains to prove Lemma 5.8. The first step in this is to deal with dead and tiny terminal
boxes separately. We can show a much stronger bound for these boxes.

Claim 5.10 For a dead or tiny terminal box Bi, LossA(Ti) ≤ (1− µ− α)−1(LossL(Ti) + ∆i).

Proof: Suppose Bi is a dead box. Then |L0
i | ≤ |Bi| ≤ α2w(Ti)/ log n. Since |Li| = |L0

i | +
|L−

i ∪ L+
i |, we can bound |Li| by adding α2w(Ti)/ log n to the upper bound of Claim 5.4. So

|Li| ≤ (µ + α)|D(Ti)| + ∆i. We trivially bound LossA(Ti) ≤ |Ti| and |D(Ti)| ≤ |Ti|. We have
LossL(Ti) = |Ti|−|Li| ≥ (1−µ−α)|Ti|−∆i. This implies LossA(Ti) ≤ (LossL(Ti)+∆i)/(1−µ−α).

Now let Bi be a tiny box. We have |L−
i ∪ L+

i | ≤ (µ + α)|D(Ti)| + ∆i. We bound LossL(Ti) ≥
(|Ti| − |L0

i |) − (µ + α)|D(Ti)| − ∆i. Since L0
i is disjoint to D(Ti), we have |D(Ti)| ≤ (|Ti| − |L0

i |).
Hence, LossL(Ti) + ∆i ≥ (1 − µ − α)(|Ti| − |L0

i |). The number of goodt points is exactly the size
of the LIS in Bl. Obviously, |L0

i | can be no larger than this. So LossA(Ti) ≤ (|Ti| − |L0
i |). That

completes the proof. 2

Now, we deal with proper boxes, where all the interesting action occurs. We split into two cases,
depending on the value of t. We break this part up into separate subsections.
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5.2.1 The case t = 1

The procedure Classify1 performs a rather trivial labeling in a proper terminal box Bi. The
procedure ApproxLIS0 always returns 0 as the estimated LIS length. In any grid box C, Classify0
simply labels all points as bad0. This means that Classify1 is simply going to label all points in
Bi as bad. So why should we get any approximation? The key is Claim 5.5. We show that the LIS
L must exclude a constant of Bi. So our trivial labeling of all points as bad is actually a constant
factor approximation to the distance. We now prove this formally.

Lemma 5.11 Consider a proper terminal strip Ti. LossA(Ti) ≤ 4.1(LossL(Ti) + ∆i).

Proof: We trivially bound LossA(Ti) ≤ |Ti|. We now give a lower bound for |Li|. We break up
|Li| into |L0

i | + |L−
i ∪ L+

i |. The second term is bounded by Claim 5.4. For the first term, we use
Claim 5.5. We can trivially bound |L0

i ∩ Gi| by |Gi|. The number of remaining points of L0
i is at

most (2rx + 2ry/rx)|Ti| ≤ 4α|Ti|. Adding all the bounds, we get

|Li| ≤ |Gi|+ 4α|Ti|+ (µ+ α)|D(Ti)|+ γ|Ii|+ γ|Ii+1|

≤ |Gi|+ (µ+ α)|D(Ti)|+∆i

Hence, LossL(Ti) + ∆i ≥ |Ti| − |Gi| − (µ + α)|D(Ti)|. Note that Gi and D(Ti) are disjoint, so
|Gi| ≤ |Ti| − |D(Ti)|. By Claim 5.5, |Gi| ≤ (1− µ+ 3α)|Ti|. Set µ

′ = µ+ α and µ = µ− 3α. We get
|Gi| ≤ |Ti| −max(µ|Ti|, |D(Ti)|).

LossL(Ti) + ∆i ≥ max(µ|Ti|, |D(Ti)|)− µ′|D(Ti)|

≥ (1− µ′)max(µ|Ti|, |D(Ti)|) ≥ µ(1− µ′)|Ti|

Since µ = 1/2 (for t = 1) and α is much smaller than 1/100, so LossL(Ti) + ∆i ≥ 0.245|Ti| ≥
0.245LossA(Ti). 2

Observing that (1 − µ − α)−1 ≤ 4.1 (for µ = 1/2 and sufficiently small α), we can combine
Claim 5.10 and Lemma 5.11 into the following corollary. This proves the first part of Lemma 5.8.

Corollary 5.12 For any terminal strip Ti, LossA(Ti) ≤ 4.1(LossL(Ti) + ∆i)

5.2.2 The general case

The general case (naturally) needs a more involved argument that the t = 1 setting. We now use
our induction hypothesis that says the number of badt−1(C) points is at most (1 + ζ)εC |C|+ ξ|C|+
ψw(C). By the careful choice of parameters, we can ensure that LossA(Ti) is “significantly” better
than a (1 + ζ)-approximation of LossL(Ti). This allows for the overall improved approximation of
ApproxLIS.

We will state our main lemma in some generality. This allows us to apply this to our improved
algorithm as well.

Lemma 5.13 Let L denote the LIS in a box U and T be a U-strip. Let positive constants ζ, µ, µ′

satisfy the following conditions:

• ζ/(1 + ζ) > µ′

• 1 > µ > ζ/6
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• µ′ < ζ/3, µ′ < 1

Let G be a maximal chain contained in T with the following properties:

• |G| ≤ (1− µ)|T |

• |L ∩ (T \ G)| ≤ µ′|T \ G|+ Γ1

Suppose there is a classification of points in T as sound and unsound with the following property.
In each grid box C of G, the number of unsound points is at most (1 + ζ)εC |C| + Γ(C). Outside G,
the labeling can be arbitrary. Set Γ = Γ1 +

∑

C∈G Γ(C). The total number of unsound points in T is
at most (1 + ζ − ζ2/40)(LossL(T ) + Γ).

Before proving this lemma, let us prove the main corollary.

Corollary 5.14 For any terminal strip Ti, LossA(Ti) ≤ (1 + ζ − ζ2/40)(LossL(Ti) + ∆i)

Proof: We define a labeling of sound and unsound in Ti that satisfies the conditions in Lemma 5.13.
First, we specify the constants involved. We set µ′ = µ + α and µ = µ − 3α. We have µ = ζ/5
and α ≤ ζ2/30. So µ = µ − 3α > ζ/6 and µ′ = µ + α < ζ/3 (for ζ < 4.1). The terminal box
corresponding to Ti is Bi. We invoke Claim 5.5 to get the chain Gi contained in Bi.

We have |Gi| ≤ (1 − µ)|Ti|. We break up |Li ∩ (Ti \ Gi)| into |Li ∩ (Ti \ Bi)| +|Li ∩ (Bi \ Gi)|.
Using earlier notation, the former is |L+

i ∪ L−
i | and the latter is the number of points in L0

i outside
Gi. By Claim 5.4 and 5.5 and the choice of rx and ry, this is at most

(µ+ α)|D(Ti)|+ (2rx + 2ry/rx)|Ti|+ γ|Ii|+ γ|Ii+1|

≤ µ′|Ti \ Gi|+ 2α|Ti|+ γ|Ii|+ γ|Ii+1|

Now, we define the labeling. For each box C in Gi, let all the goodt−1(C) points be sound. All
remaining points in T are unsound. By the induction hypothesis for Lemma 4.11, the number of
unsound points in C is at most (1+ ζ)εC |C|+ ξ|C|+ψw(B). Applying Lemma 5.13, the total number
of unsound points is at most

(1 + ζ − ζ2/40)[LossL(Ti) + γ|Ii|+ γ|Ii+1|+ (ξ + 2α)|Ti|+ ψw(Ti)]

Unfortunately, the number of badt(U) points is not necessarily the number of unsound points. This
is because sound/unsound have been defined according to Gi, obtained by Claim 5.5. The algorithm
actually finds the longest grid chain. But Claim 4.10 tells us that the total number of badt(U) points
is at most u+ 2α|Ti|+ 4βw(Ti) (where u is the number of unsound points). This implies that

LossA(Ti) ≤ (1 + ζ − ζ2/40)[LossL(Ti) + γ|Ii|+ γ|Ii+1|+ (ξ + 4α)|Ti|+ (ψ + 4β)w(Ti)]

= (1 + ζ − ζ2/40)(LossL(Ti) + ∆i)

2

Proof: (of Lemma 5.13) We will assume all the conditions of the lemma. We need the following
notation and claim for our analysis.

