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People use social media resources like Twitter and
Facebook to share and discuss various activities or
topics they are interested in talking about. Resources
like LinkedIn reflect a person’s accomplishments as he
or she progresses through his or her career. By com-
bining these sources of data about individuals and ag-
gregating trends across many individuals using these
services, it may be possible to construct a rich port-
folio of a person’s activities and interests as well as
provide a broader context of those activities.
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1 Introduction

We access these social media sources in order to
examine the data stored at each site. These ser-
vices provide API’s to external applications through
an opt-in procedure that allows pulling out and indi-
vidual’s data to be processed by the external applica-
tion. Although there is a rich set of data in the link
graph of associations between users using the system,
there are many existing approaches to analyzing the
graph. Instead our approach considers that much of
this data will be unstructured, free-form text. By an-
alyzing this free-form text directly, we may be able to
gain an implicit grouping of individuals with shared
interests based on shared conversation, and not as
necessarily on explicit linking between them.

In this report, we discuss an application we have
developed, called Project Grandmaster. It has been
built to pull a person’s social media data together,
and provide analysis and allowing visual exploration,
summarization and understanding of the data in to-
tal. Using text analysis algorithms previously devel-
oped in Titan[9] and web-crawling technology devel-
oped in Avondale[2], we pull the data in and pro-
cess it. On top of that, we developed custom vi-
sualizations to show groupings of individuals, allow-
ing an aggregate understanding of a group by rein-
forcing and amplifying patterns within, identifying
a stereotypical group identity. This can further feed
into a learning system by ascribing properties to these
stereotypes, and then by determining how new indi-
viduals align with these stereotypes infer those prop-
erties to the new individuals.

Project Grandmaster works by allowing people to
opt-in and give access to their publicly available so-
cial data sources. Although it requires authorization
in some instances to access the APIs, the data it gath-
ers is only that which is already available to anyone
through regular web access. For instance, LinkedIn
provides a public profile that is available to anyone
who has the URL. We do not use crawling to find
these URLs; instead we require that an individual
explicitly add their links in order for the system to
download the data.

It is important to note that although the data is



from an individual, it is the data in aggregate which
is important to the results. We are not making a per-
sonality profile for an individual[7 8], instead we con-
sider only stereotypical behaviors for a group. The
association of individuals with groups is probabilistic
and can only infer qualities, not to guarantee their
existence. In addition, we make the effort to allow
an individual control over his or her data. He or she
may add data and also delete it at any point. The
system will reprocess to remove results pertaining to
removed data.

In the remainder of this report we will discuss the
implementation of the application, how we collect and
process the data, and the algorithms involved in do-
ing so. We show our proof-of-concept results with a
bootstrap data set. Finally, we discuss future steps
that could be taken to use the results presented here
to build learner profiles for automated learning, as
well as discuss ways we might continue to improve
the results themselves.

2 Implementation

Project Grandmaster is an open source, web-centric
application. The data collection and processing hap-
pen in the background and update a Mongo database.
The visualization code runs as part of a webpage that
queries new data each time the page refreshes and
builds the visualizations from that.

The documents and profiles are pulled from each of
the social sites and treated as a collection of the small-
est atomic units from each site. For instance, from
LinkedIn we treat a profile as a collection of work
experiences, education backgrounds, a summary sec-
tion, etc. Each of these pieces is a separate document,
but each tied to the original profile. Similarly the
Twitter data is composed of individual tweets. Each
of these is a separate document also associated with
the individual. Therefore the final data representa-
tion for an individual is a collection of documents
from all the data sources involved. This allows us
to cluster each of these documents independently for
content and find a range of possible document clusters
for the individual, reflecting a diversity of categorical
content with which the person should be associated.

