Programs centered in Dept. 1814 at SNL whicl:sm7s00r
Microscale Materials Model Development

i) Predicting Performance Margins (PPM):
Connecting nano- and microscale variability to uncertainty in structural

metals

Task 1: Nanoscale framework for crack initiation and growth in Ta and Ta alloys.
Task 2: Microscale effects of defect fields in Ta and Ta alloys.
Task 3: Connecting microstructural variability to performance margins in structural metals.

ii) Advanced Certification Program (ACP)
Capturing the physics of the high rate deformation of Ta

Focus: - BCC cystal plasticity constitutive model development
- Incorporating a length scale in polycrystal plasticity models
- Development of 'scale relavant' validation methods.

Primary Collaborators: Corbett Battaile, Chris Weinberger, Liz Holm,
Brad Boyce, Blythe Clark

DAGG samples: Eric Taleff and Nick Pedrazas, Univ. Texas



Summary of Atomic Scale simulations for screw
dislocation motion in BCC metals

lllustration of Model Geometry
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1570 atoms in active region

» Bond order potential model, using potentials for Molybdenum and Tungsten

* Periodic boundary conditions in z-[111] direction (3 planes)
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 Insert infinite screw dislocation, allow model to relax
@ Laboratories



Physical model for dislocation motion
in BCC metals

Simulations reveal the screw dislocation core spreading onto adjacent (110)
planes in BCC metals.

— Core spreading creates a significant Peierls barrier to dislocation motion.

— Because the dislocation spreads onto three planes, motion can be
affected by stress components outside the preferred slip plane,
i.e. non-Schmid stresses.

[111] zone depiction of a relaxed

_ _ _ Distortion of the dislocation core
screw dislocation core in Mo

under an applied shear stress
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‘ Simulation studies used to isolate the
stresses that intiate dislocation motion

» Load by pure shear in the maximum resolved shear stress plane

<0, nearest (112 )plane is sheared in the twinning sense, for x>0, nearest (112) plane is sheared
in the antitwinning sense.

« Loading in Tension and Compression
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» Loading by shear stress perpendicular to the slip direction

relaxed core — no stress after applying positive L shear stress after applying negative L shear stress
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%criterion defined by results from combined
shear stress loading in atomistic simulations

Groger and Vitek defined their results in this form:

cgﬁ’p[aom(s)n(s) +a,m®n® +a2(n(s)xm(s))1(s) Jrag)(n(s)Xm(s)),(s')J:TCr
\ 1

|

applied stress stress projection tensor, P((TS ) yield stress
Parameter FCC w Mo
a, 1 1 1 Schmid stress
a; 0 0 0.24 twinning/anti-twinning
a, 0 0.56 0 out-of-plane effects
a; 0 0.75 0.35 out-of-plane effects
T 1 1.36 1.26

Gap: To develop similar models for other BCC metals,
such as Ta and Fe, we need valid interatomic potential

functions. Sandia
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Decomposing resistance to slip in a
crystal plasticity model

(s) — p(s) . sarr VS
T c ) G TCI’ TCI’
Plastic strain rate: D = Z A m () 405) = @ (mfa)\
s T Slip system
FCC: <110>{111}
1) is the lattice resistance (5) fﬁsct;; l;;gl‘)}
on a slip system T = T(Tv g ) '
Decompose T : T (T, o ) — Tobs + T friC(T, o ) Resistance due to
obstacles, forest
dislocations, etc.
FCC: Tobs >> Tfric Tfric ~ O May have T dependence

In BCC metals, screw dislocations have high lattice resistances at
low temperatures and control plastic deformation

BCC: Ttric -2 Tobs
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“he effect of ‘'non-schmid’ stresses on yield
surfaces of BCC single crystals

orientation —(100)(010) orientation- (-0.180,0.575,0.798),(0,-0.811,0.585)
‘highly symmetric"

‘not symmetric"
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' Single Crystal Rotation Paths:

Isochoric Deformation to 50% strain
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Molybdenum Compression Molybdenum Tension @
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A comparison of polycrystalline simulations

Tension 10% Strain
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“ A simple method for incorporating a grain-size driven
4 length scale into a polycrystal plasticity model
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" Results suggest that simply hardening grain boundaries
1encourages formation of subgrain structure
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ﬂ-Situ Tensile Testing of Tantalum Samples
(single crystal and polycrystalline coupons)
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alyzing the Ta polycrystalline sample at 0%strain

color scheme
for EBSD maps

NOTE THE
SIGNIFICANT
DIFFERENCES
IN THE MAPS
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Corresponding pole figures

Tensile Axis Tensile Axis

* raw data

- grains containing 2 pixels or less eliminated
e averaged 'single orientation per grain' results

My result — avg. orientation not HKL alogorithm for determining single
determined for grain sizes two orientations per grain

pixels or less URJ (ahoratories



deforming Ta polycrystal using EBSD

misorientation relative to
current avg. grain orientation

r"
p A look at microstructure evolution in

Raw Data

Legend
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gl
EBSD map(s) and CCI images collected near location 2
i in the grip section on DAGG produced Ta Single Crystal

EBSD-Electron Backscatter Diffraction
CCI-Channel Contrast Imaging

i Ta4

Infor.matlon. sheet ‘

prowded with Sample Temperature: 1850 °C
Strain rate: 1 x10*

LD (x for EBSD) Preload: 1lbs
DAGG observed: Yes
Notes: Test data lost
—— LT (Y for EBSD)

ST (Z for EBSD)

001 101
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DAGG- Sample was characterized in the as-received condition @ Sandia
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An EBSD map on Tantalum DAGG Single Crystal

-Aregion selected that contained a small grain not consumed by the single crystal during the DAGG process

Reference orientation selected here

Misorientation within this 'single
crystal region’' does not exceed 2°

I -0 i MapE: Step=10 pm; Grid130x142
Map colorized by misorientation angle from reference. Black
indicates locations that were not indexed or exceeded the max.
misorientation defined for the map.
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4-
CCl images reveal substructure in DAGG single

100 pm

EHT=2000kY WD= 64mm  Signal 5D File Name = TA-4_00.if 100 pm

EHT=2000k/ WD=64mm SignalA=BSD File Name = TA-4_01 4

S

EHT=2000k/ WD=64mm SignalA=BSD File Name = TA-4_021f 100um

EHT=2000k/ WD=64mm Signal A=BSD

File Name = TA-4_03 fif

Sandia
channel contrast imaging reveals subgrain orientation changes on the order of 2° National
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