• g: This is the total number of all points in G labeled sound.

• b: This is just |G| − g, the total number of unsound points in G.

• u: This is the total number of unsound points in T .
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• d = |T \ G| and m = |T |

• ζ ′ = ζ/(1 + ζ)

• Γ(G) =
∑

C∈G Γ(C)

Claim 5.15 |L ∩ T | ≤ g + ζ ′b+ µ′d+ Γ

Proof: We break |L ∩ T | up into |L ∩ G| + |L ∩ (T \ G)|. The latter term is bounded by the
assumptions in Lemma 5.13. We deal with the former term.

Let the boxes of the chain G be C1, C2, . . .. For each grid box Cj , let gj (resp. bj) be the number
of sound (resp. unsound) points in Cj . The assumptions imply bj ≤ (1+ζ)εCj |Cj |+Γ(Cj). Therefore,

εCj ≥
bj − Γ(Cj)

1 + ζ
≥

bj
1 + ζ

− Γ(Cj)

The number of points of L in Cj is at most the LIS inside Cj , which has length |Cj | − εCj |Cj | =
gj + bj − εCj |Cj |. Combining these together, we get that the |L ∩ Cj | is at most gj + ζ ′bj + Γ(Cj)
(where ζ ′ = ζ/(1 + ζ)). By summing the above, |L ∩ G| is at most g + ζ ′b + Γ(G). Adding this to
the bound for |L ∩ (T \ G)|, we complete the proof. 2

We now begin the main proof. By Claim 5.15, LossL(T ) + Γ ≥ (m− g) − µ′d − ζ ′b. Since g is
a lower bound of the total number of sound points in T , the total number of unsound points is at
most (m− g).

The size of the chain G is exactly g + b, and is at most (1− µ)s. Since d = |T \ G|, we can also
bound g + b by m− d. Hence,

g + b ≤ min(m− d, (1− µ)m) = m−max(d, µm)

=⇒ b ≤ (m− g)−max(d, µm)

LossL(T ) + Γ ≥ (m− g)− µ′d− ζ ′b

≥ (m− g)− µ′d− ζ ′[(m− g)−max(d, µm)]

= (1− ζ ′)(m− g)− µ′d+ ζ ′max(d, µm)

A little thought reveals that the worst case is when d = µm. We also use the fact that ζ ′−µ′ ≥ 0.
More formally,

LossL(T ) + Γ ≥ (1− ζ ′)(m− g)− µ′d+ ζ ′max(d, µm)

≥ (1− ζ ′)(m− g)− µ′max(d, µm) + ζ ′max(d, µm)

= (1− ζ ′)(m− g) + (ζ ′ − µ′)max(d, µm)

≥ (1− ζ ′)(m− g) + (ζ ′ − µ′)µm

We use the bound m− g for the total number of unsound points.

u

LossL(T ) + Γ
≤

m− g

(1− ζ ′)(m− g) +m(ζ ′µ− µ′µ)
≤

1

1− ζ ′ + ζ ′µ− µ′µ
=

1 + ζ

1 + ζµ− (1 + ζ)µ′µ
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Since µ > ζ/6 and µ′ < ζ/3,

1 + ζµ− (1 + ζ)µ′µ = 1 + µ(ζ − (1 + ζ)µ′) ≥ 1 + (ζ/6)(ζ/3) = 1 + ζ2/20

So u ≤ (1 + ζ − ζ2/40)(LossL(T ) + Γ). 2

6 The improved algorithm

In this section, we present the algorithm with the improved running time. The basic structure of
the algorithm is the same. It is a careful modification of parameters that will allow for a better
running time. We first state the main theorem of this section.

Theorem 6.1 Let f : [n] → R be an array and εf be the distance to monotonicity. Let positive
parameters δ, τ be at most some small constant, and δ ≤ τ .

There exists a procedure that, given oracle access to f , outputs a real number ε such that εf ∈
[ε, (1 + τ)ε+ δ] with probability > 2/3. The running time of this procedure is (1/δ)O(1/τ)(log n).

Although we only give a constant error guarantee, it is not hard to prove success amplification.

Corollary 6.2 Given the procedure satisfying Theorem 6.1, it is possible to run this procedure
O(log n) times to get a correct estimate with high probability.

Proof: Set ε0 = 0, and εi+1 = (1+ τ)εi + δ. Let the intervals [εi, εi+1] be called buckets. Suppose
we run the procedure of Theorem 6.1 c logn times. Then with high probability, for a majority of the
estimates ε, εf ∈ [ε, (1 + τ)ε+ δ] (these are the correct ones). Suppose εf ∈ [εi, εi+1]. Any estimate
less than εi−1 or more than εi+1 cannot be correct. Therefore, there must be two consecutive buckets
that contain a majority of the estimates. There can also be at most two such pairs of buckets (and
they must overlap). Hence, we can determine a value εj such that εf ∈ [εj , εj+3]. Or, in other
words, εf ∈ [εj , (1+4τ)εj +4δ]. If we run the main procedure with parameters τ/4 and δ/4, we get
the desired estimate. 2

The following corollary can be proven by a choice of parameters identical to that of Corollary 4.2.

Corollary 6.3 Let f : [n] → R be an array, and δ, τ be positive parameters bounded above by a
small constant.

• There exists a procedure that estimates the LIS of f upto an additive error of δn. The running
time of this procedure is (1/δ)O(1/δ)(log n).

• There exists a procedure that outputs a (1 + τ)-multiplicative approximation to εf . This pro-
cedure has running time (1/εf )

O(1/τ)(log n).

6.1 Intuition

The reason why the basic algorithm has a time of the form (log n)1/τ is because Classifyt invokes
ApproxLISt−1 poly(log n) times. Where do the various invocations of ApproxLISt−1 come in?
When we construct the grid in Classifyt, we invoke ApproxLISt−1 for all the poly(log n) grid
boxes. Why don’t we simply make the grid smaller (and hence of coarser granularity)? The coarser
the grid, the larger the additive error becomes. This forces us to have a poly(log n) size grid.
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Here’s a somewhat strange suggestion to improve this running time. We invoke ApproxLISt−1

poly(log n) times and then solve a dynamic program (for longest chain) of poly(log n) size. Could
we solve this smaller dynamic program approximately by making less than poly(log n) queries to
ApproxLISt−1? After all, this is exactly what the basic algorithm does! It approximates a large
dynamic program by converting it to a smaller one. Let us apply this technique again to make the
dynamic program even smaller, and recursively repeat.

It sounds too good to be true, but it can be pulled off. We stress that this is not how we present
the algorithm, but it is the way we came up with our improvement. The final description is done
much more cleanly by an evolving choice of parameters. Indeed, the reader does not even need to
have this intuitive picture in mind to understand the improved algorithm. Nonetheless, it removes
some of the mystery around how the authors came up with the improved algorithm.

After this diversion, let us go back to the grids. We will show that it is possible for Classifyt
to have a smaller grid, but this will require a very important change in the procedure Unsplittable.
The procedure Unsplittable obtains a splitter through the procedure Find. When Find fails in
a box, a grid is built in that box and recursive calls are made. This is where we make a crucial
change. If Find fails to find a splitter, then we relax the parameters for Find. If we still fail to
find a splitter, we relax the conditions even further. This will continue until we can obtain such
a relaxed splitter, or we reach a trivial choice of parameters. Each such change of the parameters
gives rise to a new phase of Unsplittable. This relaxation is captured through the parameter γ.

Before, we had a fixed choice of the parameter γ (used by Find). The value γ represent the
“quality” of the splitter. The splitter is allowed to violate a γ-fraction of the points in the strip
where it is found. Naturally, a large value of γ means that splitter violate many more points. This is
why we had set γ < 1/ log n, thereby controlling the total number of points violated by the splitters.
We will now have a varying choice of γ. As γ increases, we allow the splitter to violate many points
in larger intervals. Initially, we start with a small value of γ. When we are unable to find splitters,
we slowly increase the value of γ to help us find splitters. The downside is that we cannot select
too many splitters when γ is large (since that would violate too many points).

