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Classical (Local) Advection

O Classical (local) advection is well-understood. Many, many papers, textbooks, etc.
O Conservation law (f is flux function):

8u+ g f(lu)=0
ot Ox

O Simple examples:
O f(u) = cu — linear advection
Q f(u) =u?/2 — Burgers’ equation

O Complex, detailed, well-studied solution structure
O Many others have discussed various forms of nonlocal advection

O Nonlocal wavespeed, integral operators (Hilbert transform), fractional
differential operators, generalized flux, nonlocal regularization, nonlocal
convection diffusion (Ignat & Rossi)*

O Can we develop a peridynamic-inspired approach for nonlocal advection that
captures “shock-like” behavior?

O Classical PDEs do not hold on discontinuities (shocks)

O Explore local & nonlocal Burgers’ equation: shocks, etc @ Sandia
National

*L. 1. Ignat and J. D. Rossi. A nonlocal convection-diffusion equation. J. Funct. Anal., 251:399-437, 2007. Laboratories



Outline

O Peridynamic-inspired model for nonlocal advection
O Gradient-free nonlocal flux

L Numerical methods for nonlocal models: Nonlocal Lax-Friedrichs method
O Nonlocal Burgers Equation

O Theory

O Computational results

(O Relation to dispersive shock waves

O Conclusions
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Nonlocal Advection

O Posit the integro-differential equation

ou j‘// (u(vlt) sz U(X't)}p(y;X)dy =0 (x,t) € Rx(0,0)

ot
u(x,0)=g(x) xeR

O Points (x,y) interact directly and nonlocally.
O Maximum interaction distance ¢ (peridynamic horizon)
d Kernel (micromodulus) is antisymmetric:
QD(V; X) — _QD(X; y)
d Contrast with peridynamic models of solids, where kernel is symmetric
O The kernel is (usually) translation invariant:

o(y,x) =@y -x) = (&)
O Requirement for consistency with classical (local) advection equation:
: 00
limo(S)=-—
E—0 @X
(in distributional sense).

O Contrast with peridynamic models of solids, where this limit (usually) gives &
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Relation to Local Advection

O Compare forms of equations

ou, [v “(V't);“(x't))@(y,x)dy:o M, 9 fu)=0

ot 2, } ot ox
< ~ /.
X __ “gradient of flux” A

O What is the nonlocal flux through a surface? (e.g., through x?)
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O The flux is carried by an infinite number of nonlocal bonds passing through x.
O Many have derived this expression before; See [1,2,3].
O Under assumptions, Noll’s lemma [4] can be used to derive flux function.

O Under assumptions, nonlocal equation converges to local equation as ¢—0.

1 Silling, Zimmerman, and Abeyaratne, Deformation of a Peridynamic Bar, J. Elasticity. 73:173-190, 2003.

2 Bobaru and Duangpanya, The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transfer. 53: 4047-4059, 2010. Sandia
3 Lehoucq and Silling, Force flux and the peridynamic stress tensor, J. Mech. Phys. Solids. 56:1566-1577, 2008. 1M National
4 Noll, Die herleitung der grundgleichungen der thermomechanik der kontinua aus der statistischen mechanik. J. Ration. Mech. Anal. 4:627-646, 1955. atories



Nonlocal Lax-Friedrichs Discretization (1)

O Discretize space & time into cells [x;, , X;,1,] and intervals [t", t"*1]

O The flux out of celli is the flux out of [x,,, , X;,,] through x;,, and x;,,

& [
< »

t J AX - tn+1
X AtI: < ' = : . tn

Xi -1 Xi +1A

QO Flux out of [x;., , X;,,] through x;,,, (expression for x;.,, similar)

Ax ¢ ,t ) ,t
f[xi-1/z’xi+1/z] (Xi+1/2’t) = J‘ J‘l// (U(X Y )+ U(X ‘ )}(X +Vy,X- Z)deZ
00

2

O Convervative numerical scheme: Change in u over cell [x;, , X;,1,] in time interval
[t", t"*1] must be balanced by flux over that cell over that time interval

Xi+’/z

[ (ubot™)-ul )bt [ (6 (ko) + s (%))t =0

Xy, Xy,
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Nonlocal Lax-Friedrichs Discretization (2)

U Define o
— 1
n
1 N o ZJ‘ Xis% Xias '+V2't)dt
u’=— | u(x,t")dx s
AXX . 1
i-% n
Fios zj ) (X £) A8

O This is the nonlocal equivalent of FTCS (unconditionally unstable)
O Stabilization produces nonlocal Lax-Friedrichs:
o Ut U At

ujt == "1—AX(FI+1/+F )
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Nonlocal Lax-Friedrichs Discretization (3)

