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Objective: Elucidate mechanisms of scintillation,
through studies of metal organic framework
materials (MOFs), and explore the potential of
improved MOF-based sensor materials.

Relevance:
*Determine applicability of MOFs to neutron
detection
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Results this year:

*Demonstrated correlation between structure and
luminescence properties for interpenetrated/non-
interpenetrated MOFs

*Described luminescence modification via extrinsic
infiltration, excimer, and exciplex formation
*Discovered new MOF-based spectral
neutron/gamma discrimination scheme based on
heavy-metal induced triplet harvesting.

Approach: Synthesize a systematically designed
range of materials and structures designed to probe
physics of scintillation process. Materials
characterization using steady-state and time-
resolved photoluminescence, radioluminescence,
and scintillation measurements. Use theoretical
models to describe MOF electronic states and the
influence of structure and chemistry on kinetics of

scintillation.
Funding:
Year 1: FY08-$250k, Year 2: FY09-$250k, Year 3: FY10-$250k
Personnel Support: Staff Members, 3; Post-Docs, ear $ ea_" $ ear $
2; Students, 2; Technologist, 1 Pl contact Information: F. P. Doty, Sandia National

Labs, (925) 294-4634 fpdoty@sandia.gov
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Program Objective

« Origins of luminescence and energy transfer in Metal-
Organic Frameworks

« Structure-property relationships for radiation detection and
sensing applications.
* Luminescence as a signal transduction mechanism

« Systematic ‘design rules’ for MOF-based scintillators
« Wavelength, intensity, timing characteristics
« Distinctions from purely organic fluorophores

 Intermolecular and charge-transfer interactions
 Effects of framework structure
« Control over the triplet state luminosity

Fundamental aspects of MOF luminescence have not been investigated
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Sandia
Effects of Interpenetration: IRMOF-8’ @[‘;‘ﬁ:ﬁ’,ﬂ%nes
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Sandia
DFT: HOMO and LUMO Wavefunctions @[‘:ﬁ‘;’,ﬂi’énes

(a) IRMOF-1 wave function at VBM (b) IRMOF-1 wave function at CBM (c¢) IRMOF-3A wave function at VBM (d) IRMOF-3A wave function at CBM

*HOMO's are localized on the discrete linker groups

*LUMOQ’s of IRMOF-1 and IRMOF-3 are delocalized over neighboring linker
groups but do not penetrate Zn,0 cores

*Indicates that wide-bandgap n-type semiconducting behavior is expected

Metal orbitals are not associated with HOMO or LUMO states:
Linker-Centered Properties




Projected DOS

Sandia
DFT Projected Density of States @[‘:ﬁ:ﬁ’,ﬂ%nes
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* Zn,O states are closer to VBM in IRMOF-1 vs. IRMOF-9/10

e Presence of amine in IRMOF-3 adds new states in IRMOF-1

bandgap
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Spin-polarized Triplet Charge Densities
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K Symmetry effects \

* Relative magnitude of spin-up vs. spin-down densities

» Structural rearrangement in the excited triplet state

k Luminescence quantum yields and magnitude of Stokes’ shifty




Naphthalene-based Fram
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Sandia
ework: IRMOF-8 @ E:t:lcﬁg?(lllies
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6} — 2 5 MeV Protons
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Non-interpenetrated: Cubic Fm-3m

*Monomer vibronic progression still
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Wavelength (nm)
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eLifetime: Decay times of 4ns (96%) and 22ns (4%)

eIntensity: 65% anthracene (proton radioluminescence)

650 observed

*Red-shifted IBIL peak at A,,,=476nm

Structural changes upon lonization?
* 476 nm peak reminiscent of
naphthalene excimer emission



Effects of Interpenetration: IRMOF-8’
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/-Reminiscent of naphthalene excimer
*Broad maximum at 475nm
Similar relative peak intensities

*Wavelength dependent emission in IRMOF-8’

\ *Rigidified structure imposes ground-state interactionS/
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Sandia
Effects of Interpenetration: IRMOF-8’ @[‘:ﬁ:ﬁ’,ﬂ%nes
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*Reminiscent of naphthalene excimer D
*Broad maximum at 475nm
Similar relative peak intensities

*Wavelength dependent emission in IRMOF-8’
*Rigidified structure imposes ground-state interactions /




Sandia
Intermolecular Dimer Interactions: Flexible (Al) MOF @”a‘“’”a'
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Sandia
Host-Guest Interactions: Donor-Acceptor Complexes E‘J”a‘“’”"'

Laboratories

* Guest-dependent charge-transfer (CT) emission
* Exciplex vs. ground-state complex formation

* Intense CT fluorescence
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http://upload.wikimedia.org/wikipedia/commons/5/57/Dimethylamine-2D.png
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Luminescence Properties
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— Fit
1000
2
e
8 100
o
10 |
1 | 1
500 600 700 0 20 40 60 80
Wavelength (nm) Time (ns)
Compound | Monomer CT I Lifetime Lifetime AH;
Ao (nm) Ao (nm) (eV) (monomer), (ns) (CT), (ns) (kJ/mol)
1 385 6 (100%)
1a (DMA) 385 _ 1(64%),5 (36%) | 6(11%), 19 (89%) +4.6
1b (DEA) 385 535 6.99 1(68%),5(32%) | 8(24%), 34 (76%) 9.2