The parameter ρ (used in Find) affects both the centrality of the splitter found, and the amount
we search in a box to find a splitter. In the basic algorithm we fix ρ to be α. When ρ is small, then
we search harder to find safe points in the current box B. So this means that as ρ increases, we
are demanding that (to find a splitter) the box contains a larger fraction of safe points. To state
the contrapositive, if B has an extremely small fraction of safe points, by choosing a small ρ, we
can still hope to find such a point (and hence use that as a splitter). The flip side is that a small ρ
means that the splitter obtained may not very centrally placed. In other words, the box sizes to the
left and right of the obtained splitter may be extremely unbalanced. This means that the recursion
depth could go up, which could lead to more points being violated. So the values of ρ and γ are
related to each other. As γ increases, we also increase the value of ρ. We need to increase ρ to cut
down the recursion depth, since (with the increased γ) splitters violate more points. On the other
hand, the small value of ρ in the beginning allows us to get splitters more easily. These tradeoff
between these various effects allows us to contain the number of bad points, as we simultaneously
decrease the running time.

6.2 The main procedures

We first state the choice of the new parameters γp and ρp. We use p > 0 to denote the phase number
of the procedure Unsplittable. The values θt will be chosen on the basis of the largest possible
value of t that we are interested in. Let us suppose that the first call is to ApproxLIStf (F). For
convenience, we will assume that ApproxLIS1 is defined as before.
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What are the main differences to look out for? First, ApproxLISt does not make O(logn)
calls to Classifyt, but only a constant number. This means that success probabilities will always
be constant, but we can achieve a reduced running time. The procedure Classifyt only builds
constant sized grids. The most important difference is Step 4 of Unsplittablet. This is where the
gradual change of the γ and ρ parameters is performed. Note that Unsplittablet has more arguments
than before.

We remind the reader that log(p) n = log log(p−1) n, where log(1) n = log n. Also, the iterated
logarithm log∗ n is the smallest positive integer p such that log(p) n ≤ 1.

• γp = α3/(log(p) n)4, where log(p) represents that pth iterated logarithm

• ρp = α/(6(log∗ n− p)2)

• mt = 2 log(1/θt)/α
2, θt = αc(tf+1−t)/t2

ApproxLISt(U) (t > 0)

1. Run Sample(U ,mt) and call Size(U) to get estimate u. If Sample or Size outputs
disposable, output 1 as estimated distance and 0 for LIS estimate. Terminate procedure.
Otherwise, we have a random sample R.

2. Call Classifyt(P,U) for each P ∈ R and let the fraction of badt points be ε.

3. Output ε as the estimate of εU and (1− ε)u times as the estimate of the LIS in U .

Classifyt(P,U) (t > 0)

1. Run Unsplittablet(P,U ,U , |U|, 1). If this outputs reject, output bad t and terminate. Other-
wise, we get box B.

2. If w(B) ≤ log n/α, find the LIS of B. If P is on the LIS output good t, otherwise output bad t.
Terminate procedure.

3. Call Grid(B, α4, α5) to generate a grid for B. For each grid box C, call ApproxLISt−1(C) to
get an estimate on the LIS length in C. Let this estimate be the length of the C.

4. Determine the longest length grid chain (by dynamic programming) C′
1, C

′
2, · · · . If P does not

belong to the longest grid chain, output badt. Otherwise, let C′
j be the grid box containing P .

Run Classifyt−1(P,B). If P is goodt−1, output goodt. Otherwise, output badt.
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Unsplittablet(P,B,U , ℓ, p)

1. If p = log∗ n or if p > 1 and |st(B,U)| ≤ γp−1ℓ, then output B.

2. Run Find(B,U , γp, µt, ρp). If the output is disposable, output reject and terminate proce-
dure.

3. If Find(B,U , γp, µt, ρp) outputs point S: Call this the splitter for B.

(a) If P is a violation with S, output reject and terminate procedure.

(b) Let B be Box(Bl, Br). Set Bl = Box(Bl, S) and Br = Box(S,Br). Let B′ be the box
among these that contains P . (If P = S, then set B′ arbitrarily.)

(c) Recursively call Unsplittablet(P,B
′,U , ℓ, p).

4. If Find(B,U , γp, µt, ρp) outputs sparse, call Unsplittablet(P,B,U , |st(B,U)|, p+ 1).

6.3 Running time and error analysis

As before, we use randomness through fixed seeds. All calls to a procedure with the same arguments
use the same random seed and provide the same output. We had defined the notion of a random
seed for ApproxLISt, and defined the labels goodt and badt with respect to this. We will fix the
randomness for all the procedures through the long random seed.

By the union bound arguments made earlier, we can assume that all auxiliary procedures (except
Sample)) do not fail. Our main difficulty is in understanding Sample. Before, we could argue that
all invocations to ApproxLISr do not fail, since we could perform a union bound over all calls to
Sample (Claim 4.5). This argument cannot be repeated here, since the sample sizes mt will be of
constant size. The error probabilities will be constant, and we cannot perform a union bound.

For convenience, we repeat the definition of the labels goodr(B) and badr(B), for a level r. (The
number of these points in B is denoted by gr(B) and br(B).) This is an inductive definition. Suppose
there is a labelling of points as goodr−1(C) and badr−1(C), for every box C. Let us fix some outputs
of ApproxLISr−1(B), over all boxes B. Note that Classifyr is now deterministic. We label point
P as goodr(B) or badr(B) based on the output of Classifyr(P,U).

The LIS estimate of ApproxLISr(U) is ℓr(U) and the distance estimate is εr(U). We will say
that this estimate is sound if:

|ε(U)|U| − br(U)| ≤ α|U|+ βw(U) |ℓ(U)− gr(U)| ≤ α|U|+ 2βw(U)

We now describe a procedure that associates an estimate estr(U) with every pair (U , r). This
is an estimate of the LIS length in U , based on the behavior of ApproxLIS. This procedure is a
thought experiment and is not really used by our algorithm. Nonetheless, it will allow us to formalize
the success and failure of ApproxLISt(U). Fix all the randomness as a seed. The procedure goes
through various iterations, one for every level. At the end of iteration r, every pair (U , r) has an
estimate estr(U) associated with it. All labels goodr(U) and badr(U) are decided. Furthermore,
some of the boxes will be marked.

Initially, we set the labels good0(U) and bad0(U) trivially. The boxes (U , 0) have the estimate
0 associated with them. We describe iteration r. Since the labels goodr−1(U) and badr−1(U) are
decided, Classifyr−1 is completely determined. For an invocation to ApproxLISr−1(U), we will
just assume that the output is estr−1(U). We wish to determine estr(U). For each point P ∈ U , let
us invoke Classifyr(P,U). Since this eventually calls Classifyr−1 and ApproxLISr−1, this is com-
pletely determined. So the labels goodr(U) and badr(U) are fixed. Consider the call ApproxLISr(U).
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First, there is a call to Sample. If the LIS estimate given by the random sample is sound, then
set estr(U) to be this estimate. Otherwise, set it to be the number of goodr(U) points and mark
(U , r). The call to ApproxLISr(U) leads to calls to many ApproxLISr−1(C) calls. If, for any such
C, (C, r − 1) is marked, then mark (U , r).

Observe that all estr(U) values are sound (for all r and U). If a box (U , r) is not marked, then
the output of ApproxLISr(U) (using this random seed) is identical to estr(U).

Claim 6.4 The probability over the random seed that a given call ApproxLISr(U) is sound is at
least > 1− θt.

Proof: By Claim 4.3, we can assume that with high probability no auxiliary procedure fails.
Fix a box U and level r. The procedure Sample(U , ·) invoked by ApproxLISr(U) does not fail.
If Sample or Size outputs disposable, then gr(U) ≤ |U| ≤ α2w(U)/ logn = βw(U). Similarly,
||U| − br(U)| ≤ βw(U). So ApproxLISr is sound. Otherwise Sample outputs a random sample of
mt = 2 log(1/θt)/α

2 points from U . Note that the randomness used for Sample(U , ·) is indepen-
dent of any randomness used for the classification (by Classifyr) of points in U . Let the number of
goodr(U) points in the sample be X. An additive Chernoff bound gives us: Pr[|(X/M)|U|−gr(U)| >
α|U|] < exp(−α2mt) ≤ θt/2. If this holds, then |ε(U)|U| − br(U)| ≤ α|U| + βw(U). An argument
identical to that in the proof of Claim 4.5 shows that the LIS estimate is also sound. The total error
probability (of Sample being unsound and any auxiliary procedure failing) is at most θt. 2

Claim 6.5 The probability that over the random seed that (U , tf ) is marked is at most α.