At a high level, Project Grandmaster is made up
of three main parts: A web crawler, an analysis
pipeline, and a visualization suite. The web crawl-
ing framework collects the data and writes it out to
a Mongo database for further processing by the anal-
ysis pipeline. It is implemented in Avondale, which

has a plugin framework to allow specialized access
to the various social media APIs. It is described in
more detail in Section The analysis pipeline is
handled in large part by the Titan Toolkit. We access
Titan through a collection of Python scripts and store
partial results at each step out to a Mongo database
for display by the visualization code. The analysis
pipeline is described in more detail in Section [2.2
Finally, the visualizations were developed using D3,
a JavaScript based visualization library, and are de-
scribed in Section 2.3}

2.1 Capturing Social Media Data with
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Figure 1: Web crawling framework. The framework
controls a single crawl across multiple jobs on multi-
ple nodes.

Avondale was originally written to crawl the web
searching for documents. It was architected as cluster
of computers each running a crawler, Figure |1} and
each storing the results to the database. This allows
it to scale to crawl a very large number of pages very
quickly.

As part of this effort, we rearchitected Avondale to
allow plugins to the framework to crawl the more spe-
cialized APIs of the social media sites, Figure[2] This
allows the plugins to run on the same cluster infras-
tructure as the web crawling allowing for potentially
large scale social media crawling as well. For this
work, we use only one node.

The social media crawl exists as a single long run-
ning job on one or more nodes. When a new user
joins the system, their data will be passed into the
job through a web communication back-end. The job
runs each of the plugins at a regular interval specified
by the individual plugin type. This allows the system
to correctly throttle API queries based on the limita-
tions specified by each source. For instance, Twitter
only allows 200 APT calls every 15 minutes.
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Figure 2: The Avondale plugin structure allow code
specialized for particular web APIs, such as the so-
cial media used here, to run in the same multi-node
framework as the original web crawl.

When new user data comes in, each social me-
dia URL is added to each individual crawler plugin.
When that crawler plugin next runs it will check if
there is new or updated information for its existing
individuals and then start downloading the data from
the new individual. It maintains a state about each
individual it knows about and can persist this state
out to disk in case of shutdown. This allows the sys-
tem to only grab the data which it has not already
downloaded, as well as pause the downloading at any
point in order to obey the throttling limitation of the
site’s APL

As this data is collected, it is stored into the Mongo
database, associating each document with the indi-
vidual who created it. In a separate process, the
analysis pipeline checks will reprocess the data, as
described in Section

2.2 The Data Analysis Pipeline

Once the data is stored into the database by Avon-
dale, the analysis pipeline commences in processing
the records. Although it is possible to process the
data incrementally, in this proof-of-concept version,
we simply reprocess the entire collection each time we
want to update the data set. The processing is broken
up into four distinct algorithms: Latent Dirichlet Al-
location (LDA), clustering of documents, word cloud
preprocessing, and user clustering.

We use a version of LDA known as Parallel Latent
Dirichlet Allocation (pLDA) [Il [, [4]. pLDA works
from a corpus of documents represented as a term
frequency count matrix, Figure In our case the
corpus of documents are a collection of the atomic
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Figure 3: A spare term frequency matrix represent-
ing the count of each term (horizontal axis) in a doc-
ument (vertical axis). This matrix consists mostly of
0s with scattered 1s and one or two places with higher
numbers.

components of each social media site, e.g., tweets,
work experiences, summaries, etc, for the entire col-
lection of individuals.

From this complete corpus of all individuals, pLDA
constructs a set of topics representative of the whole
set of documents, Figure[dl Each topic is a collection
of weighted terms and each document is a weighted
set of topics. Essentially this clusters terms into
collections of synonyms and distinguishes homonyms
into separate topics. This reduces dimensionality; in-
stead of treating documents as a collection of individ-
ual terms, potentially numbering in the thousands or
millions as in Figure (3, we reduce the documents to
a collection of topics numbers in the tens or possibly
hundreds at most.

By placing all documents into one unified lower
dimensional space, we will be able to compare doc-
uments which use synonymous words and contrast
those which use words in different contexts. Figure ]
shows the documents assigned to two different users,
a gamer and a senator. Although the lower dimen-
sion of 27 is easier to work with than 13,396, we still
have some challenges remaining in comparing these
two individuals. We could compare each individual
document by assigning a numeric distance metric, in
our case cosine similarity, in topic space between the
documents. However, this would result in D? com-
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Figure 4: The two matrices produces as a result of
processing through LDA. Both are probability matri-
ces, the top gives a probability distribution for each
topic across all the terms, see Table [I]in Parameter-
ization, Section [3.1} The bottom gives a probability
distribution for each document across all the topics.

parisons where, D is the number of documents. This
would not scale well.

