SAND2011-8302P

Battery Safety Meeting, Las Vegas, NV, 11/9/2011

Abuse Tolerant Lithium-ion Cells for
Transportation Applications

Christopher J. Orendorff

Technical Staff

Sandia National Laboratories

PO Box 5800, MS-0614

Albuquerque, NM 87185-0614
corendo@}andia.goy o

i v )'?
Py iy 3
- ;'r:" %
" 3 e y: ' ’
’# 2z P J
. /-
dNt al Laborator émltpgmlh% trymna.gd and oper. tdbySde atio

\ X
hl wgd subsidiary fLCkh ed Martin Corporation, for the U.S. Depa artmentof Enerey's Natio 1t /[?'N‘AV’&"%?) { National
urity Adm istration under contract DE- ACG‘4 94AL85000. Nathonal Wuclear Securty Admiistration Laboratories



What I1s the Cost of Cell Failure?

* Independent of Field Failure vs. Abuse Failure
* Materials, manufacturing & liability costs
» Significant for large format cells and high energy systems
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Impact of Scale

Larger batteries in larger quantities:

— The numbers of cells used in the automotive industry (EVs and PHEVs) could
potentially be huge (billions)

— EV and PHEV battery packs are much higher energy (15-50 kWh)

— Increasing consideration for lithium-ion cells for utility storage (MWh systems)

6 cells, 50 Wh battery

??? cells, MWh battery

7000 cells, 50 kWh battery Nl
Laboratories




Impact of Scale

Consumer Cells Large Format Batteries ( 1-50 Vehicle svstem
(0.5-5 Ah) Cells (10-200 Ah) kWh) y

www.nissan.com
www.internationalbattery.com
www.samsung.com




Current (A) and Voltage (V)
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Mitigating Lithium-ion Safety Issues

Moving forward, we must work on improving safety not only
of systems and controls but also inherent safety at the cell-level

Safety Issue

Thermal exposure

Mitigation Strategy

Materials Strategy

Stable cathode materials
Cathode coatings
Mimimize electrolyte combustion

Engineering Controls

PTC
Thermal management

Overcharge

Redox shuttle/polymer additives
Stable cathode materials
Minimize electrolyte combustion

CiD
Fuses
Voltage control electronics

Flammability

Minimize electrolyte decomposition
Non-flammable solvents

Gas sensors

Mechanical abuse

Robust materials

Packaging

Improvements to inherent safety of lithium-ion cells at the materials scale
could minimize complexity of the controls systems & reduce total cost
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Technical Challenges

.....toward the development of inherently safe
lithium-ion cell chemistries and systems

e Energetic thermal runaway of active materials
— Exothermic materials decomposition, gas evolution, electrolyte combustion
— Improvements made by electrode coatings and new materials

e Electrolyte degradation & gas generation

— Overpressure and cell venting is accompanied by an electrolyte spray which
is highly flammable

— Needs to be improved with electrolyte choices with minimal impact on
performance or by minimize electrolyte degradation at electrode interfaces

e Abuse response as a function of cell age

— The cell age effects on abuse tolerance of cells and cell materials (electrolyte
salts, additives, active materials, separators) are largely unknown

— Systematic approaches to studying cell abuse response as a function of
calendar and cycle life




Anatomy of Catastrophic Failure

SEl breakdown (70-90 C)
Separator shutdown
Cell Venting (155-165 C)
Electrolyte degradation
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r Electrolyte degradation
: Onset of cathode decomposition
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Anatomy of Catastrophic Failure
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Understanding Failure Mechanisms

Materials Characterization
Cell Performance
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Identify strategies to mitigate
failure or poor abuse tolerance
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Energetic Cathode Runaway
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Accelerating Rate Calorimetry of Advanced
Materials in Cells
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ARC response of high voltage and high capacity cathodes?
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Coated Cathodes

* 1,2
—_—

Cathode particle Coated-cathode particle
(secondary particle)

