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Structural Origins of Scintillation: 
Metal Organic Frameworks as a Nanolaboratory

PI: F. Patrick Doty, Sandia National Labs
Award Number: 131554

Objective: Elucidate mechanisms of scintillation, 
through studies of metal organic framework 

materials (MOFs), and explore the potential of 
improved MOF-based sensor materials. 

Approach: Synthesize a systematically designed 
range of materials and structures designed to probe 

physics of scintillation process.  Materials 
characterization using steady-state and time-

resolved photoluminescence, radioluminescence, 
and scintillation measurements.  Use theoretical 

models to describe MOF electronic states and the 
influence of structure and chemistry on kinetics of 

scintillation.

Personnel Support: Staff Members, 3; Post-Docs, 
2; Students, 2; Technologist, 1

Relevance: 
•Determine applicability of MOFs to neutron 
detection
•Demonstrate rational design to tailor scintillation
•Develop Models for organic scintillator response

Results this year: 
•Demonstrated correlation between structure and 
luminescence properties for interpenetrated/non-
interpenetrated MOFs
•Described luminescence modification via  extrinsic 
infiltration, excimer, and exciplex formation 
•Discovered new MOF-based spectral 
neutron/gamma discrimination scheme based on 
heavy-metal induced triplet harvesting.

Funding: 
Year 1: FY08-$250k, Year 2: FY09-$250k, Year 3: FY10-$250k

PI contact Information: F. P. Doty, Sandia National 
Labs, (925) 294-4634  fpdoty@sandia.gov
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Program Objective

• Origins of luminescence and energy transfer in Metal-
Organic Frameworks

• Structure-property relationships for radiation detection and 
sensing applications.  

• Luminescence as a signal transduction mechanism

• Systematic ‘design rules’ for MOF-based scintillators
• Wavelength, intensity, timing characteristics

• Distinctions from purely organic fluorophores

• Intermolecular and charge-transfer interactions
• Effects of framework structure

• Control over the triplet state luminosity

Fundamental aspects of MOF luminescence have not been investigated
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“L” 

IRMOF-1

IRMOF-3

• Electronic effects upon optical/luminescence 
properties

• Effects of framework interpenetration upon 
PL and radioluminescence spectra

• Framework flexibility and intermolecular 
interactions

• Host/guest complexes and charge-transfer 
interactions

Non-
Interpenetrated

Interpenetrated

(IRMOF-8)

(IRMOF-8’)

Triplet 
Harvesting

• Energy transfer via spin-orbit coupling

• Spectrally-resolved particle discrimination

Part I. Part II.

Part III. Part IV.

Areas of Study



IRMOF-1

IRMOF-3
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Chemical Functionalization:

•Intermolecular interactions and 
symmetry breaking

•Luminosity:  >60 times brighter 
upon –NH2 substitution

•Stokes shift:  47 nm (IRMOF-1), 
95 nm (IRMOF-3)

•Additional differences?

IRMOF-1 IRMOF-3

Effects of Interpenetration: IRMOF-8’
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•HOMO’s are localized on the discrete linker groups

•LUMO’s of IRMOF-1 and IRMOF-3 are delocalized over neighboring linker 
groups but do not penetrate Zn4O cores

•Indicates that wide-bandgap n-type semiconducting behavior is expected

DFT: HOMO and LUMO Wavefunctions

Metal orbitals are not associated with HOMO or LUMO states:
Linker-Centered Properties
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• Non-participation of Zn states in VBM and CBM

• Zn4O states are closer to VBM in IRMOF-1 vs. IRMOF-9/10

• Presence of amine in IRMOF-3 adds new states in IRMOF-1 
bandgap

IRMOF-1
3.2 eV bandgap

IRMOF-3
2.5 eV bandgap

DFT Projected Density of States

C
O
Zn
H

C
N
O
Zn
H
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• Symmetry effects

• Relative magnitude of spin-up vs. spin-down densities

• Structural rearrangement in the excited triplet state

• Luminescence quantum yields and magnitude of Stokes’ shifts

Spin-polarized Triplet Charge Densities

IRMOF-1 IRMOF-3



•Lifetime: Decay times of 4ns (96%) and 22ns (4%)

•Intensity:  65% anthracene (proton radioluminescence)

Naphthalene-based Framework: IRMOF-8

•Structural changes upon Ionization?
• 476 nm peak reminiscent of 
naphthalene excimer emission