To counter this scaling issue, we aggregate the doc-
uments down to a single vector for each user. One
approach, would be to average the term distributions
across all documents for that user and then use cosine
similarity to compare the final vectors. However, av-
eraging tends to squash out a lot of the diversity con-
tained in an individuals documents, see Figure[6] We
will show later the importance of maintaining these
individualities in the examples shown in Section [3.2}
Thus, our approach is to cluster the documents first,
and then use those clusters to project a user vector
that highlights the variety of topics the user engages.
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Figure 5: Document distribution for a collection of
documents assigned to two users, a gamer and a sen-
ator. Brighter green in a column means higher prob-
ability of that topic in the document at that row.
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Figure 6: Averaged topic vectors from the two indi-
viduals in Figure Averaging tends to squash the
topic distribution, removing diversity which would be
useful later for finding distinctions between individu-
als.

Using this distance metric we can use K-Means
clustering to group the documents into a set of K
distinct clusters. K-Means clustering works by tak-
ing a parameter K and create a set of K initial clus-
ter centers. Each document is assigned to the closest
cluster center using the distance metric. Once each
document is assigned, the centers are recomputed as
the mean value of all the documents assigned. The
algorithm iterates back and forth between these two
states until it converges and no document further
changes cluster assignments. Figure [7] shows the av-
eraged topic distribution for each document cluster.
Note, how the topic vector is reinforced by the simi-
larity instead of squashed in diversity. We can then
understand the diversity of an individual by how they
project across these different clusters.

Now, we are able to treat these document clus-
ters as vectors of document counts for each person.
For each document a person has that is assigned to
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Figure 7: Averaging the topic vectors over a clustered
group of documents no longer squashes the vector as
it did in Figure[6] Instead certain subsets of topics are
highlighted and reinforced in each document cluster

a particular cluster, that person’s document vectors
gets a weighted increment in the associated index, see
Figure [§] The weighted increment is based on how
close to the center the document is, documents will
fall between 0.5 and 1.0 in this scale. Figure [9] shows
the resulting document vector for the two individuals
from Figure [5| Using this new vector space for indi-
viduals, we once again create a distance metric and
cluster the individuals using K-means.

Finally we preprocess each document cluster for
a word cloud visualization[5]. A word cloud, also
known as tag cloud, is a useful visual summarization
of a collection of documents. It scales up words which
are frequently used in the collection and scales down
words which are infrequently used. There are many
variations of word clouds and many ways to sort. In
our case, we use an arbitrary spatial arrangement and
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Figure 8: The creation of a document vector for a
user using the assignment of the user’s documents
into document clusters.
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Figure 9: User vectors produced by projecting a users
documents through the document clusters as shown

in Figure

use only scale to communicate the frequency. The
preprocessing step involves counting terms in each
document cluster to determine the count for the vi-
sualization to use for later scaling. Note, that this
frequency count is entirely independent of the topic
weighting. We can use this as a separate verifica-
tion of sense-making in the pLDA /K-means cluster-
ing processes.

The result of each of these steps, i.e., LDA, word
cloud and both clusterings, is stored back into the
Mongo database to enable the visualization.

2.3 Data Representations, Visualiza-
tions, and User Interactions

The two main data representations we need to vi-
sualize are the user clusters and document clusters
described in Section [2:2] This is represented by two
sets of bubbles in the main view of the application,
Figure The visualizations are developed through
a web-based interface using the Javascript library D3
to do the main part of the visual control. The cluster
data is read from the Mongo database server-side and
passed to for client-side rendering and interaction.
On the left side of the main view are the user clus-
ters. These are organized into a force-directed layout
with the cluster centroids represented as rings and
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Figure 10: Main view of Project Grandmaster.
hierarchically organized document clusters.
document cluster.

individuals represented as points. In a force-directed
layout, all items have an implicit repelling force from
each other. There is only an attractive force between
an individual’s point and it’s cluster center. There is
a secondary force between two cluster centers, repre-
sented with a semi-transparent gray line, if the two
cluster centers are on average similar to each other,
i.e., the individuals contained in the cluster are sim-
ilar to the individuals in the other cluster, and that
similarity is above some threshold. This allows us
to understand a two-layer of hierarchical arrangment
between the cluster centers and the individuals.

