\

SAND2011- 8264P

A Tutorial on
Anasazi and Belos

2011 Trilinos User Group Meeting
November 1st, 2011

Chris Baker
David Day
Mike Heroux
Mark Hoemmen
Rich Lehoucq
Mike Parks
Heidi Thornquist (Lead)

Sandia
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, National
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Laboratories

National Nuclear Security Administration under contract DE-AC04-94AL85000.

} Outline

= Belos and Anasazi Framework
+ Background / Motivation
¢+ Framework overview
+ Available solver components

= Using Anasazi and Belos
+ Simple example
¢ Through Stratimikos (Belos)
¢+ Through LOCA (Anasazi)

= Summary

Sandia
National
Laboratories

Background / Motivation

O Several iterative linear solver / eigensolver libraries
exist:
©® PETSc, SLAP, LINSOL, Aztec(OO), ...
©® SLEPc, LOBPCG (hypre), ARPACK, ...

©® None of the linear solver libraries can efficiently deal
with multiple right-hand sides or sequences of linear
systems

O Stopping criteria are predetermined for most libraries
©® The underlying linear algebra is static

Sandia
National
Laboratories

A 4
> AztecOO

©® A C++ wrapper around Aztec library written in C

© Algorithms: GMRES, CG, CGS, BiCGSTAB, TFQMR
© Offers status testing capabilities

© Output verbosity level can be determined by user

© Interface requires Epetra objects
©® Double-precision arithmetic

© Interface to matrix-vector product is defined by the user
through the EpetraOperator

Sandia
National
Laboratories

_
;&i ARnoldi PACKage

(ARPACK)

©® Written in Fortran 77
© Algorithms: Implicitly Restarted Arnoldi/Lanczos
O Static convergence tests

© Output formatting, verbosity level is determined by
user

©® Uses LAPACK/BLAS to perform underlying vector
space operations

O Offers abstract interface to matrix-vector products
through reverse communication

Sandia
National
Laboratories

e '
#Calable Library for Eigenvalue Problem

Computations (SLEPc)

©® Written in C (Hernandez, Roman, and Vidal, 2003).
© Provides some basic eigensolvers as well as wrappers around:
— ARPACK (Lehoucq, Maschhoff, Sorensen, and Yang, 1998)
— BLZPACK (Marques, 1995)
— PLANSO (Wu and Simon 1997)
— TRLAN (Wu and Simon, 2001)
© Native Algorithms: Power/Subspace lteration, RQI, Arnoldi

© Wrapped Algorithms: IRAM/IRLM (ARPACK), Block Lanczos
(BLZPACK), and Lanczos (PLANSO / TRLAN)

© Static convergence tests

© Uses PETSc to perform underlying vector space operations,
matrix-vector products, and linear solves

© Allows the creation / registration of new matrix-vector products

Sandia
National
Laboratories

A 4
4" Anasazi and Belos

Next generation linear solver (Belos) and eigensolver (Anasazi)
libraries, written in templated C++.

+ [terative methods for solving sparse, matrix-free systems

Provide a generic interface to a collection of algorithms for solving
linear problems and eigenproblems.

Algorithms developed with generic programming techniques.

¢ Algorithmic components:
« Ease the implementation of complex algorithms

+ Operator/MultiVector interface (and Teuchos::ScalarTraits):
» Allow the user to leverage their existing software investment
« Multi-precision solver capability

+ Design offers: Interoperability, extensibility, and reusability

Includes block linear solvers and eigensolvers.

Sandia
National
Laboratories

v

Why are Block Solvers Useful?

= |n general, block solvers enable the use of faster computational
kernels.

= Block Eigensolvers (Op(A)X = AX).
+ Reliably determine multiple and/or clustered eigenvalues.