O Suppose (for convenience) that r Ax = g, r an integer.
O Quadrature:

it u(x,.,t)+u(x,t)
(f[xi—’/z'xi+’/z] (Xi'Vz ’ t) + f[xi—Vz Xisy | (Xi+1/2 ’ t)) - Z a)jl// ( | j(p(XHJI Xi)(AX)z

=t 2
b+E-Ax
: 0 j=0
" o =11 j=%1,...,%(r-1)
1 j=-rr
a-E+Ax \2
a b : ( 1 y>X
1
QO Stability analysis: Let l//(u):u’ oly,x)=—4 0 y=x
g
2r \'1 y<X

O Then At <—— AX
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Nonlocal Burgers: Theory

O Nonlocal Burgers: y(u) = uz/2
Q Conservation:

d d
—lu(x,t)dx =0 — | u®(x,t)dx # 0
dtj() dtj()

O Well-Posedness:

d Assume [ € L'(-¢, €), g € H'(]). Then, there exists a time interval (0, T) such
that the nonlocal Burgers equation has a unique solution. Moreover, let (0, T)
be the maximum time interval on which such a solution exists. Then,
limsup(t->T) ||Ju(,t) ||, = .

0 Consequences:

Q If we start with smooth data, solution maintains H' regularity so long as it is
pointwise bounded in space and time. Moreover, only finite-time blow-up can
cause loss of H'! regularity of the solution.

Q If [ € L' and initial data smooth, solution maintains H' regularity for positive
horizon. There is no shock formation with an L' kernel!

O Contrast with local Burgers, where initial smooth data can lead to shock
O Addition of viscosity forbids shock in local case N
"
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Nonlocal Burgers: Computational Results

O There are two primary nondimensional length scales:
O e/l Ratio of PD length scale to problem length scale
O &/AXx Ratio of PD horizon to cell size
d So, perform two independent studies: ¢c-refinement and Ax refinement

O Let At/Ax = 2/c fixed, c = 80. (i.e., artificial viscosity same for all experiments)
O min(s/L) ~ 0.004 (small horizon)
4 max(e/L) = 0.1 (large horizon)
O min(e/Ax) ~ 16
O max(e/Ax) ~ 256

O The horizon is typically 3x the mesh spacing in PD solid mechanics. In these
numerical experiments, nonlocality is well-resolved.

Azx-refinement study e-refinement study
N 2000 4000 8000 16000 32000 10000 10000 10000 10000
Az 3.14e-3 1.57e-3 T7.86e-4 3.93e-4 1.97e-4 6.28¢e-4 6.28e-4 6.28¢e-4 6.28e-4
£ 5.02e-2 5.02e-2 5.02e-2 5.02e-2 5.02e-2 1.26e-2 6.28e-2 1.57e-1 3.14e-1
e/L 1.60e-2 1.60e-2 1.60e-2 1.60e-2 1.59e-2 4.00e-3 2.00e-2 5.00e-2 1.00e-1
e/Ax 16 32 64 128 256 20 100 250 500
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Nonlocal Burgers: Sine IC

d Domain: -t < x < «; N cells with Ax =L/N; L = .
O Boundary conditions: u(x + kL, t) = u(x,t); ke
Q Initial condition: u, = -sin(x)

U

0.5

-0.5¢

Initial Condition Local Lax-Friedrichs at t=1.5

O Compare with analytical and numerical for local Burgers’ equation
O Sinusoid IC leads to shock formation at x=0, t=1. N-wave develops as t —»w.
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Nonlocal Burgers: Sine IC

O e-refinement study (for Ax ~ 6.28e-4) (fine mesh)

-—-Iniﬁal Condition- ol —Initial Condition_
—sx 1.26e-2 —sgx 1.26e-2
—:x628e2 1 1§ —:~6.28e2
—c = 1.57e-1 16 —g =~ 1.57e-1
—e = 3.14e-1 14l —e = 3.14e-1
1.2-
7
0.5 0.8F
1 06
15 04
0.2
2 |
-3 -2 -1 0 1 2 3 0.2

X

d For small g, results qualitatively similar to N-wave
O Additional oscillations for larger ¢

O fu dx conserved; Numerical method is conservative (not shown here)
Q fu? dx not conserved (artificial viscosity)
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Nonlocal Burgers: Sine IC

0 Ax - refinement study (for ¢ ~ 0.05; /L ~ 1.59e-2) (small g)

13 _Initial Condition| 14 “Initial Condition’
—AX~=3.14e-3 —AXx=314e-3
Ui —Ax~157e3 1 12F —Ax~1.57e3 1
—AX =~ 7.86e-4 j —Ax~7.86e4
05 Ax=~3.93e4 | 1r Ax~3.93e-4
' —Ax=197e-4 : —AX~197e-4
0.87
= 0 =
0.6/
05
0.4}
A 0.2}
153 2 K 0 1 2 3 ') 01 02

O Gibbs-like oscillations around shock-like feature

O fu dx conserved; Numerical method is conservative (not shown here)
Q fu? dx not conserved (artificial viscosity)
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Nonlocal Burgers: “Top Hat” IC

d Domain: -t < x < «; N cells with Ax =L/N; L = .
O Boundary conditions: u(x + 2kL, t) = u(x,t); kel
A Initial condition: uy, = 1 if -1.5 < x < 1.5; 0 elsewhere

1.5 1.5: !