In the middle view, the document clusters are orga-
nized into a full hierarchical agglomerative clustering
(HAC). The initial clustering is done for all docu-
ments using K-means for a given K, here 50. Then
the HAC procedure finds the nearest two clusters and
merges them into a single parent cluster, replacing
the two with this parent in the set. It then iterates
this procedure, replacing the nearest two clusters, one
or both of which could be a previously merged cluster,
until only one cluster remains at the root. Using this
hierarchical arrangements we can understand group-
ings of topics and sub-topics within the document col-

On the left are the user cluster.
On the right is the word cloud associated with the selected
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In the middle are the

lection. The labels assigned to the document clusters
are either "P”, representing parent, and a number
or "C”, representing original cluster, and a number.
The number is a unique identifier for each cluster or
parent. The number after the colon represents the
number of documents contained in that cluster.

On the right hand side of the view is the bubble
word cloud associated with the highlighted document
cluster. As described previously, in Section [2.2] the
word cloud is generated by simply counting term fre-
quencies in the document cluster. The terms that
are easiest to see are the ones which are most fre-
quent. There is no meaning to the spatial arrange-
ment only to the size. The purpose of this display is
to quickly summarize the content of potentially hun-
dreds of documents contained in the cluster.

The view updates as a user of the application moves
the mouse over various sections of the display. As he
or she hovers over a user cluster, the other clusters
fade out to emphasize the cluster in focus. Blue lines
are connected from the user cluster to the various
document clusters the users in that cluster are talk-
ing about. The document cluster with the highest
connection to that user cluster is highlighted and its



Figure 11: The main view changes to highlight the group being hovered over with the mouse. Blue lines,
Figure represent the various document clusters the highlighted user cluster is talking about. As a user
hovers over document clusters, Figure the cluster is highlighted and the associated word cloud is shown.
Purple lines are extended out to the user clusters talking about this set of documents.

word cloud is displayed. This is shown in Figure

In addition to hovering over user clusters, a user
may also hover over the document clusters directly.
This will highlight the document cluster being hov-
ered and bring up its word cloud. It will also extend
purple lines from the document cluster to each of the
user clusters talking about this particular document
collection. This is shown in Figure Note that
neither the blue lines or the purple lines disappear
in order to maintain context as the user is moving
around in the view.

Finally there are two search boxes on the upper left
and upper right. The search box on the upper left al-
lows one to find users either by partially matching the
name or complete matching. Users are highlighted
by creating a large blue dot to replace the normally
small dot connected with individuals. This can also
be seen in Figure In the Figure the other
search box will highlight a document cluster. The
cluster is highlights is the one with the highest fre-
quency occurrence of the term in the search box. This
search is an exact match. As before, highlighting the
document cluster also brings up the associated word
cloud and the purple lines back to the user clusters.

All of these interactions allow a user of the applica-
tion to search through all of the data in the collection
and globally understand this data in terms of which
groups the users have collected into and what sorts
of things they are talking about. If the he or she has
a targeted query, such as a particular person or term,
they can search for that directly.

A final view is shown in Figure This is an early
step at making automated recommendations to a user
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Figure 12: Searching for a term in the upper right box
brings up the document cluster where that term has
the highest frequency occurence among the clustered
documents.

based on the processing we are doing here. This view
shows the nearest user and most average user within
the cluster of a queried individual. It also shows a
number of web links which may be of interest to the
queried user. The links are sorted by the proximity
between the posting user and the queried user. The
proximity is the same calculation used to cluster the
individuals, as described in Section



Project Grandmaster
Rand Paul x
User

Rand Paul

My thoughts and prayers are wit the
vitims in Boston and their familes.