Non-interpenetrated: Cubic Fm-3m

•Monomer vibronic progression still 
observed

•Red-shifted IBIL peak at λem=476nm



Effects of Interpenetration: IRMOF-8’

Interpenetrated Structure

4.187 Å

5.489 Å4.965 Å

4.910 Å

•Reminiscent of naphthalene excimer 
•Broad maximum at 475nm
•Similar relative peak intensities

•Wavelength dependent emission in IRMOF-8’
•Rigidified structure imposes ground-state interactions



•Reminiscent of naphthalene excimer 
•Broad maximum at 475nm
•Similar relative peak intensities

•Wavelength dependent emission in IRMOF-8’
•Rigidified structure imposes ground-state interactions

Effects of Interpenetration: IRMOF-8’

Sato, T. et al. J. Chem. Phys. 2005, 123, 104307.

4.187 Å

5.489 Å4.965 Å

4.910 Å
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Intermolecular Dimer Interactions: Flexible (Al) MOF

•New excitation at 398 nm: 
Ground-state dimer interactions

Excitation

Emission

“Open”

“Closed”
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Excitation Emission

Host-Guest Interactions: Donor-Acceptor Complexes

• Guest-dependent charge-transfer (CT) emission

• Exciplex vs. ground-state complex formation

• Intense CT fluorescence

http://upload.wikimedia.org/wikipedia/commons/5/57/Dimethylamine-2D.png
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Compound Monomer 
λem (nm)

CT 
λem (nm)

Ip

(eV)
Lifetime 

(monomer), (ns) 
Lifetime 
(CT), (ns)

ΔHf

(kJ/mol)

1 385 - - 6 (100%) - -

1a (DMA) 385 460 8.14 1 (64%), 5 (36%) 6 (11%), 19 (89%) +4.6

1b (DEA) 385 535 6.99 1 (68%), 5 (32%) 8 (24%), 34 (76%) -9.2

Luminescence Properties

Complex 1b

•CT luminescence correlated with ionization potential of donor species

Complex 1b
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Compound Monomer 
λem (nm)

CT 
λem (nm)

Ip

(eV)
Lifetime 

(monomer), (ns) 
Lifetime 
(CT), (ns)

ΔHf

(kJ/mol)

1 385 - - 6 (100%) - -

1a (DMA) 385 460 8.14 1 (64%), 5 (36%) 6 (11%), 19 (89%) +4.6

1b (DEA) 385 535 6.99 1 (78%), 5 (22%) 8 (24%), 34 (76%) -9.2

Luminescence Properties

Complex 1b
(DEA)Complex 1b

•CT lifetime associated with strength of host-guest interactions

•Compare to (H2NDC + DEA) exciplex: 4ns lifetime 
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Compound Monomer 
λem (nm)

CT 
λem (nm)

Ip

(eV)
Lifetime 

(monomer), (ns) 
Lifetime 
(CT), (ns)

ΔHf

(kJ/mol)

1 385 - - 6 (100%) - -

1a (DMA) 385 460 8.14 1 (64%), 5 (36%) 6 (11%), 19 (89%) +4.6

1b (DEA) 385 535 6.99 1 (68%), 5 (32%) 8 (24%), 34 (76%) -9.2

Luminescence Properties

Complex 1b

•Enthalpy of CT complex formation calculated from variable-temp. data

•Exothermic ΔHf for 1b associated with preferential adsorption into pores



Doty, F. P. et al. SAND Report 2010-6724, 2010.

Increasing Delayed Luminosity: Triplet Harvesting

•Intense T1→S0 via mixing of spin and orbital 
angular momenta

•Mediated by strong spin-orbit coupling of 
cyclometalated iridium guest complexes

Increased intensity of delayed luminescence

Factors to be considered:

•Host-Guest energy level alignment

•Guest concentration

•Steric and orientation effects

•Strength of spin-orbit coupling
•Lifetime
•Quantum yield
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3.4 nm

2.6 nm

1.9 nm

MOF-177 DUT-6

Ir(thio)3

Triplet Harvesting in Large-Pore MOFs

•Matching of guest molecule to host cavity
•Short-range Dexter exchange 
mechanism

•Hexagonal vs. cubic pore environments

•MOF-177:    Zn4O, benzenetribenzoate
•DUT-6:          Zn4O, benzenetribenzoate
•IRMOF-10:   Zn4O, biphenyldicarboxylate

