

Four County Permian Basin San Andres Residual Oil Zone (ROZ) Database

September 1, 2020
DOE/NETL-2020/2626

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

All images in this report were created by NETL, unless otherwise noted.

Four County Permian Basin San Andres Residual Oil Zone (ROZ) Database

Matthew Wallace,¹ Robin Petrusak,¹ and Vello Kuuskraa¹

¹Advanced Resources International, Inc. (ARI)

Contacts

David Morgan
National Energy Technology Laboratory (NETL)
david.morgan@netl.doe.gov, 412-386-7405

Derek Vikara
KeyLogic Systems, Inc.
derek.vikara@netl.doe.gov, 412-386-7409

Allison Guinan
Leidos
allison.guinan@netl.doe.gov, 412-386-6855

This report was prepared by Mission Execution and Strategic Analysis (MESA) for the U.S. DOE NETL. This work was completed under DOE NETL Contract Number DE-FE0025912. This work was performed under MESA Activity 205.003.

FOUR COUNTY PERMIAN BASIN SAN ANDRES RESIDUAL OIL ZONE (ROZ) DATABASE

This page intentionally left blank.

TABLE OF CONTENTS

List of Exhibits	i
Acronyms and Abbreviations.....	ii
1 Introduction.....	1
2 Database Methodology.....	2
3 Estimated Reservoir Data.....	3
4 References	6

LIST OF EXHIBITS

Exhibit 3-1. ROZ partition reservoir parameters and data ranges	5
---	---

ACRONYMS AND ABBREVIATIONS

API	American Petroleum Institute	mg	Milligram
ARI	Advanced Resources International, Inc.	MMP	Minimum Miscibility Pressure
CO ₂	Carbon dioxide	NETL	National Energy Technology Laboratory
cp	Centipoise	ppm	Parts per million
DOE	Department of Energy	psi	Pounds per square inch
EOR	Enhanced oil recovery	res bbl/STB	Ratio of volume of oil in the reservoir (at reservoir temperature and pressure) to the volume of oil at standard conditions
FE	Fossil energy	ROZ	Residual oil zone
ft	Foot, Feet	Scf/STB	Standard cubic feet per barrel of oil at standard conditions
GOR	Gas to Oil Ratio	U.S.	United States
HCPV	Hydrocarbon pore volume	°F	Degrees Fahrenheit
kg	Kilogram		
md	Millidarcy		
MESA	Mission Execution and Strategic Analysis		

1 INTRODUCTION

The Four County Permian Basin San Andres Residual Oil Zone (ROZ) Database contains reservoir information for individual ROZ reservoir units located in four counties (Gaines, Terry, Dawson, and Yoakum) in the San Andres formation of the Permian Basin of West Texas.

The reservoir property information in this database was compiled as part of a greater effort to establish the ROZ resource in the Permian Basin.

This study is a collaborative effort between Advanced Resources International, Inc. (ARI) and the National Energy Technology Laboratory (NETL) to conduct a baseline estimation of the CO₂ storage capacity and by-product oil recovery from conducting CO₂ injection-based enhanced oil recovery (EOR) in the ROZ “fairway” resources of the Permian Basin. NETL is in the Office of Fossil Energy (FE) within the United States Department of Energy (DOE).

The database discussed in this document is found in an Excel® spreadsheet file named ROZ_SanAnd_4.xlsx. The data in the sheet labeled 4_County_SanAndres_ROZ_DB are the data described in this report.

The sheet labeled OilFldData has much of the same information that is included in sheet 4_County_SanAndres_ROZ_DB, but OilFldData is accessed by the FE/NETL Onshore CO₂ EOR Evaluation Tool (Evaluation Tool) which is a Python script developed by NETL that runs StrmtbFlow and the FE/NETL Onshore CO₂ EOR Cost Model.^a OilFldData has the structure that the Evaluation Tool requires. StrmtbFlow, which is part of the FE/NETL CO₂ Prophet Model, is a stream tube model that simulates oil recovery and CO₂ storage with CO₂ EOR. The FE/NETL Onshore CO₂ EOR Cost Model is a techno-economic model of a CO₂ EOR operation.