+ Example applications:
© Stability analysis / Modal analysis
© Bifurcation analysis (LOCA)

= Block Linear Solvers (Op(A)X =B):

+ Useful for when multiple solutions are required for the same system
of equations.
+ Example applications:
© Perturbation analysis
©® Optimization problems
©® Single right-hand sides where A has a handful of small eigenvalues
10

Inner-iteration of block eigensolvers
Sandia
National
Laboratories

A |
}" Belos Solver Categories

= Belos provides solvers for:
¢+ Single RHS: Ax=5b
¢ Multiple RHS (available simultaneously): AX =B
+ Multiple RHS (available sequentially): Ax;=b;, i=1,...,k
¢ Sequential Linear systems: Ax; =b;, i=1,...,k

= Leverage research advances of solver community:

+ Block methods: block GMRES [Vital], block CG/BICG [O’Leary]
+ “Seed” solvers: hybrid GMRES [Nachtigal, et al.]

+ “Recycling” solvers for sequences of linear systems [Parks, et al.]
+ Restarting, orthogonalization techiques

Sandia
National
Laboratories

;’

Belos Solvers

= Hermitian Systems (A = AH)

Block CG

Pseudo-Block CG (Perform single-vector algorithm simultaneously)
RCG (Recycling Conjugate Gradients)

PCPG (Projected CG)

MINRES e

= Non-Hermitian System (A # AH)

Block GMRES

Pseudo-Block GMRES (Perform single-vector algorithm simultaneously)
Block FGMRES (Variable preconditioner)

Hybrid GMRES

TFQMR

GCRODR (Recycling GMRES)

Block GCRODR (Block variant of GCRODR) (ew:

Sandia
National
Laboratories

g '
} ' Anasazi Solvers

= Hermitian Eigenproblems
+ Block Davidson
+ Locally-Optimal Block Preconditioned Conjugate Gradient (LOBPCG)
¢ |mplicit Riemannian Trust-Region (IRTR)

= Non-Hermitian Eigenproblems
+ Block Krylov-Schur (BKS)

Sandia
National
Laboratories

Anasazi and Belos

(Algorithmic components)

=) is an initial guess
forj=1,2,...
Solve r from Mr =b — Ax(?)
v = r/|r||;
s = |[r|lzes
fori=1,2,....m
Solve w from Mw = Av(?
fork=1,...i
hii = (w,v™)
w=uw — .-'1;;__.,;1;(""}

end

hiv1,: = [|wl|2

oY) = w/hi

apply Ji, ..., Jicy on (i, higr)

construct J;, acting on ith and (i 4+ 1)st component
of h_;, such that (i + 1)st component of J;h_; is 0
s = J;s
if (@ + 1) is small enough then (UPDATE(Z, 7) and quit)
end
UPDATE(z, m)
end

GMRES Example

Sandia
National
Laboratories

Anasazi and Belos

(Algorithmic components)

SolverManager Class

=) is an initial guess
forj=1,2,...
Solve r from Mr =b — Ax(?)
v = r/|r||;
s = |[r|lzes
fori=1,2,....m
Solve w from Mw = Av(?
fork=1,...i
hii = (w,v™)
w=uw — .-'1;;__.,;1;(""}

end

hiv1,: = [|wl|2

oY) = w/hi

apply Ji, ..., Jicy on (i, higr)

construct J;, acting on ith and (i 4+ 1)st component
of h_;, such that (i + 1)st component of J;h_; is 0
s = J;s
if (@ + 1) is small enough then (UPDATE(Z, 7) and quit)
end
UPDATE(z, m)
end

GMRES Example Sandia
National
Laboratories

Anasazi and Belos

(Algorithmic components)