Today | inroduced the Fourth Amendment
B

Nearest User

Roger Wicker

1 ust voted against the ban on assaut

weapons

@ugottatriand Thank you, Kell | hopa you
wish you all the

| obiect to the Indefiite detention
language in the #NDAA.
hitpi/tco/eKBaMLO

My thoughis & prayers are with the
chidren, parents, teachers and
community in Connecticut as they deal
with the tragic oss of Ife tocy.
Congratulatons @JmDeMint, Your strong
volce for Liberty will be missed in the

best!

Happy Birthday to my friend & colleague
from the Show Me State, Senator
@RoyBlunt!

Visiing @Circadence's Advanced

Most Central User

Jim Risch

1 voted no on #Brennan again today. My
concerns about him as IA director have
ot changed. #StandWiithRand

1 have signed on & urge the President to
‘approve. RT @EnergyTomorrow 53
Senators Urge Approval of #KeystoneXL
Pipeline ntp://tco/ubLizal

Just posted video of my questions for Sec:
of State Ciinton from today's Forelgn

nfabla~ SignOut

Cluster Links

Roger Wicker: .@Nissan_USA wil buid the
Murano in Ganton, Miss. starting next
year. Great economic opportunty for our
state! htp/t.coMOIDIKSh

Foger Wicker: NE @Gov_Heineman
approved new route for the FKeystone
pipeline. | joined in a leter urging
President to move forward.
hitp/AcolelednZgH

Roger Wicker: Big challenges loom as
Obara begins his 2nd term. Read why

Research &

Tupelo. Gutting-edge IT work being done.

@Nissan_USA will b the Murano n

anton, Mss. starting next year. Great
for our statel

Senate,
across the country.

Earllo today, | 100k to the Senate foor to
urge Democratic leadership to allow a
vote on immigration reform. 4STEMact
hitp.co/OKIOOKI

hitp//tcomOiDIKsh
Gongrats to Pearl River Gommunity
College’s 'Spirt of the River' band for
being selected to march in the presidential
inaugural parade!

thousands who have

AT hour on
radio @SenRandPaul — Listen FREE come 1o D.C. today for the
hitp/t.co/goR0ZmOH

ICYMI: Appeared on @hannityshow on
@FoxNews discussing yesterday’s
Benghazi hearing w/ Secretary Clnton.
#1G0t it it cO/XLYierDI

RT @terrymeiners: @SenRandPaul wil jon
me at 5:10 today on BAWHAS, siream

@March_for_Life are a testament to the
importance of protecting the unborn.

NE @Gov_Heineman approved new route
forthe #Keystone pipelne. 1 joined in &
letter urging Presicent to move forward.
hitp/ftcolelednzgH

Big challenges loom as Obama begins hs

. 3  Obama
2ndterm & Israe!

T @woltbitzer Il tak Ive w/

2ndterm.
forleadsrship & solutons:
Rtp//Lco/RaTPRY2.

abouthis
Hillary Clinton and her #Benghazi
testimony. 4:30PM ET

Had | been President, | would have

40t Anniversary of Roe
V. Wade. It a somber reminder, but 'm
encouraged the #prolfe moverent.
continues to save Ives.

of her dutes
Nitp//co/gEXoNP

1 willbe questioning Secretary Giinton
momentariy at the SFRC #Benghazi

mr Anti-Hagel forces
overwhelm, surprise Hagel handiers..For
once conservatives have thelr act
together http:/t.collgTazSg7

htt/1.00/VGIPBALT
1 am strongly #prolife & wil contnue
working to protect & defend the Ife of the
unborn today, the 40th anniv of
#Roeviade, and every day.

Going forward, | wil continue to advocate
for a gov'tthat allows more froedom,
fewer reguiations, and less spending.
Pit//.co/SDUXKLGY

1 belleve the 2nd Amendment s for all law-

abiding Americans & increased gun
control il not soive the Issues facing our
nation.

Both Rs and Ds agree, Assad crossed
POTUS' red line. Question now s, what
Wil US. do? Ether way, answer sends a
strong message to Iran.