Proof: Suppose, for a fixed t and any B, et is an upper bound on the probability that (B, t) is
marked. Note that e1 = 0. The box (B, t) is be marked if either ApproxLISt(B) is not sound, or it
invokes ApproxLISt−1 on a marked box.

By Claim 6.4, the procedure ApproxLISt(B) is unsound with probability < θt. This in-
vokes Classifyt at most O(log(1/θt)/α

2) times. Each such invocation to Classifyt in turn calls
ApproxLISt−1(·) O(1/αc′) times. A union bound gives the following recurrence for the probabilities:

et ≤ log(1/θt)et−1/α
c′ + θt

We prove by induction that:

et ≤ αc(tf+1−t)
∑

s≤t

1/s2

The base case is trivially true. We now perform the induction step. First, since α is much smaller
that 1/t, we have:

log(1/θt)α
c/αc′ = c(tf + 1− t) log(t2/α)αc−c′ < 1

et ≤ log(1/θt)et−1/α
c′ + θt

≤ (αc(tf−t+2)
∑

s≤t−1

1/s2)(log(1/θt)/α
c′) + αc(tf+1−t)/t2

≤ (αc(tf−t+1)
∑

s≤t−1

1/s2)(log(1/θt)α
c/αc′) + αc(tf+1−t)/t2

≤ (αc(tf−t+1)
∑

s≤t−1

1/s2) + αc(tf+1−t)/t2

= αc(tf+1−t)
∑

s≤t

1/s2
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2

The following claim has a proof almost identical to that of Claim 4.9. The main difference is
that the number of calls that ApproxLISt makes to Classifyt is a function of t.

Claim 6.6 For any box U , the running time of ApproxLISt(U) is ((1/α)t logn)O(1).

Proof: Let c be a sufficiently large constant. Since α is much smaller than 1/t, we can bound
mt ≤ (1/α)c/2. The running time of ApproxLISt is at most (1/α)c/2 times the running time of
Classifyt.

We prove that the running time of Classifyt is (log n/α
t)c, by induction on t. The running time

of Classify0 is just constant. Assume the bound holds for Classifyt. Now consider Classifyt+1.
First, there is a call to Unsplittablet+1. A call to Unsplittablet+1 calls Find once and then po-
tentially makes a recursive call. Regardless of the value of p, ρp ≥ α/(3(log∗ n)2). Whenever
Unsplittablet makes a recursive call, the size of the box goes down by a (1−ρp/5) factor. Therefore,
the total number of recursive calls is at most (log n/α)c/3. By Claim 3.6, the total running time for
Unsplittablet+1 is at most (log n/α)c/2. The running times for Steps 2 and 3 of Classifyt+1 is at
most (log n/α)c.

In Step 4 of Classifyt+1, there are at most (1/α)c/3 calls to ApproxLISt (one call for each grid
box). By the induction hypothesis, the time for this step is at most (1/α)5c/6(log n/αt)c. As argued
before, the longest length grid chain can be found in (1/α)c time. The final call to Classifyt takes
(log n/αt)c time. Summing up all these running times, we bound the total time by

(1/α)5c/6(log n/αt)c + (log n/α)c + (1/α)c + (log n/αt)c ≤ (log n/αt+1)c

2

6.4 Safeness in chains

We need to extend our definition of safeness to points in grid chains. This definition is a direct
adaption of Definition 3.1. We then prove a lemma analogous to Lemma 5.2 to bound the number
of unsafe points in a box.

Definition 6.7 Let B ⊆ U . Let G be a maximal chain of boxes in B consisting of boxes C1, C2, · · · .
Let a point P ∈ G be contained in chain box Ci. The point P is (G,U , 1− µ)-safe if for any interval
if the following is true: for any U-strip S having P as an endpoint such that S ⊆ st(B,U) and
|S| ≥ |Ci|/α the number of violations with P in this strip is at most µ|S|+ (α2/ logn)w(B).

A point P is (G, 1− µ)-unsafe if the above does not hold.

Lemma 6.8 Let G be a maximal chain of boxes in B with size at least (1−µ+3α)|st(B,U)|. Then
there exists at least α|st(B,U)| (G, 1− µ+ α)-safe points in B.

Proof: We partition the points in st(B,U) \ G into two sets, Ga and Gb. The former (resp. latter)
contains the points in st(B,U) above (resp. below) G. Abusing notation, we will let [P,Q] denote
the U -strip formed with P and Q as endpoints.

We first bound the total number of right-unsafe points in B by [(1 − (µ − 2α))/(µ − 2α)|Gb|.
The proof is analogous for left-unsafe points. As before, we can partition the points in G := B \ G
into above and below sets, Ga and Gb. We charge points in Gb with a credit scheme. First assign
one unit of credit for each right-unsafe point. We will process all the right-unsafe points in reverse
order (rightmost to leftmost). Processing a point will involve moving its credit to some points in
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Gb. Finally, at the end of the processing, we will show an upper bound on the credit that each point
in Gb possesses. This will give us our desired bound.

Here is how we process P , which is in chain box C. Let QP be the point such that the interval
[P,QP ] contains more than a (µ − α)-fraction of violations (with P ). This interval is larger than
|C|/α. The only points of G that P can be in violation with are in the chain box containing P .
That is at most an α-fraction of the interval [P,QP ]. This means that the interval [P,QP ] contains
at least a (µ − 2α)-fraction of violations, all of which are in Gb. We will call these Gb-violations.
Spread one credit among all these violations (with P ) in [P,QP ]. We use the word “spread” because
we do not simply drop one unit of credit into one account. Let the set of Gb-violations (with P ) in
this interval be V . Suppose z is the total amount of credit possessed by them. The point P now
contributed one unit of credit. Distribute the total z + 1 credits uniformly to all points in V .

We now show that no point in Gb ever receives more than x = [1 − (µ − 2α)]/(µ − 2α) units
of credit. Suppose by contradiction that this were the case. Let this happen just after processing
right-unsafe P . Some point Q ends up with more than x units of credit. This point Q must be
a Gb-violation with P . By the charging process, all Gb-violations with P in [P,QP ] must have
more than x units of credit. There are at least (µ − 2α)|[P,QP ]| Gb-violations. The total amount
of credit on these violations is at least x(µ − 2α)|[P,QP ]|. On the other hand, the only credit
contribution to these points comes from chain boxes in [P,QP ]. The total number of them is at
most [1− (µ− 2α)]|[P,QP ]|. So

[1− (µ− α)]|[P,QP ]| > x(µ− α)|[P,QP ]| =⇒ x < [1− (µ− α)]/(µ− α)

That contradicts the choice of x. Applying an analogous same argument for left-unsafe points, the
total number of unsafe points is at most {[1− (µ− 2α)]/(µ− 2α)}|G|.

Since |G| ≥ (1 − µ + 3α)|st(B,U)|, |G| < (µ − 3α)|st(B,U)|. The number of safe points in B
(actually in G), as a fraction of |st(B,U)| is at least

(1− µ+ 3α)−
(µ− 3α)(1− (µ− 2α))

µ− 2α
> α

2

6.5 The chain for Phase 1 ends

The main difference between this algorithm and the basic version is behavior of Unsplittable. As
mentioned earlier, this goes through various phases, indicated by the argument p. In this section,
we give a more formal treatment to these phases and prove a crucial structural theorem. We will
use the definitions of terminal boxes and the U -invoked tree given before. We will focus on a fixed
level t and hence will not involve the level number explicitly in our claims and proofs. We will also
focus only on calls to Classifyt(·,U), so we will drop the mention of U from our notation.