SolverManager Class .
lteration
(%) is an initial guess CIaSS
for j =12
Solve r from Mr = b — Az(9)
vl =r/[r|l;
s 1= [|rf|2e1
fori=1,2,....m
Solve w from Mw = Av("
fork=1,...i
hii = (w,v™)
w=uw — .-'1;;__.,;1;(""}
end
hiv1: = ||w|2
wH) = w/hiy1
apply Ji, ..., iy on (R, .. higrq)
construct J;, acting on ith and (i 4+ 1)st component
of h_;, such that (i + 1)st component of J;h_; is 0
s = J;s

if (@ + 1) is small enough then (UPDATE(Z, 7) and quit)
end
UPDATE(Z, m)

end /

GMRES Example Sandia
National
Laboratories

\

Anasazi and Belos

(Algorithmic components)
SolverManager Class Problem Classes / Operator Classes lteration

=) is an initial guess // Class
for j =12

Solve r from Mr ={b — Az(©
o® = v/
s = |rl[2€
fori=1,2,....m
Solve w from Mw =|Av"
fork=1,...i
hii = (w,v™)
w=w— hk?iv(k}
end
hit1i = [|w|2
wH) = w/hiy1
d])])]}’ .Il, wuey -Iz'—l o1 (hlfz', caey h,z'+1,1')
construct J;, acting on ith and (i 4+ 1)st component
of h_;. such that (7 4+ 1)st component of J;h_; is 0
s = J;s

if (@ + 1) is small enough then (UPDATE(Z, 7) and quit)
end
UPDATE(z, m)
end

S

GMRES Example Sandia
National
Laboratories

\

Anasazi and Belos

(Algorithmic components)
SolverManager Class Problem Classes / Operator Classes lteration

=) is an initial guess // Class
for j =12

Solve r from Mr ={b — Ax(®
o) — e

MultiVector /frzﬂrllzel

ori=1,2,....m

Classes < Solve w from Muw =[Au(
fork=1,...i

hii = (w,v*))

w = w — h ;v*)

2

construct J;, acting on ith and (i 4+ 1)st component
of h_;. such that (7 4+ 1)st component of J;h_; is 0

s = J;s

if 8(i 4+ 1) is small enough then (UPDATE(Z, i) and q

uit)
end
UPDATE(z, m)
end

S

GMRES Example Sandia
National
Laboratories

| Anasazi and Belos

(Algorithmic components)
SolverManager Class

) lteration
=) is an initial guess Class
for j =12

Solve r from Mr =b — Az'?)

v et

MultiVector s =||rl2e1
Y eclo //fo?rjz I,2,....m
C|aSSQS < Solve w from Mw = Av(?) OrthoManager
for k=1 i
™ i = (w,v*)) 1 Class
w = w — hy v

(ICGS, IMGS,
ke DGKS, TSQR)

apply Ji, ..., Jicion (R g, ... higr4)

construct J;, acting on ith and (i 4+ 1)st component
of h_;, such that (i + 1)st component of J;h_; is 0

s = J;s

if (@ + 1) is small enough then (UPDATE(Z, 7) and qt

11t)
end
UPDATE(z, m)
end /

GMRES Example Sandia
National
Laboratories

\

Anasazi and Belos

(Algorithmic components)
SolverManager Class Problem Classes / Operator Classes lteration

=) is an initial guess // Class
for j =12

Solve r from Mr ={b — Ax(®

o®) el
i s =|r||2e,

MultiVector /4‘{4: LT .
Classes < Solve w from Mw =|Av(OrthOManager

for k=1 L

o E’“ =Ll] Class
b ()

w = w — hj ;v (ICGS, IMGS,

ol DGKS, TSQR)
w/hi1
StatUSTeSt d])])]}’ .Il, wuey Jz'—l on (hlfz', aasy h,z'+1,1')
construct J;, acting on ith and (i 4+ 1)st component
CIaSS \\ of h_;. such that (7 4+ 1)st component of J;h_; is 0

s = J;s

if 5(¢ + 1) is small enough then (UPDATE(Z, 7) and quit) |
end
UPDATE(x, m)
end

S

GMRES Example Sandia
National

Laboratories

Anasazi and Belos

(Algorithmic components)
SolverManager Class Problem Classes / Operator Classes lteration

