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Classical (Local) AdvectionClassical (Local) Advection

 Classical (local) advection is well-understood. Many, many papers, textbooks, etc.

 Conservation law (f is flux function):

 Simple examples:

 f(u) = cu  linear advection

 f(u) = u2/2     Burgers’ equation

 Complex, detailed, well-studied solution structure

 Many others have discussed various forms of nonlocal advection

 Nonlocal wavespeed, integral operators (Hilbert transform), fractional 
differential operators, generalized flux, nonlocal regularization, nonlocal 
convection diffusion (Ignat & Rossi)*

 Can we develop a peridynamic-inspired approach for nonlocal advection that 
captures “shock-like” behavior?

 Classical PDEs do not hold on discontinuities (shocks)

 Explore local & nonlocal Burgers’ equation: shocks, etc 

 

 

u
+ f(u) = 0

t x

* L. I. Ignat and J. D. Rossi. A nonlocal convection-diffusion equation. J. Funct. Anal., 251:399-437, 2007.
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 Peridynamic-inspired model for nonlocal advection

 Gradient-free nonlocal flux

 Numerical methods for nonlocal models: Nonlocal Lax-Friedrichs method 

 Nonlocal Burgers Equation

 Theory

 Computational results

 Relation to dispersive shock waves

 Conclusions



 Posit the integro-differential equation

 Points (x,y) interact directly and nonlocally. 

 Maximum interaction distance  (peridynamic horizon)

 Kernel (micromodulus) is antisymmetric: 

 Contrast with peridynamic models of solids, where kernel is symmetric

 The kernel is (usually) translation invariant:

 Requirement for consistency with classical (local) advection equation:

(in distributional sense).

 Contrast with peridynamic models of solids, where this limit (usually) gives 
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2 Bobaru and Duangpanya, The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transfer. 53: 4047-4059, 2010. 

 Compare forms of equations

 What is the nonlocal flux through a surface? (e.g., through x?)

 The flux is carried by an infinite number of nonlocal bonds passing through x.

 Many have derived this expression before; See [1,2,3].

 Under assumptions, Noll’s lemma [4] can be used to derive flux function.

 Under assumptions, nonlocal equation converges to local equation as 0.

Relation to Local AdvectionRelation to Local Advection
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3 Lehoucq and Silling, Force flux and the peridynamic stress tensor, J. Mech. Phys. Solids. 56:1566-1577, 2008.

1 Silling, Zimmerman, and Abeyaratne, Deformation of a Peridynamic Bar, J. Elasticity. 73:173-190, 2003.

4 Noll, Die herleitung der grundgleichungen der thermomechanik der kontinua aus der statistischen mechanik. J. Ration. Mech. Anal. 4:627–646, 1955.



 Discretize space & time into cells [xi-½ , xi+½] and intervals [tn , tn+1] 

 The flux out of cell i is the flux out of [xi-½ , xi+½] through xi-½ and xi+½

 Flux out of [xi-½ , xi+½] through xi+½ (expression for xi-½ similar)

 Convervative numerical scheme: Change in u over cell [xi-½ , xi+½] in time interval 
[tn , tn+1] must be balanced by flux over that cell over that time interval

Nonlocal LaxNonlocal Lax--FriedrichsFriedrichs Discretization (1)Discretization (1)

 


 


 
  

 
 i-½ i+½

x

[x ,x ] i+½

0 0

u(x + y, t) + u(x - z, t)
f x , t (x + y,x - z)dydz

2

        
i+½ i+½

i-½ i+½ i-½ i+½

i-½ i-½

x x

n+1 n+1
[x ,x ] i-½ [x ,x ] i+½

x x

u(x, t ) -u(x, t ) dx f x , t + f x , t dt 0

xi-½ xi+½

x tn+1

tn
t

x

t



 Define

 This gives

 This is the nonlocal equivalent of FTCS (unconditionally unstable)

 Stabilization produces nonlocal Lax-Friedrichs:

Nonlocal LaxNonlocal Lax--FriedrichsFriedrichs Discretization (2)Discretization (2)
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 Suppose (for convenience) that r x = , r an integer.

 Quadrature:

 Stability analysis: Let                  ,  

 Then 

Nonlocal LaxNonlocal Lax--FriedrichsFriedrichs Discretization (3)Discretization (3)
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 Nonlocal Burgers: (u) = u2/2

 Conservation:  

 Well-Posedness:

 Assume �  L1(-, ), g  H1(�). Then, there exists a time interval (0, T) such 
that the nonlocal Burgers equation has a unique solution. Moreover, let (0, T) 
be the maximum time interval on which such a solution exists. Then,                    
limsup(t->T) ‖u(.,t)‖L = .

 Consequences:

 If we start with smooth data, solution maintains H1 regularity so long as it is 
pointwise bounded in space and time. Moreover, only finite-time blow-up can 
cause loss of H1 regularity of the solution. 

 If �  L1 and initial data smooth, solution maintains H1 regularity for positive 
horizon. There is no shock formation with an L1 kernel! 