During a call to Unsplittablet(U), the phase only increases. So, we can think of the algorithm as
proceeding from one phase to the next. Consider the tree T of U -invoked boxes. Let us a follow a
path down this tree. Initially, the algorithm is in Phase 1. As we go down the tree, we repeatedly find
splitters and move to smaller and smaller boxes. We reach a box B where Unsplittablet cannot find
a splitter. Unsplittablet shifts to Phase 2, and attempts to find a splitter (with the corresponding
relaxed parameters). We call this a Phase 2 splitter. If it succeeds, then we move down the path to
a smaller box. If not, then Unsplittablet moves to Phase 3, and so on and so forth. If Phase log∗ n
is reached, then the box is terminal. Otherwise, for some p1 > 1, a Phase p1 splitter is found. Then,
we proceed down the tree to the next box. In this smaller box, we try to find a Phase p1 splitter,
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and if we succeed, we continue down the tree. During this phase, if we reach a box whose size is
less than γp1 |B|, then this box becomes terminal. We formalize the behavior of the algorithm by
the following simple definitions and observation.

• ph(S): For a splitter S, ph(S) denotes the phase in which it is found.

• γ(S) and ρ(S): These are shorthand for γph(S) and ρph(S).

• Phase p splitter: A splitter S such that ph(S) = p is a Phase p splitter.

• Phase p terminal: This is a terminal box B such that the call to Unsplittablet ends in Phase
p.

• Phase 1 end: This is a box B which is either a Phase 1 terminal or where the search for a
Phase 1 splitter fails.

• Phase p container: Consider a non-disposable box B that is invoked in Phase p′ (p′ > p). In
the tree T, let B′ be the smallest ancestor of B that was invoked in Phase p. The box B′ is the
Phase p container of S. Note that B could itself be the container. This would happen when a
search for Phase p splitter failed in B, and B was invoked in Phase p′. The Phase p container
of a Phase p′ splitter S is the corresponding container of the box B, where S is found.

Observation 6.9 If B is a Phase log∗ n terminal, then it contains at most a ρlog∗ n−1/2 fraction of
(B,U , γlog∗ n−1, µt − α)-safe points.

If B is a Phase p container that is terminal, then B is a Phase log∗ n terminal. If B is not
terminal, then Find(B,U , γp, µt, ρp) outputs sparse and B contains at most a ρp/2 fraction of
(B,U , γp, µt − α)-safe points.

Proof: If B is a log∗ n terminal, then Find(B,U , γlog∗ n−1, µt, ρlog∗ n−1) outputs sparse. Claim 3.6
completes the proof.

Suppose B is a terminal box that is a Phase p container. Since B has no children, it must
be a container for itself. Therefore, B must be invoked in Phase p′ (p′ > p) and also cannot be
disposable. A Phase p splitter was not found in B. When Unsplittablet proceeded to the next
phase, ℓ = |st(B,U)|. The only way that B can be terminal is if the phase for B goes all the way to
log∗ n.

Since B is a Phase p container, it is the smallest ancestor of some box C invoked in Phase p′

(p′ > p). Since B is not terminal, the call to Find(B,U , γp, µt, ρp) was made. If a splitter S was
output, then B is not invoked in Phase p′ and both children of B are invoked in Phase p. The box
C cannot be B is some descendant of B in T . But then, the Phase p container of C is some child of
B and hence, B cannot be a container. The procedure Find(B,U , γp, µt, ρp) must output sparse.
Claim 3.6 completes the proof. 2

Observation 6.10 Suppose B is a Phase p terminal. Then one of the following must hold: either B
is disposable, B is a log∗ n terminal, or |st(B,U)| ≤ γp−1|st(B

′,U)|, where B′ is the p− 1 containder
of B.

Proof: A box is terminal because of an output at Steps 1 or 2. In the latter case, the box B is
disposable. In the former case, either the phase is log∗ n or st(B,U) ≤ γp−1sℓ. If the phase is not
log∗ n, we need to argue that ℓ = |st(B′,U)|. Consider the path in T to B. Note that the parameter
ℓ changes only when the phase changes. By Observation 6.9, along this path, Phase p − 1 ends at
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B′. Hence, |st(B′,U)| is the value of ℓ. 2

Consider a non-disposable Phase 1 end E . We define the terminal chain for E , GE . Take every
terminal C in the subtree of T rooted at E and invoke Claim 5.5 on it. This gives a chain of grid
boxes in C. Taking all these chains together, we get the terminal chain for E . We will prove a very
important claim about this chain.

First, we need to prove some properties of the constants ρp and γp. The parameters were
actually chosen to satisfy the following claim. Since the exact details of the proof are not crucial
to understanding the working of the algorithm, we defer this proof to Section 7.3. Nonetheless, the
interested reader is suggested to see the proof to understand the interplay of parameters.

Claim 6.11 1.
∑log∗ n−1

p=1 ρp < α/2

2.
∑log∗ n−1

p=1

(

1
ρp

× log 1
γp

× γp

)

≤ α

We list out three key properties of a terminal chain GE for E . For convenience, the Phase 1
splitters that define E are considered to be inside E .

Claim 6.12 For box E, suppose 2αw(E)/ log n < |st(E ,U)|. The chain GE satisfies the following
properties.

1. The number of points consistent with all the splitters in E but not in GE is at most 4α|st(E ,U)|.

2. For any splitter S ∈ E, D(S) is disjoint to GE .

3. The size of GE is at most (1− µt + 3α)|st(E ,U)|.

Proof: This first two are consequences of Claim 5.5. For the first property, let us determine
the number of points of L lost inside a terminal box C. This is at most (2rx + 2ry/rx)|st(C,U)| ≤
4α|st(C,U)|. Summing over all C’s, we get the final bound. The second property holds directly from
Claim 5.5.

The last part is the most interesting. Suppose the size of GE is more than (1−µt+3α)|st(E ,U)|.
Then, by Lemma 6.8, there are at least α|st(E ,U)| (GE , 1− µt + α)-safe points in GE . Suppose, for
p ∈ [2, log∗ n], the number of (GE , 1− µt + α)-safe points present in Phase p terminals that are not
disposable is at most ρp−1|st(E ,U)|. This implies that the total number of (GE , 1−µt+α)-safe points
is at most

log∗ n
∑

p=2

ρp−1|st(E)| < α|st(E ,U)|/2 (Claim 6.11)

Hence, there are at least α|st(E ,U)|/2 points in disposable terminal boxes contained in E . This im-
plies that α2w(E)/ log n > α|st(E ,U)|/2, contradicting our assumption. Therefore, we can conclude
that for some p, there are at least ρp−1|st(E ,U)| (GE , 1− µt + α)-safe points in Phase p terminals.

Suppose p = log∗ n. Then, there must be some Phase log∗ n terminal B that contains at least
a ρlog∗ n−1-fraction of (GE , 1 − µt − α)-safe points. Observe that γlog∗ n−1 > α4. The horizontal
separation inside B is at most an α4-fraction of B. Points that are (GE , 1 − µt − α)-safe are also
(B,U , γlog∗ n−1, 1−µt−α)-safe. There are at least a a ρlog∗ n−1-fraction of (B,U , γlog∗ n−1, 1−µt−α)-
safe points in B, which contradicts the first part of Observation 6.9. So, we have p < log∗ n.

We group together Phase p terminals that have the same Phase p − 1 container, inducing a
partition of the Phase p terminals. All these groups contain disjoint sets of points. Therefore, there
is some Phase p − 1 container C such that: the number of (GE , 1 − µt + α)-safe points in C is at
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least ρp−1|st(C)| and all these safe points lie inside Phase p terminals (contained in C). The grid GE

divides each terminal into a grid chain. Consider such a safe point P that is present in the grid box
C′ of Phase p terminal C′′.

By the grid construction, |st(C′, C′′)| ≤ α4|C′′|. Since C′′ is a Phase p terminal with Phase p− 1
container C, we have |st(C′′,U)| ≤ γp−1|st(C,U)| (Observation 6.10). A safe point P in C′ has at
most a (µt −α)-fraction of violations in any U -strip (starting or ending at P ) of size at least |C′|/α.
Combining our bounds,

|C′|/α ≤ |st(C′, C′′)|/α ≤ α3|C′′| ≤ α3|st(C′′,U)| ≤ γp−1|st(C,U)|

Hence, P is (C,U , γp−1, 1−µt+α)-safe. There are at least an ρp−1|st(C,U)| (C,U , γp−1, 1−µt+α)-
safe points in C. By Observation 6.9, C cannot be a Phase p−1 container, implying a contradiction. 2

6.6 The final proof

As before, our aim is to prove Lemma 4.11. For convenience, we restate this lemma.

