
Toward Reliable and Efficient Exa-scale Computing

Proposal Title: Toward Reliable and Efficient Exa-scale Computing

Principal Investigators:

1. T.N. Vijaykumar
Purdue University
765-494-0592
vijay@purdue.edu

2. Yung Ryn Choe
Sandia National Labs
925-294-6435
yrchoe@sandia.gov

3. Rudolf Eigenmann
Purdue University
765-494-1741
eigenman@purdue.edu

4. Seyong Lee
Oak Ridge National Labs
765-496-6610
lees2@ornl.gov

5. Vijay S. Pai
Purdue University
765-496-6610
vpai@purdue.edu

6. Olaf O. Storaasli
Oak Ridge National Labs
865-574-0494
olaf@ornl.gov

7. Mithuna Thottethodi
Purdue University
765-496-6787
mithuna@purdue.edu

SAND2011-9447P

Toward Reliable and Efficient Exa-scale Computing

Overview

At a high-level, our proposal addresses foundational advances in checkpointing and reliability at scale,
compiler-assisted automatic performance forecasting (which can be used for early detection of
performance/scaling bugs at scale) and elimination of key scalability bottlenecks in the runtime. These
solutions crosscut languages, compilers, and runtime systems for a comprehensive approach to reliable
and efficient exa-scale computing.

At large scale and long runtimes, reliability is a critical issue and one that is particularly exacerbated by
the large number of possible failing components in an exa-scale system. Fundamentally, checkpointing
strategies can be global or local (or some combination of the two). Each strategy has its own advantages
and disadvantages. With globally coordinated scheduling, consistent checkpoints are guaranteed; however
the co-ordination effort and time scales with system size. Unfortunately, long checkpoint coordination
times interact poorly with the fact that large systems have lower mean-time-to-failure (MTTF). In the
extreme, one may have a system where forward progress is jeopardized if MTTF is less than checkpoint
coordination time. On the other hand, local uncoordinated checkpointing can avoid the latency of
coordination; however, it offers weak guarantees of obtaining a consistent checkpoint. This can
potentially lead to a domino effect where one is forced to revert to earlier checkpoints which, in turn, may
be inconsistent, resulting in cascaded rollbacks and large wasted effort. The key innovation we propose is
a new approach to checkpointing that employs timestamp-based local, uncoordinated checkpointing
technique while avoiding the domino effect. The checkpointing will be automatically initiated by the
runtime. Such a design offers the best of both worlds – fast, local, independent checkpoints and minimal
wasted effort.

Another key challenge in exa-scale computing is predicting performance scalability, as certain behaviors
and even execution paths may only be observed at large scale. Our approach is to provide a compiler-
assisted, automatic methodology for performance forecasting at scale (both in system size and dataset
size). Such a tool/methodology will critically enable and automate detection and diagnosis of
performance/scaling bugs early in the process. Our methodology leverages advanced symbolic program
analysis and derives performance expressions for computation and communication. Several architecture-
dependent parameters of the expressions are derived from profile runs on a given, mid-scale platform and
training datasets, as well as from platform microbenchmarks that can be extended to scale. The
performance expressions can be used to evaluate the program behavior on large scale system
configurations and large datasets. Integrating this framework into the compiler allows the analysis of all
possible execution paths, including those not observed in small-scale tests. Consequently, the compiler
can provide feedback on likely performance problems within certain execution paths even if those have
not arisen during profile executions.

Another important source of performance scalability issues arises in the runtime system, and our
contribution consists of novel algorithms that exploit common-case behavior to eliminate the bottlenecks
that arise due to excessive conservatism. For example, we propose to address an important scalability
bottleneck for MPI applications running on large HPC systems – the challenge of matching messages
received from the network at a node to “receive”s posted by the MPI process running on the node. There
are two key problems in existing message matching techniques. First, their performance depends on the
length of the Unexpected Message Queues (UMQ) and the Posted Receive Queues (PRQ). Longer queue

Toward Reliable and Efficient Exa-scale Computing

sizes cause the message matching to slow down. Second, real MPI benchmarks do demonstrate growth in
the queue sizes. Further, this growth is expected to continue as systems and applications scale. Because of
the above two problems, the performance of message matching degrades with system scale. This implies
that message matching can become a scaling bottleneck for important, large-scale computations. We
propose and explore novel matching algorithms in the runtime that reduce matching time.

Our proposal can be considered an integrated and cross-cutting approach to achieving scalability in exa-
scale systems. The first technique addresses scalability limitations that arise due to unreliable components
and the software stack layers that enable reliability through checkpointing. The second technique
addresses limitations from the structure of the applications that are being run. The third technique targets
scalability bottlenecks in the runtime and how the application exercises the runtime. The combination of
these techniques will yield substantial advances in reliability and efficiency as we march toward exa-scale
computing.