=) is an initial guess // Class
for j =12

Solve r from Mr ={b — Az(©
o) —/lad|)
MultiVector s~ {rae;
Y eclo //f(}?rjz L,2,....m
Classes < Solve w from Mw =|Av" OrthoManager
for k=1 i
™ Elk’i — (w, v®)] Class
)= 1 — R sp(E)
L=y (ICGS, IMGS,
" DGKS, TSQR)
w/hiy14
StatUSTeSt d])])]}’ .Il, wuey Jz'—l o1 (hlfz', aasy h,z'+1,1')
construct .J;, acting on ith and (7 + 1)st component
CIaSS \\ of h_;. such that (7 4+ 1)st component of J;h_; is 0
s = J;s
if 5(¢ + 1) is small enough then (UPDATE(Z, 7) and quit) |
end
wDATE(:E, m) ﬂ
end /
OutputManager SortManager sanda

Class Class Laboratories

int main(int argc, char *argv[]) {

MPI Init(&argc,&argv) ;
Epetra MpiComm Comm(MPI_COMM WORLD) ;
int MyPID = Comm.MyPID() ;

typedef
typedef
typedef
typedef
typedef
typedef
typedef

double

Teuchos: :ScalarTraits<ST>

SCT: :magnitudeType

Epetra MultiVector

Epetra Operator

Belos: :MultiVecTraits<ST,6 MV>
Belos: :OperatorTraits<ST,6 MV,O0P>

using Teuchos: :ParameterList;
using Teuchos: :RCP;

using Teuchos: :rcp;

// Get the problem

std: :string filename ("orsirrl.hb");
RCP<Epetra Map> Map;
RCP<Epetra_CrsMatrix> A;

ST;
SCT;
MT;

oP;
MVT;
OPT;

| Parameters for
Templates

Example (Step #1 — Initialize System)

RCP<Epetra MultiVector> B, X; - Get I Inear
RCP<Epetra Vector> vecB, vecX;

A : . , system from
EpetraExt: :readEpetralinearSystem(filename, Comm, &A, &Map, &vecX, &vecB);
X = Teuchos::rcp_implicit cast<Epetra MultiVector> (vecX); d |Sk
B = Teuchos::rcp_implicit cast<Epetra MultiVector>(vecB);

Sandia
Trilinos/packages/belos/epetra/example/BlockGmres/BlockGmresEpetraExFile.cpp Paat;ﬂﬂg’i(ﬂ .
oratories

Example (Step #2 — Solver Params)

bool verbose = false, debug = false, proc_verbose = false; -

int frequency = -1; // frequency of status test output.

int blocksize = 1; // blocksize

int numrhs = 1; // number of right-hand sides to solve for

int maxiters = 100; // maximum number of iterations allowed - SOIVer
int maxsubspace = 50; // maximum number of blocks

int maxrestarts = 15; // number of restarts allowed Parameters
MT tol = 1.0e-5; // relative residual tolerance

const int NumGlobalElements = B->GloballLength() ;

ParameterList belosList;

belosList.set("Num Blocks", maxsubspace) ; // Maximum number of blocks in Krylov
factorization

belosList.set("Block Size", blocksize); // Blocksize to be used by iterative solver

belosList.set("Maximum Iterations", maxiters); // Maximum number of iterations allowed

belosList.set("Maximum Restarts", maxrestarts); // Maximum number of restarts allowed

belosList.set("Convergence Tolerance", tol); // Relative convergence tolerance requested

int verbosity = Belos::Errors + Belos::Warnings;
if (verbose) {
verbosity += Belos::TimingDetails + Belos::StatusTestDetails;
if (frequency > 0)
belosList.set("Output Frequency", frequency);

) ParameterList for
if (debug) {
verbosity += Belos: :Debug; SOIVerManager
}
belosList.set("Verbosity", verbosity);
Sandia
Trilinos/packages/belos/epetra/example/BlockGmres/BlockGmresEpetraExFile.cpp National

