
Photos placed in horizontal position 
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sirocco Status
Matthew Curry

SAND2013-5274P



Introduction

 L2 Milestone

 POSIX compliance

 Write performance

 Read capability

 Components

 Lock server

 Data location service

 Scatter/gather API

2



Lock Server

 POSIX requires atomicity
 Namespace manipulation

 File write access

 Related: TAMU work leveraging ASG semantics

 Short term: Lock service
 Clients can obtain global leased lock

 N-Party Locks

 Attached metadata

 Lock refreshing

 Lock revocation

 Knowledge of interspersed locking by others

3



Data Location

 Sirocco servers may move data at will
 Resilience, Capacity, Spite

 Related: Haiying’s work, Zhiwei’s work

 Short term: Unsophisticated data location
 Data location depends on netgraph functionality

 Netgraph does bootstrapping/overlay networking

 A server broadcasts received requests, short-circuited by:

 A request cache (keyed by <originating address | operation ID>)

 TTL

 Location information only is returned to client

 <Record offset, number of records, location address, version> x n

 Finite receive buffer yields need for extra information, i.e. “last 
known-good offset”

 Catastrophic cancellation of location information 4



Scatter-Gather API

 Defined wrapper API over ASG API to perform scatter/gather 
reads
 Similar to PVFS noncontiguous access, or xread/xwrite in libsysio

 Internally, uses the batching/transactional functionality that 
we defined for Sirocco
 ss_tx *tx = start_tx(…);
asg_op(…, tx);
tx_submit(tx);
tx_wait(tx);

 The batching made the implementation of this API quick and 
easy, and API makes certain operations within client quick 
and easy.

 Is it time to consider adding batching to ASG interface?
5



Thanks

 Questions?

6



Location: Catastrophic Cancellation

7

[0, 1, 2]

[2, 1, 2]

[126, 1, 2]

…

[1, 1, 2]

[3, 1, 2]

[127, 1, 2]

…

[0, 128, 1]

[128, 128, 3]

[0, 128, 3]

[128, 128, 1]

 [x, y, z] is an extent with offset=x, nrecords=y, and updateID=z

 Merging from left to right, with only 128 slots available

 After merging batches 1 and 2, all slots are filled

 After merging batches <1…2> and 3, all slots are still filled

 After merging batches <1…3> and 4, two slots are filled

 Correct data from batch 3 ([128, 128, 3]) wasn’t “found” because of buffer space 
constraints

 Incorrect data from batch for ([128, 128, 1]) was included because capacity was freed 
during merge

 Solution: Keep offset of known-correct data, keep minimum of all 
reported offsets through reduction

Batch 1Batch 1 Batch 2Batch 2 Batch 3Batch 3 Batch 4Batch 4