Lemma 4.11 Fix a sound seed.

• The number of bad1(U) points is at most (1 + ζ2)εU |U|+ ξ2|U|+ ψ2w(U).

• Suppose, for any box B, the number of badt−1(B) points is at most (1+ζt)εB|B|+ξt|B|+ψtw(B)
in number. Then, for any box U , the number of badt(U) points is at most (1 + ζt+1)εU |U| +
ξt+1|U|+ ψt+1w(U) in number.

Since ApproxLIS1 is chosen to be identical to the previous incarnation, the first part of this
lemma is true. It remains to prove the “induction step”, which is the second part. We will assume
the conditions for badt−1.

We perform a partition of the points as before. Let the ordered list of Phase 1 splitters be
S0, S1, · · · . We define Ti,Bi, and Li as before. Observe that Bi is a Phase 1 end. We introduce a new
notation. For any (not necessarily Phase 1) splitter S, let I(S) be the U -strip of the corresponding
box where S is found. We use L∗

i for all points of Li inconsistent with some splitter inside Ti.
We need to update our definition of the destroyed strip D(Ti). Consider every splitter S in Ti.

Note that there could be many Phase p splitters (p > 1) internal to Ti. Each has a destroyed strip
D(S) associated with in. We take the union of these, so D(Ti) = ∪S∈TiD(S).

Claim 6.13 |L∗
i | ≤ (µ+ α)|D(Ti)|+

∑

S∈Ti
γ(S)|I(S)|

Proof: By Observation 5.3, all destroyed intervals D(S) are disjoint. Consider some such splitter
S ∈ Ti, and let us count the number of points in D(S) inconsistent with S. We only need to sum
this bound over all S to complete the proof. Since S is a splitter, it must be (I(S),U , γp, µ+α)-safe.
Here, p = ph(S). If |D(S)| ≥ γ|st(I(S))|, then the number of violations with S in D(S) is at most
(µ + α)|D(S)|. Hence, we get an upper bound of (µ + α)|D(S) ∩ Ti| + γ(S)|I(S)|. A sum over all
S ∈ Ti completes the proof. 2

Definition 6.14 Ψi =
∑

S∈Ti
γ(S)|I(S)|+ (ξ + 6α)|Ti|+ ψw(Ti)

Claim 6.15 Let S be the set of splitters in U . Then
∑

S∈S γ(S)|I(S)| ≤ 10α|U|.
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Proof: Let Hp be the set of Phase p splitters in U . Let us deal with
∑

S∈Hp
γ(S)|I(S)| =

γp
∑

S∈Hp
|I(S)|. Group all splitters Hp that have the same Phase (p − 1) container. This is a

partition of Hp. Focus on one such Phase (p − 1) container B, and let Hp(B) be the set of Phase
p splitters inside B. Consider the recursion tree (of calls) rooted at B. Note that as long as the
Phase is p, the size of the boxes decreases by at least a (1−ρp/5) factor (Claim 3.6). The algorithm
remains in Phase p, as long as the size of the box is at least γp|B|. Hence the length of a path
of Phase t boxes in T is at most 10 log(1/γp)/ρp. Hence, the total contribution of the splitters in
Hp(B) to

∑

S∈Hp
γ(S)|st(BS)| is

10

ρp
× log

1

γp
× γp|B|

Summing this over all Phase (p − 1) boxes B, this means that 10
ρp

× log 1
γp

× γp|U| points are lost
because of the Phase p splitters. This will have to be summed up over all p. Part 2 of Claim 6.11
completes the proof. 2

The following is analogous to Corollary 5.14. The proof is almost identical.

Lemma 6.16 For any terminal strip Ti,, LossA(Ti) ≤ (1+ζ−ζ2/40)(LossL(Ti)+Ψi)+2αw(Ti)/ log n.

Proof: The constants involved are the same as before. We set µ′ = µ + α and µ = µ − 3α. We
have µ = ζ/5 and α ≤ ζ2/30. So µ = µ − 3α > ζ/6 and µ′ = µ + α < ζ/3 (for ζ < 4.1). If
|Ti| < 2αw(Ti)/ log n, then the bound trivially holds. Otherwise, consider the terminal chain Gi for
Bi. All the properties given in Claim 6.12 hold.

We have |Gi| ≤ (1 − µ)|Ti|. We need to bound the size of Li ∩ (Ti \ Gi). We break this set
into parts. The first is L∗

i , the set of points in Li inconsistent with the splitters in Ti. The second
contains points consistent with the splitters but not contained in Gi. The first part is at most
(µ+α)|D(Ti)|+

∑

S∈Ti
γ(S)|I(S)|, by Claim 6.13. The second part is at most 4α|Ti|, by Claim 6.12.

Noting that Gi is disjoint to D(Ti), we get that |Li ∩ (Ti \ Gi)| is at most

(µ+ α)|D(Ti)|+ 4α|Ti|+
∑

S∈Ti

γ(S)|I(S)| ≤ µ′|Ti \ Gi|+ 4α|Ti|+
∑

S∈Ti

γ(S)|I(S)|

The chain Gi is not exactly a grid chain in Ei (since a grid is not necessarily constructed in Ei). For
each box C in Gi, let all goodt−1(C) points are sound and all remaining points are unsound. The
number of unsound points in C is at most (1 + ζ)εC |C|+ ξ|C|+ ψw(B). Applying Lemma 5.13, the
total number of unsound points is at most

(1 + ζ − ζ2/40)[LossL(Ti) +
∑

S∈Ti

γ(S)|I(S)|+ (ξ + 4α)|Ti|+ ψw(Ti)]

By Claim 4.10, the total number of badt(U) points in Ti is at most u+2α|Ti|+4βw(Ti) (where u is
the number of unsound points). This implies that

LossA(Ti) ≤ (1 + ζ − ζ2/40)[LossL(Ti) +
∑

S∈Ti

γ(S)|I(S)|+ (ξ + 6α)|Ti|+ (ψ + 4β)w(Ti)]

= (1 + ζ − ζ2/40)(LossL(Ti) + Ψi)

2

Summing the bound above and using Claim 6.15, we get the following corollary.

Corollary 6.17 Let Υ = (1+ ζ − ζ2/40). Then, LossA ≤ ΥLossL + (Υξ + 20α)|U|+ (Υψ+ 20β +
2α/ log n)w(U).
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7 Extra proofs

7.1 Proofs for auxiliary procedures

For convenience, we first state the Chernoff bounds that we use.

Theorem 7.1 (Hoeffding-Chernoff) Let X = X1+X2+. . .+Xr be the sum of independent Bernoulli
random variables. Then Pr[|X −E[X]| > ∆] ≤ 2 exp(−2∆2/r).

Theorem 7.2 (Multiplicative Chernoff) Let X = X1 +X2 + . . .+Xr be the sum of i.i.d Bernoulli
random variables. Then for σ ∈ (0, 1), Pr[X < (1 − σ)E[X]] ≤ exp(−σ2E[X]/2) and Pr[X >
(1 + σ)E[X]] ≤ exp(−σ2E[X]/3)

We will need a slightly more general version of Claim 3.4.

Claim 7.3 There is a procedure Sample(B, k, σ) that outputs either a set of k points in B with a
size estimate for B or labels B as σ-disposable. The running time is 2k log2 n/σ2 and the following
hold with high probability. If a set is output, then each point in the set is an independent random
sample from B. The size estimate differs from |B| by at most σ|st(B,U)|. If the label is output, then
|B| < σ|st(B,U)| .