Laboratories

Example (Step #3 — Solve)

// Construct linear problem instance.
Belos: :LinearProblem<double,MV,OP> problem(A, X, B);
bool set = problem.setProblem() ;
if (set == false) {
std: :cout << std::endl << "ERROR:
set up correctly!" << std::endl;

return -1;

_ LinearProblem

B&os: :LinearProblem failed to ObJeCt

Template Parameters

// Start block GMRES iteration .
Belos: :OutputManager<double> My OM() ; SOIVerManager ObJeCt
// Create solver manager.

RCP< Belos::SolverManager<double, MV,OP> > newSolver =
rcp(new Belos: :BlockGmresSolMgr<double, MV,OP>(rcp (&problem, false), rcp(&belosList,false)))
// Solve
Belos: :ReturnType ret = newSolver->solve() ;
if (ret!=Belos: :Converged) ({
std::cout << std::endl << "ERROR: Belos did not converge!" << std::endl;
return -1;

}
std: :cout << std::endl << "SUCCESS: Belos converged!" << std::endl;

return 0;

Sandia
Trilinos/packages/belos/epetra/example/BlockGmres/BlockGmresEpetraExFile.cpp @ Paat;ﬂﬂg’i(ﬂ .
oratories

r el

Spotlight on Recycling

o,
%

Aequences of Linear Systems

= Consider sequence of linear systems
A" = p¥ I=1,2.3,

= Applications:

Newton/Broyden method for nonlinear equations
Materials science and computational physics
Transient circuit simulation

Crack propagation

Optical tomography

Topology optimization

Large-scale fracture in disordered materials
Electronic structure calculations

+ Stochastic finite element methods

= |terative (Krylov) methods build search space and select
optimal solution from that space

= Building search space is dominant cost

» For sequences of systems, get fast convergence rate and good
Initial guess immediately by recycling selected search @ Sandia

: National
spaces from previous systems Laboratories

* 6 6 6 & O o o

} Why Recycle?

= Typically, dominant subspace exists such that almost any Krylov
space (from any starting vector) has large components in that
space (why restarting is bad)

“Superlinear”
/ Convergence

log({|rll)

-10 \ ‘ ‘

1 26 51 76
iteration

Sandia
National
Laboratories

-~
Why Recycle?

Typically, dominant subspace exists such that almost any Krylov
space (from any starting vector) has large components in that
space (why restarting is bad)

Optimality derives from orthogonal projection

+ new search directions should be far from this dominant subspace
for fast convergence

If such a dominant subspace persists (approximately) from one
system to the next, it can be recycled

+ Typically true when changes to problem are small and/or highly

localized
Matrix Off-the-shelf solver Recycling Solver Release
General GMRES GCRODR Trilinos 8
Recycling CG -
SPD CG (RCG) Trilinos 10
Symmetric MINRES Recycling MINRES N/A

Indefinite (RMINRES) Sandia
@ National
Laboratories

-~
Deflation

= |nvariant subspace associated with small eigenvalues delays
convergence

= Corresponds to smooth modes that change little for small localized
changes in the problem

= Remove them to improve convergence!
+ Recycle space = approximate eigenspace

in_ |, - Az|,

min ‘pm (A)r(,H2

P (0)=1

<kKk(V)

fol, min max|p,, (A)

= If (V) is not large (normality assumption) we can improve bound by

removing select eigenvalues
@ Sandia
National
Laboratories

}c‘ ypical Convergence with

 IC(0) preconditioner ReCyCIIng

« GMRES - full recurrence
* All Others — Max subspace size 40

logqo lirll2

1 : 1 1 = \ 1

50 100 150 200 250 300 350 400 450
Number of Matrix-Vector Products San_dia
GCRO-DR GMRES(w0) - [‘aat;ucﬂg’?t!:ries

