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What is the Cost of Cell Failure? 
• Independent of Field Failure vs. Abuse Failure 

• Materials, manufacturing & liability costs 

• Significant for large format cells and high energy systems 

SNC-Lavalin Gulf Contractors Safety Alert, June 2008 
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Impact of Scale 

Larger batteries in larger quantities: 

– The numbers of cells used in the automotive industry (EVs and PHEVs) could 
potentially be huge (billions) 

– EV and PHEV battery packs are much higher energy (15-50 kWh) 

– Increasing consideration for lithium-ion cells for utility storage (MWh systems) 

 

 

6 cells,  50 Wh battery 

7000 cells,  50 kWh battery 

??? cells,  MWh battery 



4 

Impact of Scale 

Consumer Cells 
(0.5-5 Ah) 

Large Format 
Cells (10-200 Ah) 

Batteries ( 1-50 
kWh) Vehicle system 

www.nissan.com 
www.internationalbattery.com 

www.samsung.com 
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12 Ah (~50 Wh) Pouch Cell Overcharge Abuse 
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 500 Wh failure….  5000 Wh failure…. 
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Mitigating Lithium-ion Safety Issues 

 

Safety Issue 
Mitigation Strategy 

Materials Strategy Engineering Controls 

Thermal exposure Stable cathode materials 
Cathode coatings 

Mimimize electrolyte combustion 

PTC 
Thermal management 

Overcharge Redox shuttle/polymer additives 
Stable cathode materials 

Minimize electrolyte combustion 

CID 
Fuses 

Voltage control electronics 

Flammability Minimize electrolyte decomposition 
Non-flammable solvents 

Gas sensors 

Mechanical abuse Robust materials Packaging  

Improvements to inherent safety of lithium-ion cells at the materials scale  
could minimize complexity of the controls systems & reduce total cost  

Moving forward, we must work on improving safety not only  
of systems and controls but also inherent safety at the cell-level 
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Technical Challenges 

• Energetic thermal runaway of active materials 
– Exothermic materials decomposition, gas evolution, electrolyte combustion 

– Improvements made by electrode coatings and new materials 

• Electrolyte degradation & gas generation 
– Overpressure and cell venting is accompanied by an electrolyte spray which 

is highly flammable 

– Needs to be improved with electrolyte choices with minimal impact on 
performance or by minimize electrolyte degradation at electrode interfaces 

• Abuse response as a function of cell age 
– The cell age effects on abuse tolerance of cells and cell materials (electrolyte 

salts, additives, active materials, separators)  are largely unknown 

– Systematic approaches to studying cell abuse response as a function of 
calendar and cycle life 

…..toward the development of inherently safe 
lithium-ion cell chemistries and systems 
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Anatomy of Catastrophic Failure 

1 

2 
High rate runaway 
Catastrophic failure 

3 
3 

2 

1 
SEI breakdown (70-90 C) 
Separator shutdown 
Cell Venting (155-165 C)  
Electrolyte degradation 

Anode breakdown 
Electrolyte degradation 
Onset of cathode decomposition 
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Anatomy of Catastrophic Failure 
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Cell and Battery Testing 

Understanding Failure Mechanisms 
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Energetic Cathode Runaway 
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Accelerating Rate Calorimetry of Advanced 
Materials in Cells 

EC:EMC 
1.2M LiPF6 

100% SOC 

Can we make a high 
energy cell behave 
(thermally) like a 

LiFePO4 cell? 

ARC response of high voltage and high capacity cathodes? 
ARC response of cells with high capacity anodes (Si-composites)? 
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Coated Cathodes 

Cathode particle 
(secondary particle) 

Coated-cathode particle 

1, 2 

1. Coating Process – Chemical co-precipitation, surface modification, vapor 
deposition, ALD, etc.)  

2. Coating Materials - AlF3, Al2O3, M3(PO4)x 
 

1, 2 

Improvements in cathode performance 
(capacity fade, cycle life, etc.) and 

materials stability 

Sun, Y. –K. et al. Electrochem. Commun. 2006, 8, 821-826 
Hyo, L. S. et al. J. Power Sources, 2008, 184, 276-283 
Oh, S. et al. J. Power Sources, 2004, 132, 249-255 
Riley, L. A. et al. J. Power Sources, 2011, 196, 3317-3324 
Leung, K. et al. J. Am. Chem. Soc., 2011, 133, 14741-14754 
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Coated Cathodes – AlF3 coated NMC 
Collaboration with K. Amine and Z. Chen at Argonne National Laboratory 

AlF3-coating improves the thermal 
stability of NMC and NCA cathodes 

Material Onset Temp. (°C) 