1.7 nm

IRMOF-10



Particle-dependent Spectral Response 
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• Higher Iridium doping ratio is possible in MOF-177
-Larger pore size

• Comparison of relative singlet:triplet intensities 
indicates more efficient triplet transport in DUT-6

• Dexter exchange mechanism

[I593/I387]: PL =   0.14
[I593/I387]: CL =   0.63
[I593/I387]: IBIL = 3.12

[I599/I387]: PL =   0.86
[I599/I387]: CL =   1.03
[I599/I387]: IBIL = 4.29

Energy Transfer  and Spectral-Shape Discrimination
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0 500 1000 1500 2000 2500 3000 3500
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5

10

50

100

500

1000 Proton beam induced luminescence 
decay for DUT 6 + Ir(ppy)3 (1 wt% Ir)

Slow component  decays 
exponentially

Radioluminescence Intensity and Decay

Delayed exponential decay characteristic of 
3MLCT emission 

Integrated CL intensity for infiltrated DUT-6 
is >125% trans-stilbene
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30 kV, 26 pA, 2 min
25 kV, 26 pA, 2 min
20 kV, 26 pA, 2 min
15 kV, 26 pA, 2 min
10 kV, 26 pA, 2 min

CL Imaging

Radiation Damage Measurements

• MOF and stilbene spectra show uniform 
decrease with dose

• Similar decay rate for MOF host and   
Iridium guest luminescence   

DUT-6:  (15 kv, 26pA, 2min intervals) trans-stilbene:  (15 kv, 26pA, 2min intervals)
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Radiation Damage: Proton Radioluminescence 

 0/exp DDI 

Anthracene:
D0 = 2.044 x 10-5 MGy
β = 0.187

MOF (λ1):
D0 = 2.303 MGy
β = 0.396

MOF (λ2):
D0  = 1.871 MGy
β = 0.434

Enhanced Radiation Hardness via Rigidified MOF structure



Accomplishments

• Publications
• “Assessing the Purity of Metal-Organic Frameworks Using Photoluminescence: MOF-5, ZnO Quantum 

Dots, and Framework Decomposition,”  J. Am. Chem. Soc. 2010, 132, 15487.

• “Designing Metal-Organic Frameworks for Radiation Detection,” Nucl. Instr. Meth. A 2011, doi: 
10.1016/j.nima.2011.01.102.

• “Luminescent Metal-Organic Frameworks: A Nanolaboratory for Probing Energy Transfer via 
Interchromophore Interactions,” ECS Trans. 2010, 28, 137.

• “Metal-Organic Frameworks for the Spectral Discrimination of Neutrons,” In Preparation.

• Patents
• Doped Luminescent Materials and Particle Discrimination Using Same. International Patent 

20110108738, May 12, 2011.

• Presentations
• “Investigation of metal-organic frameworks (MOFs) as hosts for luminescent molecules,” X-Ray, 

Gamma-Ray, and Particle Technologies; Penetrating Radiation Systems and Applications XI, SPIE 
Conference, San Diego, Aug. 2 – 6, 2010.

• “MOF-based Scintillators,” X-Ray, Gamma-Ray, and Particle Technologies; Penetrating Radiation 
Systems and Applications XI, SPIE Conference, San Diego, Aug. 2 – 6, 2010.

• “Effects of crystal structure and linker on MOF luminescent properties,” American Chemical Society 
meeting, Boston, MA, Aug. 15 – 20, 2010.

• “Scintillating Metal-organic-framework Materials for Radiation Detection: First Principles Calculations 
Towards Rational Design,” MRS Fall 2010, Boston, MA, Nov. 29 – Dec. 3, 2010.

• “Structure and Luminescence in Metal Organic Frameworks ,” MRS Fall 2010, symposium EE Solid-
State Chemistry of Inorganic Materials VIII, Boston, MA, Nov. 29 – Dec. 3, 2010.
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• Collaborative Efforts
• NA-22 “MOF-based Scintillators”

• Undergraduate Students
• Stefan Nikodemski (Colorado School of Mines – B.S. Physics, Spring 2010)

• Graduate Students
• Janelle Branson (New Mexico Tech – Ph.D. Materials Science, expected Fall 2011)

• Postdoctoral Appointees
• Alex Greaney (MIT)

• Kirsty Leong (SNL)

• Scott Meek (SNL)

• John Perry IV (SNL)

Coordination/Collaboration and Transition


