
A Tutorial on A Tutorial on

Anasazi and Anasazi and BelosBelos

2011 2011 TrilinosTrilinos User Group Meeting User Group Meeting
November 1st, 2011November 1st, 2011

Chris BakerChris Baker
David David DayDay

Mike Mike HerouxHeroux
Mark Mark HoemmenHoemmen
Rich Rich LehoucqLehoucq

Mike ParksMike Parks
Heidi Thornquist (Lead)Heidi Thornquist (Lead)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's

National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2011-8264P

OutlineOutline

 Belos and Anasazi Framework

 Background / Motivation

 Framework overview

 Available solver components

 Using Anasazi and Belos

 Simple example

 Through Stratimikos (Belos)

 Through LOCA (Anasazi)

 Summary

Background / MotivationBackground / Motivation

 Several iterative linear solver / eigensolver libraries
exist:
 PETSc, SLAP, LINSOL, Aztec(OO), …

 SLEPc, LOBPCG (hypre), ARPACK, …

 None of the linear solver libraries can efficiently deal
with multiple right-hand sides or sequences of linear
systems

 Stopping criteria are predetermined for most libraries

 The underlying linear algebra is static

AztecOOAztecOO

 A C++ wrapper around Aztec library written in C

 Algorithms: GMRES, CG, CGS, BiCGSTAB, TFQMR

 Offers status testing capabilities

 Output verbosity level can be determined by user

 Interface requires Epetra objects
 Double-precision arithmetic

 Interface to matrix-vector product is defined by the user
through the EpetraOperator

ARnoldiARnoldi PACKagePACKage
(ARPACK)(ARPACK)

 Written in Fortran 77

 Algorithms: Implicitly Restarted Arnoldi/Lanczos

 Static convergence tests

 Output formatting, verbosity level is determined by
user

 Uses LAPACK/BLAS to perform underlying vector
space operations

 Offers abstract interface to matrix-vector products
through reverse communication

Scalable Library for Eigenvalue Problem Scalable Library for Eigenvalue Problem
Computations Computations ((SLEPcSLEPc))

 Written in C (Hernández, Román, and Vidal, 2003).

 Provides some basic eigensolvers as well as wrappers around:

– ARPACK (Lehoucq, Maschhoff, Sorensen, and Yang, 1998)

– BLZPACK (Marques, 1995)

– PLANSO (Wu and Simon 1997)

– TRLAN (Wu and Simon, 2001)

 Native Algorithms: Power/Subspace Iteration, RQI, Arnoldi

 Wrapped Algorithms: IRAM/IRLM (ARPACK), Block Lanczos
(BLZPACK), and Lanczos (PLANSO / TRLAN)

 Static convergence tests

 Uses PETSc to perform underlying vector space operations,
matrix-vector products, and linear solves

 Allows the creation / registration of new matrix-vector products

 Next generation linear solver (Belos) and eigensolver (Anasazi)
libraries, written in templated C++.
 Iterative methods for solving sparse, matrix-free systems

 Provide a generic interface to a collection of algorithms for solving
linear problems and eigenproblems.

 Algorithms developed with generic programming techniques.
 Algorithmic components:

• Ease the implementation of complex algorithms

 Operator/MultiVector interface (and Teuchos::ScalarTraits):
• Allow the user to leverage their existing software investment

• Multi-precision solver capability

 Design offers: Interoperability, extensibility, and reusability

 Includes block linear solvers and eigensolvers.

Anasazi and Anasazi and BelosBelos

Why are Block Solvers Useful?Why are Block Solvers Useful?

 In general, block solvers enable the use of faster computational
kernels.

 Block Eigensolvers (Op(A)X = X):

 Reliably determine multiple and/or clustered eigenvalues.

 Example applications:

 Stability analysis / Modal analysis

 Bifurcation analysis (LOCA)

 Block Linear Solvers (Op(A)X = B):

 Useful for when multiple solutions are required for the same system
of equations.

 Example applications:

 Perturbation analysis

 Optimization problems

 Single right-hand sides where A has a handful of small eigenvalues

 Inner-iteration of block eigensolvers

BelosBelos SolSolver Categoriesver Categories

 Belos provides solvers for:

 Single RHS: Ax = b

 Multiple RHS (available simultaneously): AX = B

 Multiple RHS (available sequentially): Axi = bi , i=1,…,k

 Sequential Linear systems: Aixi = bi , i=1,…,k

 Leverage research advances of solver community:

 Block methods: block GMRES [Vital], block CG/BICG [O’Leary]

 “Seed” solvers: hybrid GMRES [Nachtigal, et al.]