1,2
[ [

1. Coating Process — Chemical co-precipitation, surface modification, vapor
deposition, ALD, etc.)
2. Coating Materials - AlF;, Al,O;, M;(PO,),

Improvements in cathode performance
Sun, Y. =K. et al. Electrochem. Commun. 2006, 8, 821-826

Hyo, L. S. et al. J. Power Sources, 2008, 184, 276-283 (capacity fade, cycle life, etc.) and

Oh, S. et al. J. Power Sources, 2004, 132, 249-255 materials stability
Riley, L. A. et al. J. Power Sources, 2011, 196, 3317-3324

Leung, K. et al. J. Am. Chem. Soc., 2011, 133, 14741-14754 mﬁa]
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Coated Cathodes — AlF; coated NMC

Collaboration with K. Amine and Z. Chen at Argonne National Laboratory
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Coated Cathodes — AlF; coated NMC
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* Increased stabilization significantly improves the thermal
response during cell runaway

* Variability likely due to the material heterogeneity




Coated Cathodes — AlF;-coated NMC
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* Good agreement between individual electrode ARC experiments and full 18650 cells
» Total enthalpy is comparable for the coated and uncoated NMC (Gen3) cells
 Inert coatings reduce the reaction rates, but the total heat output remains unchanged




Effects of Electrolyte on Cell Runaway

17




Electrolyte Degradation & Flammability
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Electrolyte Solvent Decomposition — LiPF;
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So

vent Impact on Cell Runaway

Heating Rate (C/min)
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Impact of Electrolyte on Cell Runaway

* Are these really “inactive” components of a cell?

e Can we design electrolytes to passivate cathode reactions?
— Analogous to inert cathode coatings

e Can we choose electrolyte salts that minimize the catalysis of solvent
decomposition?

e Can we identify solvent systems with suitable lower combustion enthalpy
than carbonate solvent mixtures?

21




ABA Electrolyte Development

Objective: Develop ABAs to use with LiF (or non-PF salts)

— Reduce gas decomposition products
- Passivate the runaway reactions at the cathode
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Collaboration with Binrad Industries and X. Q. Yang at BNL on ABA development work |
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ABA Electrolyte Development
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ABA Electrolyte Development
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* Significant reduction in cathode runaway in ARC measurements
e Continue work to elucidate passivation mechanism

. | * Synthesis of new ABA molecules
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Effects of Cell Age on Inherent Cell Safety




Effect of Age on Cell Abuse Response

Collaboration with J. Belt at Idaho National Laboratory and Bor Yann Liaw at Univ. Hawaii

Objectives:

* Determine the effect of cell age on thermal profile (ARC)

* Investigate how cell performance and thermal profiles vary from cell-to-cell and if
variations change with cell age (implications in system thermal modeling and

performance)

Capacity fade of aged cells (60 °C storage)

Power fade of aged cells (60 °C storage)
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Control (Fresh Cell) Population

ARC thermal runaway profiles of fresh cells Total gas volume from fresh cells
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Good agreement in the thermal response & gas volume of initial cells
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Effect of Age on Cell Abuse Response
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Significant differences in onset temperatures & heating rates for the aged cells {ff

Consistent with materials changes within the cell ) S,
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Summary

* Fielding the most inherently safe chemistries and designs can help
addressthe challenges in scaling up lithium-ion

e Coated cathodes show measureable improvements in runaway reaction
rates in full cells relative to their uncoated analogues

e Future work will focus on ionic conducting coatings of advanced high
voltage and high capacity materials

* Choices in electrolyte salt and solvent can impact the combustion
enthalpy, gas generation and flammability of the electrolyte

* ABA-based electrolytes can significantly passivate the cathode runaway
reaction at the material- and cell-scale

 Cell age has a significant impact on abuse response namely onset
temperatures (both anode and cathode decomposition) and reaction rates

e Future work will continue to look at age effects (calendar vs. cycle age) to
better understand mechanisms that lead to changes in abuse response

29
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