Proof: (of Claim 3.4) We choose m = 2k log2 n/σ2 uniform random samples from st(B,F). For
each of these, we check if it is contained in B. Note that because F is represented as an array, and
B is stored by its corner points, this can be done easily. Let X be the number of points that fall in
B. If X ≥ k, we output the first k of these points as the sample set. We set the size estimate to be
(X/m)|st(B,F)|. If X < k, we output disposable. Note than when a set of points is output, it is
certainly an independent uniform sample of k points. It remains to show that with high probability,
when B > σ|st(B,U)|, this procedure outputs a set and a correct size estimate.

Suppose B > σ|st(B,U)|. We have E[X] = (|B|/|st(B,U)|)m ≥ 2k log2 n/σ. The additive
Chernoff bound of Theorem 7.1 gives Pr[|X − E[X]| < σm/2] ≤ 2 exp(−σ2m2/(4m)) ≤ n−Ω(logn).
A simple calculation yields

|X −E[X]| < σm⇐⇒ |X − |B|m/|st(B,U)|| < σm⇐⇒ |(X/m)|st(B,F)| − |B|| < σ|st(B,U)|

This shows the size estimate is accurate. We have σm/2 = k log2 n/σ ≤ E[X]/2. Therefore, we get
at least k log2 n/σ samples in B. 2

Claims 3.4 and 3.3 follow directly from Claim 7.3, by setting σ = α2/ log n and σ = α3/ log n,
respectively. We now prove that grids can be constructed quickly.

Proof: (of Claim 3.5) Suppose B is not disposable. By Claim 3.4, we can get c log2 n/r2x indepen-
dent uniform random samples in B in 2k log6 n/(r2xα

4) time. Let their sorted list of x-coordinates
be x1, x2, . . .. Take 2/rx equally spaced out coordinates. (These are the x’s corresponding to indices
ic logn/(2rx), for all i.) The vertical lines of the grid will correspond to these x-coordinates. For a
fixed pair of points in the sample, consider the B-strip generated by them. Let the number of points
in this strip be L. Let M = c log2 n/r2x−2 be the number of sample points other than this pair. Let
X be the random variable denoting the number of these sample points that fall in this strip (note
that E[X] = ML/|B|). We have Pr[|X − E[X]| > c log2 n/(4rx)] < 2 exp(−2c2 log4 n/(16r2xM)) ≤
n−Ω(logn). The total number of such pairs is (log n)O(1). Taking a union bound over this error
probability all such pairs, we get that for every strip, the number of points in the strip deviates
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from the expectation by at most c log2 n/(4rx). Now, consider such an adjacent pair of vertical lines.
For this strip, we have X = c logn/(2rx) by construction. Hence, ML/|B| = E[X] ≤ 3c logn/(4rx),
implying L ≤ rx|B|. This gives the desired properties of the vertical lines.

Through Claim 3.4, we can generate a random subset of c log2 n/(r2y) samples in B. Take the
sorted list of these y-coordinates, we can choose 2/ry horizontal lines such that the number of B-
points between adjacent horizontal lines is at most ry|B|. The proof is exactly the same as above.
A union bound over all the error probabilities completes the proof. 2

Before proving Claim 3.6, we need a procedure that decides the safeness of points. The following
is an adaptation of procedures used in [ACCL08].

Claim 7.4 Let B be a box that is not disposable. There is a procedure Safe(P,B,U , γ, µ) that takes
as input P ∈ B and outputs safe or unsafe. The running time of this procedure is c log2 n/(α3µ) and
the following hold with high probability. If the output is safe, then the point P is (B,U , 2γ, µ+α)-safe.
If the output is unsafe, then P is (B,U , γ, µ− α)-unsafe.

Proof: We first use Claim 3.4 to get a random sample of size k = c log2 n/(αγ)2 in B. We
perform the following for every point Q in the sample such that: the B-strip S with P and Q as
endpoints contains at least 3γk/2 points. Invoke Sample(S, c log2 n/α2, γα2/ logn). If no sample is
found, terminate the procedure and output arbitrarily. If a sample is found, we check the fraction of
violations with P . If for any S, this fraction is more than µ, we label the point unsafe. Otherwise,
we label the point safe. We will refer to the strips S as those found by our procedure.

Let us first prove some preliminary facts. Consider some B-strip T that has size at least αγ|B|/10.
Let the random variable denoting the number of points of the sample in B falling in S be XT . By
the additive Chernoff bound, Pr[|XT − E[XT ]| > k/(20αγ)] ≤ n−Ω(logn). Taking a union bound
over all B-strips (at most polynomially many), for every strip T , XT deviates from its expectation
by at most c log2 n/(20αγ). For any strip S found by our procedure, this implies that |S| > γ|B|.
Henceforth, we assume this to hold.

Suppose point P is (B,U , 2γ, µ+α)-unsafe. Then, there is some B-strip T ending at P such that
|T | ≥ 2γ|B| and T has at least a (µ + α)-fraction of violations. By the above, there is some point
Q ∈ T in the sample of B such that the B-strip T ′ formed by P,Q has size at least |T |(1− α/10).
Since T contains at least (µ + α)|T | violations (with P ), T ′ contains at least a (µ + α/2)-fraction
of violations. We have the size bound,

|T ′| ≥ |T |(1− α/10) ≥ γ|B| ≥ γα2w(T ′)/ log n

By Claim 7.3, the invocation to Sample(T ′, c log2 n/α2, γα2/ logn) will return a random sample
of size k′ = c log2 n/α2. Let X be the random variable denoting the number of violations with
P in this sample. We have E[X] > (µ + α/2)k′. By the multiplicative Chernoff bound, Pr[X <
(1−α/4)E[X]] ≤ exp(−α2E[X]/32). Since α < µ, the probability that X ≤ µk′ is at most n−Ω(logn).
Hence, we will find at least a µ-fraction of violations in this strip, and declare the point unsafe with
high probability.

Suppose the point P is (B, γ, µ− α)-safe. Consider a strip S found by our procedure. Since the
size of this strip is at least γ|B|, the fraction of violations is at most (µ − α). A random sample
of size k′ is chosen in this strip. As before, let X be the random variable denoting the number of
violations. Note that E[X] < (µ − α)k′ and we have Pr[X > (1 + α/4)E[X]] ≤ exp(−α2E[X]/64).
Hence, X ≥ µk with low probability. A union bound over all strips that are found shows that the
point is declared safe with high probability. We take a union bound over all the error probabilities
to complete the proof. 2
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Proof: (of Claim 3.6) Suppose B is not disposable. We will show that with high probability Find
will output either a point or the label sparse.

By Claim 3.4, we can get a random sample of k = c log2 n/ρ2 points from B. For each point
P in the sample, we run Safe(P,B,U , γ, µ). If at least a 9ρ/20-fraction of points are deemed safe,
output the middle (by x-coordinate) safe point. Otherwise, output sparse. By a union bound, the
calls to Sample and Safe succeed with high probability. So, let us assume that no failure occurred.

For any point P ∈ B, let XP denote the random variable that is the number of sample points
to fall to the left of P (including P ). An additive Chernoff bound shows that Pr[|XP − E[XP ]| >
9ρK/80] < 2 exp(−(9ρ/80)2k). Taking a union bound over all points in B, we conclude: with high
probability, if, for any P ∈ B, XP > 9ρk/20, then E[Xp] > ρk/5. Hence the fraction of points to
the left of P is at least ρ/5. A similar claim holds for points to the right of P .

Suppose a point P is output. By Claim 7.4, this point is (B,U , 2γ, µ + α)-safe. There are at
least a 9ρ/40-fraction of sample points (from B) both to the left and right of p. By the argument
above, there must be at least ρ|B|/5 points in B both to the left and right of P .

