
Toward Reliable and Efficient Exascale Computing

Proposal Title: Toward Reliable and Efficient Exascale Computing

Principal Investigators:

1. Rudolf Eigenmann (Lead PI)
Purdue University
765-494-1741
eigenman@purdue.edu

2. Yung Ryn Choe
Sandia National Labs
925-294-6435
yrchoe@sandia.gov

3. Seyong Lee
Oak Ridge National Labs
865-576-3869
lees2@ornl.gov

4. Vijay S. Pai
Purdue University
765-496-6610
vpai@purdue.edu

5. Olaf O. Storaasli
Oak Ridge National Labs
 865-574-0494
olaf@ornl.gov

6. Mithuna Thottethodi
Purdue University
765-496-6787
mithuna@purdue.edu

7. T.N. Vijaykumar
Purdue University
765-494-0592
vijay@purdue.edu

Estimated Cost: $945,000 (annual) $2,835,000 (total)

SAND2011-9465P

mailto:eigenman@purdue.edu�
mailto:yrchoe@sandia.gov�
mailto:eigenman@purdue.edu�
mailto:eigenman@purdue.edu�
mailto:mithuna@purdue.edu�
mailto:vijay@purdue.edu�

Toward Reliable and Efficient Exascale Computing

Overview

At a high-level, our proposal addresses foundational advances in checkpointing and reliability at scale,
compiler-assisted automatic performance forecasting (which can be used for early forecasting/prediction
of performance scaling) and elimination of key scalability bottlenecks in the runtime system. These
solutions crosscut compilers, tools, and runtime systems for a comprehensive approach to reliable and
efficient Exascale computing.

At large scale and long runtimes, reliability is a critical issue and one that is particularly exacerbated by
the large number of possible failing components in an exa-scale system. Fundamentally, checkpointing
strategies can be global or local (or some combination of the two). Each strategy has its own advantages
and disadvantages. With globally coordinated scheduling, consistent checkpoints are guaranteed; however
the co-ordination effort and time scales with system size. Unfortunately, long checkpoint coordination
times interact poorly with the fact that large systems have lower mean-time-to-failure (MTTF). In the
extreme, one may have a system where forward progress is jeopardized if MTTF is less than checkpoint
coordination time. On the other hand, local uncoordinated checkpointing can avoid the latency of
coordination; however, it offers weak guarantees of obtaining a consistent checkpoint. This can
potentially lead to a domino effect where one is forced to revert to earlier checkpoints which, in turn, may
be inconsistent, resulting in cascaded rollbacks and large wasted effort. The key innovation we propose is
a fundamentally new approach to checkpointing that obviates the need for consistency in the checkpoints,
while still guaranteeing reliable, consistent forward progress. Our technique employs timestamp-based
local, uncoordinated checkpointing technique while avoiding the domino effect. The checkpointing will
be automatically initiated by the runtime. Such a design offers the best of both worlds – fast, local,
independent checkpoints and minimal wasted effort.

Another key challenge in Exascale computing is predicting performance scalability, as certain behaviors
and even execution paths may only be observed at large scale. Our approach is to provide a compiler-
assisted, automatic methodology for performance forecasting at scale (both in system size and dataset
size). Such a tool/methodology will critically enable and automate detection and diagnosis of performance
scaling early in the process. Our methodology leverages advanced symbolic program analysis and
derives performance expressions for computation and communication. Several architecture-dependent
parameters of the expressions are derived from profile runs on a given, mid-scale platform and training
datasets, as well as from platform microbenchmarks that can be extended to scale. The performance
expressions can be used to evaluate the program behavior on large scale system configurations and large
datasets. Integrating this framework into the compiler allows the analysis of all possible execution paths,
including those not observed in small-scale tests. Consequently, the compiler can provide feedback on
likely performance scaling problems within certain execution paths even if those have not arisen during
profile executions.

Another important source of performance scalability issues arises in the runtime system, and our
contribution consists of novel algorithms that exploit common-case behavior to eliminate the bottlenecks
that arise due to excessive conservatism. For example, we propose to address an important scalability
bottleneck for MPI applications running on large HPC systems – the challenge of matching messages
received from the network at a node to “receive”s posted by the MPI process running on the node. Real
MPI benchmarks indicate that message matching is a potential bottleneck. Further, the performance of

Toward Reliable and Efficient Exascale Computing

message matching degrades with system scale. This implies that message matching can become a scaling
bottleneck for important, large-scale computations. We propose and explore novel matching algorithms in
the runtime that reduce matching time. In addition to the above example, we propose to target other
runtime system scaling bottlenecks including (but not limited to) collective communication and load-
balance/hot-spot avoidance for both computation and communication.

Our proposal can be considered an integrated and cross-cutting approach to achieving scalability for
Exascale computing. The first technique addresses scalability limitations that arise due to unreliable
components and the software stack layers that enable reliability through checkpointing. The second
technique addresses limitations from the structure of the applications that are being run. The third
technique targets scalability bottlenecks in the runtime and how the application exercises the runtime. The
combination of these techniques will yield substantial advances in reliability and efficiency as we march
toward Exascale computing.