 “Recycling” solvers for sequences of linear systems [Parks, et al.]

 Restarting, orthogonalization techiques

BelosBelos SolversSolvers

 Hermitian Systems (A = AH)

 Block CG

 Pseudo-Block CG (Perform single-vector algorithm simultaneously)

 RCG (Recycling Conjugate Gradients)

 PCPG (Projected CG)

 MINRES

 Non-Hermitian System (A ≠ AH)

 Block GMRES

 Pseudo-Block GMRES (Perform single-vector algorithm simultaneously)

 Block FGMRES (Variable preconditioner)

 Hybrid GMRES

 TFQMR

 GCRODR (Recycling GMRES)

 Block GCRODR (Block variant of GCRODR)

Anasazi SolversAnasazi Solvers

 Hermitian Eigenproblems

 Block Davidson

 Locally-Optimal Block Preconditioned Conjugate Gradient (LOBPCG)

 Implicit Riemannian Trust-Region (IRTR)

 Non-Hermitian Eigenproblems

 Block Krylov-Schur (BKS)

Anasazi and Anasazi and BelosBelos
(Algorithmic components)(Algorithmic components)

GMRES Example

SolverManager Class

GMRES Example

Anasazi and Anasazi and BelosBelos
(Algorithmic components)(Algorithmic components)

SolverManager Class

GMRES Example

Anasazi and Anasazi and BelosBelos
(Algorithmic components)(Algorithmic components)

Iteration
Class

SolverManager Class
Iteration
Class

Problem Classes / Operator Classes

GMRES Example

Anasazi and Anasazi and BelosBelos
(Algorithmic components)(Algorithmic components)

SolverManager Class
Iteration
Class

Problem Classes / Operator Classes

GMRES Example

Anasazi and Anasazi and BelosBelos
(Algorithmic components)(Algorithmic components)

MultiVector

Classes

SolverManager Class

OrthoManager
Class

(ICGS, IMGS,
DGKS, TSQR)

GMRES Example

Anasazi and Anasazi and BelosBelos
(Algorithmic components)(Algorithmic components)

Iteration
Class

Problem Classes / Operator Classes

MultiVector

Classes

Anasazi and Anasazi and BelosBelos
(Algorithmic components)(Algorithmic components)

SolverManager Class

StatusTest
Class

OrthoManager
Class

(ICGS, IMGS,
DGKS, TSQR)

GMRES Example

Problem Classes / Operator Classes
Iteration
Class

MultiVector

Classes

Anasazi and Anasazi and BelosBelos
(Algorithmic components)(Algorithmic components)

SolverManager Class

StatusTest
Class

OrthoManager
Class

(ICGS, IMGS,
DGKS, TSQR)

OutputManager
Class

Iteration
Class

Problem Classes / Operator Classes

MultiVector

Classes

SortManager
Class

Example Example (Step #1 (Step #1 –– Initialize System)Initialize System)
int main(int argc, char *argv[]) {

MPI_Init(&argc,&argv);

Epetra_MpiComm Comm(MPI_COMM_WORLD);

int MyPID = Comm.MyPID();

typedef double ST;

typedef Teuchos::ScalarTraits<ST> SCT;

typedef SCT::magnitudeType MT;

typedef Epetra_MultiVector MV;

typedef Epetra_Operator OP;

typedef Belos::MultiVecTraits<ST,MV> MVT;

typedef Belos::OperatorTraits<ST,MV,OP> OPT;

using Teuchos::ParameterList;

using Teuchos::RCP;

using Teuchos::rcp;

// Get the problem

std::string filename("orsirr1.hb");

RCP<Epetra_Map> Map;

RCP<Epetra_CrsMatrix> A;

RCP<Epetra_MultiVector> B, X;

RCP<Epetra_Vector> vecB, vecX;

EpetraExt::readEpetraLinearSystem(filename, Comm, &A, &Map, &vecX, &vecB);

X = Teuchos::rcp_implicit_cast<Epetra_MultiVector>(vecX);