Suppose there are more than a (ρ/2)-fraction of (B,U , γ, µ−α)-safe points. Let Y be the random
variable denoting the number of (B,U , γ, µ − α)-safe points in the sample. We have E[Y ] ≥ ρk/2
and Pr[|Y −E[Y ]| > ρk/10] < 2 exp(−(ρ/10)2k). With high probability, at least a 9ρ/20-fraction of
the random sample is (B,U , γ, µ−α)-safe. By Claim 7.4, all of these points are deemed safe. Hence,
sparsewill not be output. 2

7.2 Proofs about terminal boxes

Proof: (of Claim 4.6) Consider two invoked boxes B and B′ such that neither is a subset of the
other. There exists point P such that Unsplittable(P,U ,U) eventually calls Unsplittable(P,B,U)
(similarly, we have point P ′). Let us look at the recursion paths for both Unsplittable(P,U ,U) and
Unsplittable(P ′,U ,U). Let us set B0 = B′

0 = F . We have a the sequence of calls Unsplittable(P,B0,U),
Unsplittable(P,B1,U), Unsplittable(P,B2,U), . . . , Unsplittable(P,B,U) made from Unsplittable(P,U ,U).
Similarly, we have the call sequence Unsplittable(P ′,B′

0,U), Unsplittable(P
′,B′

1,U), Unsplittable(P
′,B′

2,U),
. . . , Unsplittable(P ′,B′,U). Since neither B or B′ is a subset of the other, we can find the small-
est index j where Bj 6= B′

j . Therefore, Bj−1 = B′
j−1. Both calls Unsplittable(P,Bj−1,U) and

Unsplittable(P,B′
j−1,U) invoke procedure Find on the same arguments. Since we have a fixed ran-

dom seed associated with this, for both calls to Unsplittable find same splitter S. The boxes Bj and
B′
j are the two different created in Step 2b and are hence comparable. Since B ⊆ Bj and B′ ⊆ B′

j ,
B and B′ are comparable.

Consider a leaf box B. This means there is recursion path of calls Unsplittable(P,B0,U),
Unsplittable(P,B1,U), . . . , Unsplittable(P,Bk,U), Unsplittable(P,B,U) made from Unsplittable(P,U ,U).
Note that P ∈ Bi, for all i, but P might not be in B (hence leading to the termination of the call).
We argue that regardless of this, B is a terminal box. If, for some reason, B is actually an empty
box, then the call to Find(B,U , . . .) will label this is as disposable. So, B is a terminal box, by our
definition. If not, then take Q ∈ B. The recursion path for Unsplittable(Q,U ,U) must encounter
exactly the same boxes as P . The call to Unsplittable(Q,B,U) cannot go to Step 2 because if it
did, there would be an invoked box contained in B (but B is a leaf). Hence, the call terminates in
either Step 1 or 3. So this box is terminal.

Consider a box B′ ⊂ B that is a child of B in this tree. A splitter is found in B, and B′ is either
Bl or Br in Step 2b. By the properties of Find (Claim 3.6), there are at least α|B|/5 points in B to
the left (and right) of S. Hence, |Bl| ≤ (1 − α/5)|B| (similarly for Br). This means that as we go
down a path in the tree, the sizes decrease by a multiplicative factor of at least (1 − α/5). So the
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depth can be at most 10 log n/α. 2

Proof: (of Claim 4.7) Consider two splitters Si and Sj which we found in boxes Bi and Bj . By
Claim 4.6, either (wlog) Bi ⊆ Bj , or Bi and Bj . In the former case, Bi is dominated by the splitter
Sj , so Si is comparable to Sj . In the latter case, the splitters are trivially comparable (since they
are contained in the respective boxes).

It is quite easy to see that all invoked (and hence terminal) boxes are formed by splitters at their
opposite corners. Consider the box Box(Si, Si+1. Suppose that Si is found in Bi and Si+1 is found
in Bi+1. Note that Bi cannot be comparable to Bi+1 (that would imply the existence of a splitter
between Si and Si+1). So let us assume that Bi ⊂ Bi+1. So in the tree of boxes, Bi is a descendant
of Bi+1. Hence, in a call to Unsplittablept(P,U ,U) that finds Si, the splitter Si+1 is found first.
Now, the box Bi contains splitter Si and so the top right corner of Bi must be greater than Si. So
it must be Si+1. The box Bi has Si+1 at its top right corner, and Si is found in this box. By the
properties of the splitter (Claim 3.6), there are at least α|Bi|/5 points to the right of Si and in Bi.
Take such a point P ′ and consider the call to Unsplittablep(P

′,U ,U). This call must eventually
end up at Unsplittablet(P

′, Box(Si, Si+1),U). Since a splitter cannot be found in this box, this is a
terminal box.

A box of the form Box(Si, Sj), for j > i+1 cannot be terminal, since it contains a splitter. This
completes the proof. 2

Proof: (of Claim 4.8) The first part is easy to see. Critical boxes that are not tiny terminal
boxes are found in Step 4 of Classifyt. A chain of critical boxes, which is the longest grid chain, is
found in the relevant terminal box. So the U -critical boxes form a chain contained in the chain of
U -terminal boxes.

All goodt points are present in critical boxes, since points labeled goodt are either in tiny boxes
or in the longest grid chain found in Step 4. We prove that these form an increasing sequence by
induction on t. There are no good0 points, so this is vacuously true for t = 0. Suppose this is true
for t = r. Let us look at goodr+1(U) within a given terminal box B. If B is tiny, then the goodr+1(U)
points here form the LIS. If not, then the goodr+1(U) points are in the longest grid chain of boxes
C′
1, C

′
2, . . . for B. The set of goodr+1 points is exactly the union of goodr(C

′
i) points (for each i). By

the induction hypothesis, in each C′
i, the set of goodr(C

′
i) points form an increasing sequence. Since

the boxes C′
1, C

′
2, . . . form a chain, all the goodr+1(U) points inside B form an increasing sequence.

Finally, since all the terminal boxes form a chain, all goodr+1(U) points form an increasing sequence.
2

7.3 Proof of Claim 6.11

We first need the following technical claim.

Claim 7.5 1. For 1 ≤ p ≤ log∗ n, log(p) n ≥ log∗ n− p.

2.
∑

p≤log∗ n 1/ log
(p) n ≤ 2

Proof: We prove the first part by (reverse) induction on p. For p = log∗ n, the left side is positive,
and the right side is 0. So the base case holds. Suppose log(p) n ≥ log∗ n− p, for p > 1.

log(p−1) n = 2log
(p) n ≥ 2log

∗ n−p

Observing that for any positive integer x, 2x ≥ x+ 1, we get log(p−1) n ≥ log∗ n− (p− 1).
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For the second part, we show that log(p) n ≥ 2log
∗ n−p. We prove by reverse induction on p.

For p = log∗ n, we have equality. The induction hypothesis is 2log
∗ n−p ≤ log(p) n (for p > 1). So,

2log
∗ n−p+1 ≤ 2 log(p) n. Since for x > 1, 2x ≤ 2x, we get 2log

∗ n−p+1 ≤ log(p−1) n. Hence,

∑

p≤log∗ n

1/ log(p) n ≤
∑

p≤log∗ n

2−(log∗ n−p) ≤ 2

2

The first part of Claim 7.3 is quite straightforward.

log∗ n
∑

p=2

ρp ≤ (α/6)

log∗ n−1
∑

p=1

1/(log∗ n− p)2 < (α/6)
∑

p≥1

1/p2 < α/2

The second part is somewhat more tricky. We have to bound the following sum.

∑

p

1

ρp
× log

1

γp
× γp

For the first part, the value of ρp for small p had to be small. But that could hurt us over here.
This is where our choice of γp will save us. Since γp is so small (for small p), this counteracts the
influence of the small ρp. Let us plug in the values of ρp and γp.

∑

p

(

1

ρp
× log

1

γp
× γp

)

≤
∑

p

[

6(log∗ n− p)2

α
× log

(

(log(p)) n)4

α3

)

×
α3

(log(p) n)4

]

=
∑

p

[

α(log∗ n− p)2

(log(p) n)3
× 6 log

(

(log(p)) n)4

α3

)

×
α

(log(p) n)

]

≤
∑

p

[

α

log(p) n
× 6 log

(

(log(p) n)4

α3

)

×
α

(log(p) n)

]

For the last part, we used log(p) n ≥ log∗ n − p for p ≤ log∗ n (Claim 7.5). Since α is a sufficiently
small constant, we have

6 log

(

(log(p) n)4

α3

)

×
α

log(p) n
≤ 6α log(1/α3)× 4

log((log(p) n))

log(p) n
≤ 1/2

Combining this with the second observation in Claim 7.5,

∑

p

(

1

ρp
× log

1

γp
× γp

)

≤
∑

p

α

2 log(p) n
≤ α
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