Vieki& I are proud to support
@marchofdimes. We wers “chefs" at last
night's gala & Vicki deserves a the credit
Pito/oo/Lialz1xBs

Regulations are strangling small business.
| made my point at a Small Business
hearing yesterday w/ #Obamacare regs.
it/ co/KBmmOTrPwI

Americans are
Solutions: /0o BaTPRY2.

Foger Wicker: MT GURubinBlogger Anti-
Hagel forces overwhelm, surprise Hagel
handiers..For once conservatives have
their act together httpi/t.coflgTAzSg7
Roger Wicker: .@wacade | appreciate
@PhiBryantMS' response and | also
strongly oppose sircter gun control. Read
my statement here: http//tco/waRLOcel

Roger Wicker: .aMiamBil | strongly
0ppose the President’s proposals for
stroter gun control. Read my statement
here: htp://t cowgRLOoe!
Roger Wicker: President’s proposals.
Would vioiate the Constiution & have been
proven notto be effective in preventing
qun violence. nitp:/tco/4T3rfsky
Roger Wicker: Congratulations to the
#Mississippi students chosen to
participate n the U.S. Senate Youtn
Program! htp:/t.co/msYieBMd
Foger Wicker: Last night | was a guest on
the GLarsLarsonShow voicing my
concerns with Chuck Hage as Sec Def
nominee. Listen here:

7.

Spitof
Enterprise award. Reducing federal regs
o help create jobs is a big priorty.
hitp//.co/PgrGWHmSS

Roger Wicker: Chuck Hagel, atthough a
respected veteran, s the wrong cholce to
lead the Pentagon. Read my op-ed in

Vs

edchat
streaming
senate
elearning
today
edtech
thanks
today
thanks
follow
thanks
live
boston
jobs
forward
help

happy

© 00O Ui Wi = O

e e N e e
DU WD =O

edtech
stream
bill
edtech
women
edchat
lol
school
don
Tt
thank
11
today
tax
looking
thanks
birthday

students
hots
reform
learning
act
google
love
thanks
today
sure
love
tune
families
help
look
rt
hope

rt
going
immigration
online
hearing
ipad
don
de
fun
thank
rt
watch
thoughts
health
working
awesome
thanks

“@wacade | appreciate GPHIBryantMS'
response and | also strongly 0ppose
strioter gun control. Read my statement
here: http://.co/waRLOoe!

hearing. You can watch here:
hitpi/co/prigfBmh

Victims and thel famies in Boston as do
the thoughts and prayers of Idahoans.
#prayforboston

Roger Wicker: Defense budget & foreign
policy priorites command urgent
attenton. Must cut spending wihile
protectng nat securty.
hitpi/co/bisgrsth

40 yrs ago, Supreme Court’s ruling on
Roe v. Wade changed America forever. Il
continue o fight or e for al Americans,
born & unborn

#TaxDay reminder that President Obama
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Figure 13: An experimental user focused view. It
shows the searched user’s data for comparison. The
nearest user within the cluster. The most average
user in the cluster. And a list of html links sorted
by the closeness of the user posting them to the user
queried.

3 Results

The data set we chose to bootstrap the proof-of-
concept consists of the public data of professional
Starcraft players, United States senators, E-learning
experts and Hollywood celebrities. Because they did
not opt-in as we would normally operate, we chose
them based on the public nature of their roles and
selected only the data they explicitly made public.
We have a collection of 274 individuals and 9,628
tweets. It consists of an arbitrary sampling of a few
days between the last few months of 2012 and first
few months of 2013.

3.1 Parameterization

In order to parameterize the processing, we began by
experimentally finding a number of topics to pass to
pLDA which produced topic distributions that made
sense. We have found through the experimentation
that the system works better with as few topics as
we can reasonably choose. In addition to the num-
ber of topics, we also have to choose values for « and
8 inputs to pLDA. For 8 we chose 0.01 as recom-
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Table 1: This table shows the top four highest prob-
ability terms in each of the 28 topics used for the
proof-of-concept data set.

mended by Steyvers and Griffiths[6]. However, while
they recommend setting « to 50/t where t is number
of topics, we’'ve found that because tweets are small
they are less likely to be distributed over as many
topics and therefore use 2/t here. The resulting set
of topics for this data set, using 28 topics is shown in
Table 1l