NMC 240 

AlF3-NMC 260 

NCA 190 

AlF3-NCA 235 
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4.5 V cut-off Pristine L333
 AlF3-coated L333
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Coated Cathodes – AlF3 coated NMC 

• Increased stabilization significantly improves the thermal 
response during cell runaway 

• Variability likely due to the material heterogeneity 
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Coated Cathodes – AlF3-coated NMC 

• Good agreement between individual electrode ARC experiments and full 18650 cells 

• Total enthalpy is comparable for the coated and uncoated NMC (Gen3) cells 

• Inert coatings reduce the reaction rates, but the total heat output remains unchanged 
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Effects of Electrolyte on Cell Runaway 
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Electrolyte Degradation & Flammability 
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• Large gas volume - 2.5 L for 18650 cell 
• Cell vent  solvent aerosol spray 

(flammable) 
• Cell vent  spreading particulates 

(inhalable)  

G. Nagasubramanian “Thermally Stable Electrolytes for Li-ion Cells”  
Battery Safety 2011, Thursday November 10, 2011 

Vent Gassing Ignition 
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LiPF6 catalyzes electrolyte solvent decomposition at elevated temperature 

Electrolyte Solvent Decomposition – LiPF6 

1.2 M LiPF6 + EC 

EC (neat) 
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Solvent Impact on Cell Runaway 

EC:EMC (3:7) 
EC:EMC (3:7) 

 
EC:PC:DMC (1:1:3) 
EC:PC:DMC (1:1:3) 

1.2M LiPF6 
4.3 V 

Solvent ΔHc°/cell (kJ) 

EC:EMC (3:7) 86.5 

EC:PC:DMC (1:1:3) 77.8 
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Impact of Electrolyte on Cell Runaway 

• Are these really “inactive” components of a cell? 

• Can we design electrolytes to passivate cathode reactions? 
– Analogous to inert cathode coatings 

• Can we choose electrolyte salts that minimize the catalysis of solvent 
decomposition? 

• Can we identify solvent systems with suitable lower combustion enthalpy 
than carbonate solvent mixtures? 
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ABA Electrolyte Development 
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Objective: Develop ABAs to use with LiF (or non-PF6 salts) 
 Reduce gas decomposition products 
 Passivate the runaway reactions at the cathode 

Collaboration with Binrad Industries and X. Q. Yang at BNL on ABA development work 

Perfluorophenyloxaltoborate 

• 10% reduction in total capacity (cell) 

• RT Conductivity = 2 mS/cm 
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ABA Electrolyte Development 
Electrolyte NMC 111 

NMC 433 NCA 

50% reduction in total specific heat output of NMC 433 with LiF/ABA electrolyte 
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ABA Electrolyte Development 

• Significant reduction in cathode runaway in ARC measurements 

• Continue work to elucidate passivation mechanism 

• Synthesis of new ABA molecules 
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Effects of Cell Age on Inherent Cell Safety 
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Effect of Age on Cell Abuse Response 
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Collaboration with J. Belt at Idaho National Laboratory and Bor Yann Liaw at Univ. Hawaii 

Objectives: 

• Determine the effect of cell age on thermal profile (ARC) 

• Investigate how cell performance and thermal profiles vary from cell-to-cell and if 
variations change with cell age (implications in system thermal modeling and 
performance) 
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Control (Fresh Cell) Population 

ARC thermal runaway profiles of fresh cells Total  gas volume from fresh cells 
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Good agreement in the thermal response & gas volume of initial cells 
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Effect of Age on Cell Abuse Response 

Condition Fresh Cell Aged Cell 

SEI breakdown 90 °C 110 °C 

Cathode onset 240 °C 220 °C 

Peak Rate 320 (C/min) 110 (C/min) 

Significant differences in onset temperatures & heating rates for the aged cells 
Consistent with materials changes within the cell 
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Summary 

• Fielding the most inherently safe chemistries and designs can help 
addressthe challenges in scaling up lithium-ion 

• Coated cathodes show measureable improvements in runaway reaction 
rates in full cells relative to their uncoated analogues 

• Future work will focus on ionic conducting coatings of advanced high 
voltage and high capacity materials 

• Choices in electrolyte salt and solvent can impact the combustion 
enthalpy, gas generation and flammability of the electrolyte 

• ABA-based electrolytes can significantly passivate the cathode runaway 
reaction at the material- and cell-scale 

• Cell age has a significant impact on abuse response namely onset 
temperatures (both anode and cathode decomposition) and reaction rates 

• Future work will continue to look at age effects (calendar vs. cycle age) to 
better understand mechanisms that lead to changes in abuse response 
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