B = Teuchos::rcp_implicit_cast<Epetra_MultiVector>(vecB);

Parameters for
Templates

Get linear
system from

disk

Trilinos/packages/belos/epetra/example/BlockGmres/BlockGmresEpetraExFile.cpp

Example Example (Step #2 (Step #2 –– Solver Solver ParamsParams))
bool verbose = false, debug = false, proc_verbose = false;

int frequency = -1; // frequency of status test output.

int blocksize = 1; // blocksize

int numrhs = 1; // number of right-hand sides to solve for

int maxiters = 100; // maximum number of iterations allowed

int maxsubspace = 50; // maximum number of blocks

int maxrestarts = 15; // number of restarts allowed

MT tol = 1.0e-5; // relative residual tolerance

const int NumGlobalElements = B->GlobalLength();

ParameterList belosList;

belosList.set("Num Blocks", maxsubspace); // Maximum number of blocks in Krylov
factorization

belosList.set("Block Size", blocksize); // Blocksize to be used by iterative solver

belosList.set("Maximum Iterations", maxiters); // Maximum number of iterations allowed

belosList.set("Maximum Restarts", maxrestarts); // Maximum number of restarts allowed

belosList.set("Convergence Tolerance", tol); // Relative convergence tolerance requested

int verbosity = Belos::Errors + Belos::Warnings;

if (verbose) {

verbosity += Belos::TimingDetails + Belos::StatusTestDetails;

if (frequency > 0)

belosList.set("Output Frequency", frequency);

}

if (debug) {

verbosity += Belos::Debug;

}

belosList.set("Verbosity", verbosity);

Solver
Parameters

ParameterList for
SolverManager

Trilinos/packages/belos/epetra/example/BlockGmres/BlockGmresEpetraExFile.cpp

Example Example (Step #3 (Step #3 –– Solve)Solve)
// Construct linear problem instance.

Belos::LinearProblem<double,MV,OP> problem(A, X, B);

bool set = problem.setProblem();

if (set == false) {

std::cout << std::endl << "ERROR: Belos::LinearProblem failed to
set up correctly!" << std::endl;

return -1;

}

// Start block GMRES iteration

Belos::OutputManager<double> My_OM();

// Create solver manager.

RCP< Belos::SolverManager<double,MV,OP> > newSolver =

rcp(new Belos::BlockGmresSolMgr<double,MV,OP>(rcp(&problem,false), rcp(&belosList,false)));

// Solve

Belos::ReturnType ret = newSolver->solve();
if (ret!=Belos::Converged) {

std::cout << std::endl << "ERROR: Belos did not converge!" << std::endl;

return -1;

}

std::cout << std::endl << "SUCCESS: Belos converged!" << std::endl;

return 0;

LinearProblem

Object

SolverManager Object

Template Parameters

Trilinos/packages/belos/epetra/example/BlockGmres/BlockGmresEpetraExFile.cpp

Spotlight on RecyclingSpotlight on Recycling

 Consider sequence of linear systems

 Applications:
 Newton/Broyden method for nonlinear equations
 Materials science and computational physics
 Transient circuit simulation
 Crack propagation
 Optical tomography
 Topology optimization
 Large-scale fracture in disordered materials
 Electronic structure calculations
 Stochastic finite element methods

 Iterative (Krylov) methods build search space and select
optimal solution from that space

 Building search space is dominant cost
 For sequences of systems, get fast convergence rate and good

initial guess immediately by recycling selected search
spaces from previous systems

Sequences of Linear SystemsSequences of Linear Systems

(i) (i) (i)A x b i=1,2,3, 

 Typically, dominant subspace exists such that almost any Krylov
space (from any starting vector) has large components in that
space (why restarting is bad)

Why Recycle?Why Recycle?

-10

-8

-6

-4

-2

0

2

1 26 51 76

lo
g

(|
|r

||
)

iteration

“Superlinear”
Convergence

 Typically, dominant subspace exists such that almost any Krylov
space (from any starting vector) has large components in that
space (why restarting is bad)

 Optimality derives from orthogonal projection

 new search directions should be far from this dominant subspace
for fast convergence

 If such a dominant subspace persists (approximately) from one
system to the next, it can be recycled

 Typically true when changes to problem are small and/or highly
localized

Why Recycle?Why Recycle?