Next we must determine the proper number of clus-
ters to use for the documents and the users. We do
this by measuring the performance of the clustering
for various values of k number of clusters, Figure
In the graph, vertical is the measure of average simi-
larity between the elements of the clusters. The max-
imum value is 1. We want to pick a number that is
as small as possible to allow generalization without
going too low in performance. By picking values at
the knee in the graph we can optimize for both those
criteria. In the graphs, the knee for documents begins



K-means Performance Curve for Document Clusters
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Figure 14: Performance curve for document and user clustering for the collection. Performance is
measured on the vertical by how similar the items in a cluster are to each other. Max value is 1. We look
at the performance for all values of k clusters between some large value and 1.

at k = 32. We choose a value of 35, a couple steps to
the left to avoid being too close to the steep drop off
in performance. Similarly for the user clusters, the
knee begins at about k = 17 and we choose a value
of 20.

3.2 A few examples

Although understanding the data really requires in-
teracting with it through the tool, we provide a few
examples here to give a gist for how the data appears
in the final results. We show a few examples of the
kinds of groupings we can achieve with this system.
It is important to note that the nature of this data
is probabilistic and there is some noise and potential
error with some users in the system. In part this can
depend on the amount of data we have available, er-
ror rates would go down as we increase the numbers
of documents we include as well as the numbers of
individuals.

The first two examples in Figures [15] and we
show two different groups of senators. We picked the
number of user clusters as described in Section B.1]
based on the quality of the clustering. However, while
we maintain these clusters as distinct, for the pur-
poses of visualization we also keep track of how close,
in topic space, those user clusters are to each other.
Those which are close above some threshold, in this
case above 0.5 on a scale of 0 to 1, we draw a light
gray line between them and apply some force in the
visualization to keep them together. Thus its possi-
ble to see two to three larger groups form out of the
smaller clusters.
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Figure 15: A group of senators talking about a variety
of bills going through Congress at the time of data
capture.

Having these larger groups can help in navigating
each individual group as we see in Figure The
word cloud shows prominently the words ”forward”
and "looking”, these words are very abstract in some
sense, but because we know through navigation that
this group is close to the group talking about ”sen-
ate”, ”bill”; and ”spending”, we may conclude that
this is a group of senators who are more interested
in talking at a higher level rather than about specific
bills or votes.

The second two examples in Figures [I7] and [I8]
show two different groups of E-learning experts.
Again we find two connected, but distinct groups.
The first group in Figure[l7]appear to talk more gen-
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Figure 16: A group of senators talking at perhaps a
higher level than those pictured in Figure
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Figure 17: A group of E-learning experts consistent in
their use of edchat and edtech as hashtags to describe
their tweets.

erally about the topic and use the hashtags (a way
of labeling topics in Twitter) "edchat” and ”edtech”
very consistently to mark the information they’re
sharing. The second group pictured in Figure [I§] are
talking more about specific technologies and tech-
niques related to E-learning such as ”gamification”
and "google”. The hashtag ”edtech” is present, but
not as dominant as the other group, which may imply
the tweets of this group are going more in depth on
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Figure 18: A group of E-learning talking about par-
ticular technologies and techniques.

the subject.

To reiterate, the nature of this data is probabilistic
so it is important to remember that these descrip-
tions are in aggregate and only relate to an individ-
ual at a confidence level related to their closeness to
the group. For users much closer to the center as
literally shown in the visualization, we might have
a stronger confidence about using these general de-
scriptions for them. Contrary, users who are at the
fringe of a group, we should have a lower confidence
of ascribing traits of the group to them, but not to
absolute zero. One way to think of the fuzziness is
that those individuals at the fringe may actually have
had an affinity for another group. The affinity could
be 0.49 where the affinity for the group they are fi-
nally assigned is 0.51. We will discuss ways we might
improve the visualization to capture this fuzziness in
Section [l

Our final example group, Figure shows the
group of professional gamers. Because professional
gamers make a living by sponsorship and live streams
of their games, it is unsurprising to find that their
dominant communication is about the live streams
of their activity. While we do not necessarily have
a measure for the accuracy of our data, we can at
least use the common sense of roles we are aware of
to determine whether or not there is enough sense be-
ing made out of the data with the analysis presented
here.
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Figure 19: A collection of gamers talking about
streaming live footage of themselves playing the
game.