The sheet labeled ROZ_DB_OilVol has calculations of original oil in place and oil in place. This sheet and the sheet labeled OilFldData are not discussed further.

^a The FE/NETL CO₂ Prophet Model (including StrmtbFlow) and the FE/NETL Onshore CO₂ EOR Cost Model are being posted to the NETL website at the same time this document is being posted. The FE/NETL Onshore CO₂ EOR Evaluation Tool will eventually be posted to the NETL website. Until this resource is posted, a copy can be obtained by contacting David Morgan or Derek Vikara at NETL.

2 DATABASE METHODOLOGY

The Four County Permian Basin San Andres ROZ Database is used to estimate the oil in-place in four counties (Gaines, Terry, Dawson, and Yoakum) in the San Andres formation in the Permian Basin of West Texas. To make these estimates, the ROZ resource in the San Andres formation in each county was divided into three-to-five geographically distinct areas called partitions. Each partition was subdivided into an upper layer (ROZ 1) and a lower layer (ROZ 2). The surface area of each partition was further divided into a high-quality area and a low-quality area. The database provides central Latitude and Longitude values in decimal degrees that identify the central point of each partition.

The full set of ROZ partitions, layers, and quality grades results in 72 distinct ROZ analytic units for the four counties in the Permian Basin. A total of 64 analytic units contain the ROZ resource oil in-place, while eight analytic units identified as part of this study do not contain any ROZ resource. To calculate the oil in-place, the following parameters were estimated:

- ROZ Analytic Unit Area (acres) – The total surface area of each ROZ partition or analytic unit.
- Net Pay (ft) – The net width or thickness of oil-producing zones of each ROZ analytic unit.
- Porosity (%) – The reservoir pore space, as a percentage of the total volume of each ROZ analytic unit.
- Current Oil Saturation (%) – The current oil saturation in each ROZ analytic unit as a percent of the total pore space (So_cur).
- Oil Formation Volume Factor (res bbl/STB) – The ratio of volume of oil in the reservoir (at reservoir temperature and pressure) to the volume of oil at standard surface conditions. The volume of oil at standard conditions does not include any hydrocarbon gases that may have volatilized from the oil as it equilibrated to standard temperature and pressure.

These volumetric reservoir parameters are sufficient to calculate the current resource oil in-place. However, additional reservoir parameters are needed to estimate the potential oil production and volumes of CO₂ that could be stored using CO₂ EOR. These estimates are made using StrmtbFlow.

3 ESTIMATED RESERVOIR DATA

To run StrmtbFlow, additional parameters were estimated by ARI for each ROZ analytic unit:

- Latitude and Longitude (degrees) – The latitude and longitude of the centroid of each analytic unit.
- ROZ Analytic Unit Depth (ft) – The depth from the surface to the top of each ROZ analytic unit.
- Gross Pay (ft) – The total width or thickness of each ROZ analytic unit.
- Original Oil Saturation (%) – The original saturation of oil in the ROZ analytic unit before natural water flooding occurred (So_ooop) as a percentage of the total pore space. Estimating a value for this parameter is very difficult, if not impossible, since the condition of the ROZ analytic unit millions of years ago before natural water flooding began is not known. However, StrmtbFlow uses this parameter to calculate the hydrocarbon pore volume (HCPV) and the model uses HCPV in several calculations, such as the volume of CO₂ and/or water injected during each injection period. Consequently, an estimate of this parameter is needed, but the estimated value just needs to be reasonable when compared to values for conventional oil fields. Two values are provided for this parameter. The parameter labeled Initial Oil Saturation is the value for each ROZ analytic unit borrowed from nearby conventional oil fields. The other parameter is labeled Resource Initial Oil Saturation. In some instances, the value for the Initial Oil Saturation was low compared to more typical values for this parameter. In those instances, the value assigned to the Resource Initial Oil Saturation was increased to make it more consistent with typical values for the initial oil saturation. The Resource Initial Oil Saturation values are considered more realistic choices for calculating the original oil in place and better choices for the variable So_ooop in StrmtbFlow.
- Residual Oil Saturation to Water Flood (%) – The average residual oil saturation to a water flood (Sorw) in the ROZ analytic unit as a percentage of the total pore space. In principle, the oil in the ROZ has been naturally water flooded for millions of years, so there should be very little oil in the ROZ that will move during a water flood. Thus, the current oil saturation (So_cur) should be equal to or less than the residual oil saturation to a water flood. Consequently, Sorw was set equal to So_cur.
- Permeability (md) – Average reservoir permeability value. This is the horizontal permeability or the permeability in the direction of fluid flow.
- Dykstra-Parsons Coefficient (dimensionless) – A parameter with a value between 0 and 1 that provides a measure of the heterogeneity of permeability in the vertical direction. This is a measure of how the horizontal permeability varies with depth. A value of 0 indicates no variation in permeability or a perfectly homogeneous formation with respect to permeability. A value of 1 indicates an infinitely heterogeneous reservoir or a reservoir where the standard deviation of permeability is infinite. The Dykstra-Parsons coefficient for oil reservoirs is generally measured between 0.50 and 0.93.

FOUR COUNTY PERMIAN BASIN SAN ANDRES RESIDUAL OIL ZONE (ROZ) DATABASE

- Reservoir Temperature (°F) – Reservoir temperature in degrees Fahrenheit.
- Reservoir Pressure (psi) – Reservoir pressure in pounds per square inch.
- Oil Gravity (°API) – Reservoir oil gravity in degrees API.
- Hydrocarbon Gas to Oil Ratio (GOR) (scf/STB) – The ratio of hydrocarbon gas in solution in reservoir oil to the volume of oil at stock tank conditions. The hydrocarbon gas dissolved in reservoir oil gas comes out of solution when the oil is produced and equilibrates to standard conditions.
- Specific Gravity of Hydrocarbon Gas – The measure of the density of hydrocarbon gas associated with oil relative to the density of air at standard conditions.
- Oil Viscosity (cp) – Oil viscosity measured at reservoir conditions.
- Water Salinity (ppm) – The measure of the reservoir water salinity in parts per million or mg of salt per kg of solution.
- Water Viscosity (cp) – Water viscosity measured at reservoir conditions. If the water viscosity is not known, then StrmtbFlow will calculate a value based on the temperature, pressure, and salinity of the reservoir.
- Minimum Miscibility Pressure (MMP) (psi) – The minimum reservoir pressure that will allow for oil and CO₂ to combine as a miscible mixture. A miscible mixture of two components is one where each component is completely soluble at all proportions in the other component. MMP was estimated using an algorithm presented by ARI: [1]

$$\text{MMP (psi)} = 15.988 * \text{TRES}^{(0.744206 + 0.0011038 * \text{C5+})}$$

In this expression, TRES is the reservoir temperature in °F and C5+ is the molecular weight of a specific fraction of the oil in the reservoir, where C5+ refers to the fraction of the oil with pentanes and heavier hydrocarbons. C5+ can be estimated from the API gravity with the following equation, also found in ARI: [1]

$$\text{C5+} = 4247.98641 * \text{API}^{-0.87022}$$

Exhibit 3-1 provides the ranges of the individual parameters for the 64 analytic units with ROZ resource oil in-place contained in the Four County Permian Basin San Andres ROZ Database. The latitude and longitude are not included in the table since the ranges are not particularly meaningful.