NS SN S T S S| 1

P N

> 0 S l >0

B A R R e e

RS N MO SN S | NS N S N N |

'1'5-:3 ; ‘1 g 1‘ ; é 153 2 1 0 1 2 3
Initial Condition Local Lax-Friedrichs at t=1.5

O Compare with analytical and numerical for local Burgers’ equation
O “Top Hat” IC leads to rarefaction (left) plus shock (right)
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Nonlocal Burgers: “Top Hat” IC

O e-refinement study (for Ax ~ 6.28e-4) (fine mesh)

1.5 1.5/

1k

0.5¢

-05- i . 0.5+ - .
Initial Condition Initial Condition
—c =~ 1.26e-2 —c~ 1.26e-2
At—s~6.28e-2 —e =~ 6.28e-2
—e=157e-1 —s =~ 1.57e-1
—ex3.14e-1 . ‘ ‘ . ‘ 0 —e~3.14e-1 : :
15 -3 -2 -1 0 1 2 3 0.5 1 1.5 2 2.5 3

X

O For small g, results qualitatively similar to classical results
O Additional Gibbs-like oscillations around shock-like feature for larger ¢

d fu dx conserved; Numerical method is conservative (not shown here)
Q fu? dx not conserved (artificial viscosity)
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Nonlocal Burgers: “Top Hat” IC

0 Ax - refinement study (for ¢ ~ 0.05; /L ~ 1.59e-2) (small g)

15 | | 1 | | |
1.2-

0.8

= 06,

—Initial Condition : 0.4 Initial Condition

0.5\ v ~3.14e3 ' T A X3 1463
—Ax~157e-3 ' 0o —NXx 15763
Al —Ax~7.86e-4 1 “[—Ax~7.86e-4
AX=393e-4 : AX=x3.93e-4 :
—Ax~197e4 | | | | O =Ax~107e4 T ; —
153 2 1 0 1 2 3 17 18 19 2 21 22 23 24 25 26
X X

O Gibbs-like oscillations around shock-like feature

O fu dx conserved; Numerical method is conservative (not shown here)
Q fu? dx not conserved (artificial viscosity)
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Relation to Dispersive Shocks (1)

d The Korteweg—de Vries equation produces dispersive shocks'

O Dispersive shocks appear (for example) in
O Rotating Bose-Einstein condensate
O Collisionless ion-acoustic shock waves observed from interaction of two plasmas
O Optical wave breaking observed in propagation of light through nonlinear fiber
O Propagation of intense electromagnetic wave through photorefractive medium

Experimental absorption images of Bose-
Einstein condensate blast wave [2].
The oscillatory ring structures correspond
to dispersive shock waves.

" Hoefer and Ablowitz, Dispersive Shock Waves, Scholarpedia, 4(11):5562, 2009. Sandia
2 Hoefer, Ablowitz, Coddington, Cornell, Engels, and Schweikhard, Dispersive and classical shock waves in Bose-Einstein condensates Paat}g]rg?clmes

and gas dynamics, Phys. Rev. A, 74:023623, 2006.



Relation to Dispersive Shocks (2)

d The Korteweg—de Vries equation produces dispersive shocks'

O Oscillatory solution reminiscent of solutions to nonlocal Burgers equation

O Compare with leading terms of Taylor series of nonlocal Burgers equation:

du Ou 60g? d*u 90g? (8u ou
+U + + +.--=0
ot Ox 720 ox> 720 \ ox )| ox°

O Leading terms match (up to scaling) with KdV
O Reduces to local Burgers equation in limitase —> 0
A In nonlocal Burgers, no shocks possible for ¢>0 and [ € L
O Nonlocal Burgers provides additional regularity beyond KdV

Sandia
National
" Hoefer and Ablowitz, Dispersive Shock Waves, Scholarpedia, 4(11):5562, 2009. Laboratories



Summary

O Proposed peridynamic-inspired model for nonlocal advection
O Nonlocal flux
O Nonlocal Lax-Friedrichs method

O Nonlocal Burgers equation
O Shocks not possible for >0 and [ € L' for smooth data
O Computational results (sine IC, “top hat” IC)

O Relation to dispersive shock waves

O Papers, codes
O www.sandia.gov/~mlparks; mlparks@sandia.gov
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