 Contrast with local Burgers, where initial smooth data can lead to shock

 Addition of viscosity forbids shock in local case

Nonlocal Burgers: TheoryNonlocal Burgers: Theory
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 There are two primary nondimensional length scales:

 /L Ratio of PD length scale to problem length scale

 /x Ratio of PD horizon to cell size

 So, perform two independent studies: -refinement and x refinement

 Let t/x = 2/c fixed, c = 80. (i.e., artificial viscosity same for all experiments)

 min(/L)  0.004 (small horizon)

 max(/L)  0.1 (large horizon)

 min(/x)  16

 max(/x)  256

 The horizon is typically 3 the mesh spacing in PD solid mechanics. In these 
numerical experiments, nonlocality is well-resolved.

Nonlocal Burgers: Computational ResultsNonlocal Burgers: Computational Results



 Domain: -  x < ; N cells with x = L/N; L = .

 Boundary conditions: u(x + kL, t) = u(x,t); k�

 Initial condition: u0 = -sin(x)

 Compare with analytical and numerical for local Burgers’ equation

 Sinusoid IC leads to shock formation at x=0, t=1. N-wave develops as t .

Nonlocal Burgers: Sine ICNonlocal Burgers: Sine IC
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 -refinement study (for x  6.28e-4) (fine mesh)

 For small , results qualitatively similar to N-wave

 Additional oscillations for larger 

 ∫u dx conserved; Numerical method is conservative (not shown here)

 ∫u2 dx not conserved (artificial viscosity)

Nonlocal Burgers: Sine ICNonlocal Burgers: Sine IC



 x - refinement study (for   0.05; /L  1.59e-2) (small )

 Gibbs-like oscillations around shock-like feature 

 ∫u dx conserved; Numerical method is conservative (not shown here)

 ∫u2 dx not conserved (artificial viscosity)

Nonlocal Burgers: Sine ICNonlocal Burgers: Sine IC



 Domain: -  x < ; N cells with x = L/N; L = .

 Boundary conditions: u(x + 2kL, t) = u(x,t); k�

 Initial condition: u0 = 1 if -1.5  x < 1.5; 0 elsewhere

 Compare with analytical and numerical for local Burgers’ equation

 “Top Hat” IC leads to rarefaction (left) plus shock (right) 

Nonlocal Burgers: “Top Hat” ICNonlocal Burgers: “Top Hat” IC

Initial Condition Local Lax-Friedrichs at t=1.5
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 -refinement study (for x  6.28e-4) (fine mesh)

 For small , results qualitatively similar to classical results

 Additional Gibbs-like oscillations around shock-like feature for larger 

 ∫u dx conserved; Numerical method is conservative (not shown here)

 ∫u2 dx not conserved (artificial viscosity)

Nonlocal Burgers: “Top Hat” ICNonlocal Burgers: “Top Hat” IC



 x - refinement study (for   0.05; /L  1.59e-2) (small )

 Gibbs-like oscillations around shock-like feature

 ∫u dx conserved; Numerical method is conservative (not shown here)

 ∫u2 dx not conserved (artificial viscosity)

Nonlocal Burgers: “Top Hat” ICNonlocal Burgers: “Top Hat” IC



 The Korteweg–de Vries equation produces dispersive shocks1

 Dispersive shocks appear (for example) in 

 Rotating Bose-Einstein condensate

 Collisionless ion-acoustic shock waves observed from interaction of two plasmas 

 Optical wave breaking observed in propagation of light through nonlinear fiber

 Propagation of intense electromagnetic wave through photorefractive medium

Relation to Dispersive Shocks (1)Relation to Dispersive Shocks (1)
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Experimental absorption images of Bose-
Einstein condensate blast wave [2].     

The oscillatory ring structures correspond 
to dispersive shock waves.

2 Hoefer, Ablowitz, Coddington, Cornell, Engels, and Schweikhard, Dispersive and classical shock waves in Bose-Einstein condensates 
and gas dynamics, Phys. Rev. A, 74:023623, 2006.

1 Hoefer and Ablowitz, Dispersive Shock Waves, Scholarpedia, 4(11):5562, 2009.



 The Korteweg–de Vries equation produces dispersive shocks1

 Oscillatory solution reminiscent of solutions to nonlocal Burgers equation

 Compare with leading terms of Taylor series of nonlocal Burgers equation:

 Leading terms match (up to scaling) with KdV

 Reduces to local Burgers equation in limit as   0

 In nonlocal Burgers, no shocks possible for >0 and �  L1

 Nonlocal Burgers provides additional regularity beyond KdV

Relation to Dispersive Shocks (2)Relation to Dispersive Shocks (2)
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1 Hoefer and Ablowitz, Dispersive Shock Waves, Scholarpedia, 4(11):5562, 2009.



 Proposed peridynamic-inspired model for nonlocal advection

 Nonlocal flux

 Nonlocal Lax-Friedrichs method

 Nonlocal Burgers equation

 Shocks not possible for >0 and �  L1 for smooth data

 Computational results (sine IC, “top hat” IC)

 Relation to dispersive shock waves

 Papers, codes

 www.sandia.gov/~mlparks; mlparks@sandia.gov
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