Matrix Off-the-shelf solver Recycling Solver Release

General GMRES GCRODR Trilinos 8

SPD CG
Recycling CG

(RCG)
Trilinos 10

Symmetric
Indefinite

MINRES
Recycling MINRES

(RMINRES)
N/A

 Invariant subspace associated with small eigenvalues delays
convergence

 Corresponds to smooth modes that change little for small localized
changes in the problem

 Remove them to improve convergence!

 Recycle space = approximate eigenspace

 If (V) is not large (normality assumption) we can improve bound by
removing select eigenvalues

DeflationDeflation

   
 

 
   

 






m
m0

m

0 m 02 2P 0 =1z K A,r

0 m2 P 0 =1 λ Λ A

min r - Az = min p A r

κ V r min max p λ

• IC(0) preconditioner

• GMRES – full recurrence

• All Others – Max subspace size 40

Typical Convergence with Typical Convergence with
RecyclingRecycling

 Optimize material distribution, , in design domain

 Minimize compliance uTK()u, where K()u=f

Initial guess

Finite Element Analysis

Filtering Techniques

Optimization Process
(Optimality Criteria)

Sensitivity Analysis

Update Design Variables

|i
new – i

old| < tolerance

Plot Optimal Topology

False

True

Iteration 0

Iteration 4

Iteration 16

Iteration 106
(Final iteration)

Initial guess

Finite Element Analysis

Filtering Techniques

Optimization Process
(Optimality Criteria)

Sensitivity Analysis

Update Design Variables

|i
new – i

old| < tolerance

Plot Optimal Topology

False

True

Iteration 0

Iteration 4

Iteration 16

Iteration 106
(Final iteration)

*S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods
with recycling, International Journal for Numerical Methods in Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007.

Example #1 Topology Example #1 Topology
Optimization*Optimization*

Size Num. DOFs Direct Solve Time Recycling Solve Time

Small 9,360 0.96 1.68

Medium 107,184 179.30 50.41

Large 1,010,160 26154.00 1196.30

Recycling Solve = RMINRES + IC(0) PC

Direct Solve = multifrontal, supernodal Cholesky factorization from TAUCS

*S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods with
recycling, International Journal for Numerical Methods in Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007.

Example #1: Topology Example #1: Topology
OptimizationOptimization

 Stochastic elliptic equation

 KL expansion + double orthogonal basis + discretization

 Separate deterministic and stochastic components

 Yield sequence of uncoupled equations

 Preprocess for recycling Krylov solver

 Use reordering scheme to minimize change in spectra of linear
system

 a(x,) u(x,) f(x) x D,

u(x,) 0 x D,

       

   

*C. Jin, X-C. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on
Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007.

(i) (i) (i)A x b i=1,2,3, 

Example #2 Stochastic PDEs*Example #2 Stochastic PDEs*

• Scheme #1: No Krylov recycling

• Scheme #4: Recycle Krylov spaces using reordering

• Many systems require zero iterations!

Two-Level ASM

*C. Jin, X-C. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on
Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007.

One-Level ASM

Example #2 Stochastic PDEs*Example #2 Stochastic PDEs*

Structure of Recycling SolverStructure of Recycling Solver

Solve System i

Krylov
Space

Recycle
Space

Create new
recycle space

Cycle

AU=C

(I-CCT)AV=VH

Solve

System

i+1

Converged? Recycle
Space

Solve

System

i-1

Recycle
Space

Y

N

Structure of Recycling SolverStructure of Recycling Solver

Solve System i

Krylov
Space

Recycle
Space

Create new
recycle space

Cycle

AU=C

(I-CCT)AV=VH

Solve

System

i+1

Converged? Recycle
Space

Solve

System

i-1

Recycle
Space

Y

N

Choice of Method:
GMRES, MINRES,

CG, etc.

“Dominant” subspace
selection

SummarySummary

• Belos and Anasazi are next-generation linear and eigensolver libraries

• Designed for interoperability, extensibility, and reusability

• Belos and Anasazi are readily available:

• Can be used as standalone linear and eigensolvers

• Belos available through Stratimikos

• Anasazi available through LOCA

• Check out the Trilinos Tutorial

http://trilinos.sandia.gov/Trilinos10.8Tutorial.pdf

• See website for more:

http://trilinos.sandia.gov/packages/belos

http://trilinos.sandia.gov/packages/anasazi