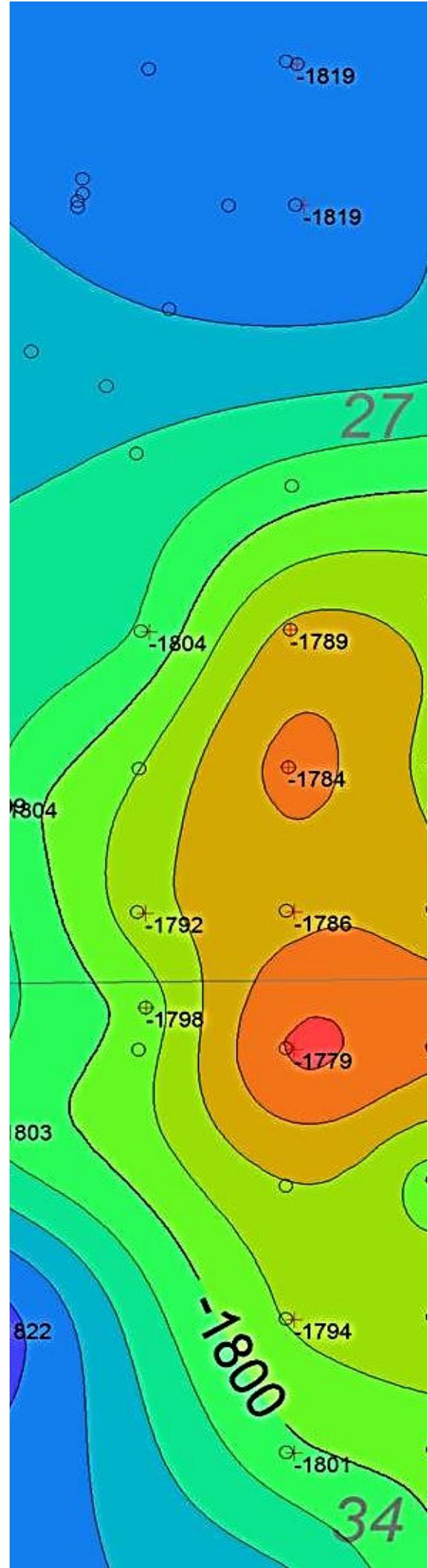
FOUR COUNTY PERMIAN BASIN SAN ANDRES RESIDUAL OIL ZONE (ROZ) DATABASE

Exhibit 3-1. ROZ partition reservoir parameters and data ranges

Reservoir Parameter	Data Range
ROZ Analytic Unit Area (acre)	3,000 – 308,000
ROZ Analytic Unit Depth (ft)	4,920 – 6,600
Gross Pay (ft)	97 – 425
Net Pay (ft)	22 - 320
Porosity (%)	7.6 – 15.8
Current Oil Saturation (%)	10 – 50
Oil Formation Volume Factor (res bbl/STB)	1.11 – 1.39
Initial Oil Saturation (%)	58 – 85
Resource Initial Oil Saturation (%)	58 - 85
Residual Oil Saturation to a Water Flood (%)	10 – 50
Permeability (md)	4 - 15
Dykstra-Parsons Coefficient	0.75 – 0.83
Reservoir Temperature (°F)	100 - 132
Reservoir Pressure (psi)	1,880 – 2,640
Reservoir Oil Gravity (°API)	28 - 35
Hydrocarbon Gas-Oil Ratio (scf/STB)	208 - 684
Hydrocarbon Specific Gas Gravity	0.75
Oil Viscosity (cp)	1.21 – 4.57
Reservoir Water Salinity (ppm)	44,000 – 160,000
Reservoir Water Viscosity (cp)	0.57 – 0.82
Minimum Miscibility Pressure (psi)	1,379 – 2,004

4 REFERENCES

- [1] Advanced Resources International, Inc. (ARI), "Basin Oriented Strategies for CO2 Enhanced Oil Recovery: Permian Basin," prepared for U.S. Department of Energy, Office of Fossil Energy – Office of Oil and Natural Gas, 2006.



NATIONAL ENERGY TECHNOLOGY LABORATORY

www.netl.doe.gov

Albany, OR • Anchorage, AK • Morgantown, WV • Pittsburgh, PA • Sugar Land, TX

(800) 553-7681