4 Future Work

There are two ways we can expand this work. One
is to focus on improving the visualization itself, by
adding new features and capabilities. The second is
by exploiting the information provided by this tool
to new capabilities, especially in aiding automated
learning systems as stated previously.

First, there are a few ways we consider for expand-
ing the capabilities of this tool. As mentioned previ-
ous, there is a fuzzy connection between individuals
and their clusters centers than is otherwise implied
by the thresholded connectivity we use here. We may
be able to expand the visualization to accommodate
users who bridge different groups and give a better
indication of some individuals’ hybrid natures. Al-
though we had considered using, but did not have
time to actually use, further text analysis methods
such as sentiment analysis, we would consider doing
so in the future. Although we are able to group people
by talking about a particular topic, we are not dis-
tinguishing between those people who are like what
they are talking about versus those who are against
it. This would apply especially in the case of the
senators. Finally, while we use cosine similarity and
k-means clustering there may be some other or bet-
ter methods for performing proximity measurements

or handling the clustering itself. It may be worth
investigating an incremental improvement in the al-
gorithm methods themselves.

Considering that we have not quite 275 people in
this data set, it is a small data set in term of the size
of social media data. If we were to collect data from
275 random individuals we might be looking at 275
distinct roles, as opposed to the more defined roles we
consider here, e.g., senator, e-learning expert, gamer.
In that situation, there would likely be no repeated
patterns among the discussions to reinforce the sig-
nals and dampen noise, allowing the groups to cluster
in a meaningful way. However, if we were to have 275
distinct roles and have 20000 individuals there is a
better chance we will start to see repeated patterns.
In general, we would expect that as we add individ-
uals the number of roles increases, but it tapers off
at an asymptote. There are only so many different
kinds of things people can talk about or do. With
a large enough dataset we should always be able to
find repeated patterns that allow people to cluster.
By exploring a much larger data set, we may be able
to determine at what point we reach that asymptote.

There are a few ways we could extend the use of
this analysis to other applications. One example, us-
ing data entirely available within the application, is
the user view. This shows web links filtered by the
clustering to show only those links posted by peo-
ple in the same cluster, and sorted so that the top
links are by the closest people. With additional meta
data, such as a person’s interest in a class, we can
potentially apply a similar inference to suggest oth-
ers within the cluster take that class. The strength
of the suggestion would be weighted by the proximity
of each member.

Another strategy of interest with this data set is
the idea of archetype or stereotype definition. Be-
cause we have this notion of a cluster center and a
set of textual data about the cluster, we can expand
the tool to capture new information about that cen-
ter, treating it as a stereotype for the group. For
instance, an expert examining the word cloud recog-
nizes and suggests that the learning system should
modify its examples to game related learning. We
allow the expert using Project Grandmaster to mod-
ify the document clusters changing "C 0 : 125” to
a more meaningful learning system flag, ”Interest in
Games”. Now, any user group which links to this
document cluster automatically gains the attribute
"Interest in Games”. Because this would modify the
stereotype for the group, any current user or any fu-



ture user assigned to the group would automatically
receive the attribute ”Interest in Games” which could
then be used to bootstrap a learning system to take
advantage of that information. Going further there
may be more meaningful ways we can add these kinds
of attributes to the stereotypes or document clusters
and is worth further investigation.

5 Conclusion

This work intended to show a proof-of-concept ap-
plication for exploring the use of social media data
to understand individuals for the purposes of aiding
and improving automated learning systems. We have
demonstrated a tool which is capable of collecting
and processing social media free-form text and pro-
viding visualizations which aid a user understanding
the text and the individuals in aggregate. We believe
the results presented here represent a strong founda-
tion from which to build systems targeted to partic-
ular learning applications by making use of the data
simplified and summarized by this work.
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