A 385nm Data

*CT luminescence correlated with ionization potential of donor species
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Luminescence Properties
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Ao (nm) Ao (nm) (eV) (monomer), (ns) (CT), (ns) (kJ/mol)
1 385 6 (100%) - -
1b (DEA) 385 535 6.99 1(78%), 5 (22%) 8 (24%), 34 (76%) -9.2

*Compare to (H,NDC + DEA) exciplex: 4ns lifetime

*CT lifetime associated with strength of host-guest interactions
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. . Sandia
Luminescence Properties @[‘:ﬁﬁ’,ﬂ?ﬁnes
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1a (DMA) 385 460 8.14 1(64%),5 (36%) | 6(11%), 19 (89%) -
1b (DEA) 385 535 6.99 1(68%),5(32%) | 8(24%), 34 (76%) 9.2

*Enthalpy of CT complex formation calculated from variable-temp. data

*Exothermic AH; for 1b associated with preferential adsorption into pores
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Increasing Delayed Luminosity: Triplet Harvesting
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Increased intensity of delayed luminescence

Doty, F. P. et al. SAND Report 2010-6724, 2010.



Sandia
Triplet Harvesting in Large-Pore MOFs @[‘:ﬁg’,’;’;‘énes

MOF-177 DUT-6 IRMOEF-10

A/Iatching of guest molecule to host cavith
*Short-range Dexter exchange
mechanism

*Hexagonal vs. cubic pore environments

*MOF-177: Zn,0, benzenetribenzoate
*DUT-6: Zn,0, benzenetribenzoate

QRI\/IOF-lO: Zn,0, biphenyldicarboxylatej
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Sandia

Energy Transfer and Spectral-Shape Discrimination @[‘:ﬁ‘;’,ﬂi’énes
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 Higher Iridium doping ratio is possible in MOF-177
-Larger pore size

* Comparison of relative singlet:triplet intensities
indicates more efficient triplet transport in DUT-6
* Dexter exchange mechanism

[ Particle-dependent Spectral Response ]
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Sandia
Radioluminescence Intensity and Decay :fl'l][*;gg;gfg,,ies
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Sandia
Radiation Damage Measurements @[‘:ﬁ:ﬁ’,ﬂ?&nes

K MOF and stilbene spectra show uniform\
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* Similar decay rate for MOF host and
\Iridium guest luminescence /
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Signal/ arbitary units

Sandia
Radiation Damage: Proton Radioluminescence :l‘l'l]pgag:g,g;*gnes
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Enhanced Radiation Hardness via Rigidified MOF structure
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Accomplishments

* Publications

“Assessing the Purity of Metal-Organic Frameworks Using Photoluminescence: MOF-5, ZnO Quantum
Dots, and Framework Decomposition,” J. Am. Chem. Soc. 2010, 132, 15487.

“Designing Metal-Organic Frameworks for Radiation Detection,” Nucl. Instr. Meth. A 2011, doi:
10.1016/j.nima.2011.01.102.

“Luminescent Metal-Organic Frameworks: A Nanolaboratory for Probing Energy Transfer via
Interchromophore Interactions,” ECS Trans. 2010, 28, 137.

“Metal-Organic Frameworks for the Spectral Discrimination of Neutrons,” In Preparation.

* Patents

Doped Luminescent Materials and Particle Discrimination Using Same. International Patent
20110108738, May 12, 2011.

* Presentations

“Investigation of metal-organic frameworks (MOFs) as hosts for luminescent molecules,” X-Ray,
Gamma-Ray, and Particle Technologies; Penetrating Radiation Systems and Applications XI, SPIE
Conference, San Diego, Aug. 2 — 6, 2010.

“MOF-based Scintillators,” X-Ray, Gamma-Ray, and Particle Technologies; Penetrating Radiation
Systems and Applications Xl, SPIE Conference, San Diego, Aug. 2 — 6, 2010.

“Effects of crystal structure and linker on MOF luminescent properties,” American Chemical Society
meeting, Boston, MA, Aug. 15 — 20, 2010.

“Scintillating Metal-organic-framework Materials for Radiation Detection: First Principles Calculations
Towards Rational Design,” MRS Fall 2010, Boston, MA, Nov. 29 — Dec. 3, 2010.

“Structure and Luminescence in Metal Organic Frameworks ,” MRS Fall 2010, symposium EE Solid-
State Chemistry of Inorganic Materials VIII, Boston, MA, Nov. 29 — Dec. 3, 2010.



Coordination/Collaboration and Transition

Collaborative Efforts
*  NA-22 “MOF-based Scintillators”

Undergraduate Students
Stefan Nikodemski (Colorado School of Mines — B.S. Physics, Spring 2010)

Graduate Students

Janelle Branson (New Mexico Tech — Ph.D. Materials Science, expected Fall 2011)

Postdoctoral Appointees
Alex Greaney (MIT)
Kirsty Leong (SNL)
Scott Meek (SNL)
John Perry IV (SNL)
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