}' Example #1 Topology

ptlmlza

= Optimize material distri n, p, In design dlomaln
= Minimize compliance u™K(p)u, where K(p)u=f

Initial guess
A 4 ———
¥ Finite Element Analysis
l -
Sensitivity Analysis (Iteration 0
| ——
Filtering Techniques
I en—— B—
Optimization Process Iteration 4
(Optimality Criteria)
Update Design Variables
l \ _
[p;ew — po'd] < tolerance Iteration 16

False

] True

Plot Optimal Topology [|—

Iteration 106
(Final iteration)

Sandia
*S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods 'luaal:lt:]rg’?;ﬁa
with recycling, International Journal for Numerical Methods in Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007.

g
}'Example #1: Topology

Optimization

;/T w
— -

]

= ———]
Size Num. DOFs Direct Solve Time Recycling Solve Time
Small 9,360 0.96 1.68
Medium 107,184 179.30 50.41
Large 1,010,160 26154.00 1196.30

Recycling Solve = RMINRES + IC(0) PC

Direct Solve = multifrontal, supernodal Cholesky factorization from TAUCS S
ndia
National

*S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods Wi@ Laboratories

recycling, International Journal for Numerical Methods in Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007.

A5PE, ample #2 Stochastic PDEs*

» Stochastic elliptic equation

-V -(a(x,»))Vu(x,0)=f(x) xeD,0eQ
u(x,m) =0 XeoD,neQ

» KL expansion + double orthogonal basis + discretization
¢ Separate deterministic and stochastic components

+ Yield sequence of uncoupled equations
AV = p i=1,2,3,...

» Preprocess for recycling Krylov solver

+ Use reordering scheme to minimize change in spectra of linear
system

Sandia

"C. Jin, X-C. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on @ [‘aat;ucﬂg’?t!:ries

Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007.

« Scheme #4: Recycle Krylov spaces using reordering
* Many systems require zero iterations!

en
=

One-Level ASM

s
o
T

s
=
T

=1
&
T

[~
=
T

‘IS—

iteration maumber for system @

= schama 4

scheme 1

"C. Jin, X-C. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on

2000 2000 200 5000 6000 7000 8000
system ¢, 1 <1< 9216

iteration mumber for system @

Two-Level ASM

xample #2 Stochastic PDEs*

« Scheme #1: No Krylov recycling

50 , , :
o st |
ok -
3} .
af .
5l LA . .
: o kR 2
c. L

L |
1000 2000 2000 4000
system ¢, 1 <

TABLE 4.1

Running time for different schemes and preconditioning (seconds).

Scheme
Preconditioner 1 9 3 4
One-level ASM 12030 7693 4205 3882
Two-level ASM | 20980 | 14130 | 10740 | 8476

Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007.

@

|
9000

Sandia
National

Laboratories

_ '
}Structure of Recycling Solver

{ Syis_t16m } / Solve System i \

AU=C Recycle
(I-CCT)AV=VH SpEes

Recycle
Space

tructure of Recycling Solver

Choice of Method:
GMRES, MINRES
|) H
SSZt:n CG, etc.
yi 1 / Solve System i

Recycle AU=C Recycle
Space (I-CCT)AV=VH Space

Recycle
Space

Solve

System
i+1
Sandia
National
Laboratories

“‘Dominant” subspace
selection

\

Summary

- Belos and Anasazi are next-generation linear and eigensolver libraries
» Designed for interoperability, extensibility, and reusability

- Belos and Anasazi are readily available:

* Can be used as standalone linear and eigensolvers
» Belos available through Stratimikos
« Anasazi available through LOCA

* Check out the Trilinos Tutorial
http://trilinos.sandia.gov/Trilinosl0.8Tutorial.pdf

» See website for more:
http://trilinos.sandia.gov/packages/belos

Sandia
National

http://trilinos.sandia.gov/packages/anasazi
@ Laboratories

