
Preparing Multi-physics, Multi-scale
Codes for Exascale HPC

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.!

SAND2011-4805P

Programming model, mechanisms, etc

• How programmer views data and the
computations that operate on it.

• Mechanism: MPI, OpenMP, cuda, opencl, etc

• Critical link: how codesign layers view data and
the computations that operate on it.

• Over-arching goal: science and engineering

AORSA simulation;
movie by Sean Ahern@ORNL

C APPROXIMATE VALUES FOR SOME IMPORTANT MACHINES ARE:
C
C IBM/195 CDC/7600 UNIVAC/1108 VAX 11/780 (UNIX)
C (D.P.) (S.P.,RNDG) (D.P.) (S.P.) (D.P.)
C
C NSIG 16 14 18 8 17
C ENTEN 1.0D75 1.0E322 1.0D307 1.0E38 1.0D38
C ENSIG 1.0D16 1.0E14 1.0D18 1.0E8 1.0D17
C RTNSIG 1.0D-4 1.0E-4 1.0D-5 1.0E-2 1.0D-4
C ENMTEN 2.2D-78 1.0E-290 1.2D-308 1.2E-37 1.2D-37
C XLARGE 1.0D4 1.0E4 1.0D4 1.0E4 1.0D4
C EXPARG 174.0D0 740.0E0 709.0D0 88.0E0 88.0D0

c timing on ncar"s control data 7600, besic takes about
c .32+.008*n milliseconds when z=(1.0,1.0).
c
c portability ansi 1966 standard

Target architectures

• Small clusters: linux, SunOS, IRIX, AIX

• MPP: Red Storm, Red Sky

• New ASC capability: Cielo

and beyond!

 1: Revolutionary: programming model

 ½ : Evolutionary: programming mechanism

Goal :
At most, one and a half code re-writes

Cielo Cray XE6

ALEGRA threading experiment
(Preliminary work)

Cielo Gemini Interconnect

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

B
a

n
d

w
id

th
 (

M
B

/s
)

MPI Message Size (Bytes)

Gemini Z Direction
Gemini Y Direction

SeaStar

BSP + msg agg
Eg multi-material shock solid mechanics

DO I = 1, NUM_VARS!

END DO!
DO I = 1, NUM_VARS!

END DO!

z
x

y

Dominant Issue

A million lines of code like this:

A (B (I)) = C (D (I))

Nice way to manage unstructured mesh

?

φ	

φ	

φ	

Managing for power?

Programming Model of the Future
(prediction, not a preference)

• SPMD MPI between nodes

• On-node: multiple “views” of the data structure;
eg SIMD, SIMT, MIMD.

• C/C++/Fortran

– With “helper” syntax/semantics, mechanisms, &
libraries

So said I, 8 June 2011, and again July 27, 2011.

Programming Model of the Future
(preference, not a prediction)

const
 PhysicalSpace: domain(2) distributed(Block) = [1..m, 1..n],
 AllSpace = PhysicalSpace.expand(1);

var
 Coeff, X, Y : [AllSpace] : real;

var
 Stencil = [-1..1, -1..1];

forall i in PhysicalSpace do

 Y(i) = (+ reduce [k in Stencil] Coeff (i+k) * X (i+k));

Programming Model of the Future
(preference, not a prediction)

const
 DensPhysSpace: domain(2) distributed(Block) = [1..m, 1..n],
 AllSpace = PhysicalSpace.expand(1),
 SparseSpace = sparse subdomain (AllSpace);

var
 Coeff, X, Y : [SparSpace] : real;

var
 Stencil = [-1..1, -1..1];

forall i in SparseSpace do

 Y(i) = (+ reduce [k in Stencil] Coeff (i+k) * X (i+k));

Whatever it is, I want:

• Asynchronous movement of data between
distributed memory processes,

• Effective movement of non-contiguous data, and

• Logical-to-physical map (locality controls).

Summary

•  Architectures in flux (but converging?)

•  Programming mechanisms in flux (but converging?)

•  Revolutionary code re-write a huge undertaking

•  Not a computer science exercise (but publications are to be had)

•  Science and engineering trust must be maintained throughout

A (B (I)) = C (D (I))

Acknowledgements

• Sandia CSRF

• NNSA ASC CSSE

Thanks

ALEGRA code base*
(project began 1990)

* Excluding some Fortran (58k@121f), python, xml, etc, some uncounted files,
and the Nevada framework.

Will the next programming model be an
incremental change or a revolutionary change?

It will (mostly) be what we should have been doing (and
wanted to do) with SCOTS.

Like early days of message passing, will probably require
evolutionary changes wrt programming mechanisms
(eg CUDA, OpenCL, HMPP, PGI accel, XYZ, …, and
MPI.)

Do we need to completely rethink our applications or
will incremental approaches suffice?

Perhaps will inspire new algorithms/applications?

Yes.

