

Exceptional service in the national interest

Gas Generation due to Anoxic Corrosion of Steel and Lead in Na-Cl \pm Mg Dominated Brines

ABC Salt Workshop; November 7 & 8, 2011; Karlsruhe, Germany

Gregory T. Roselle, PhD
Repository Performance Department, 6212

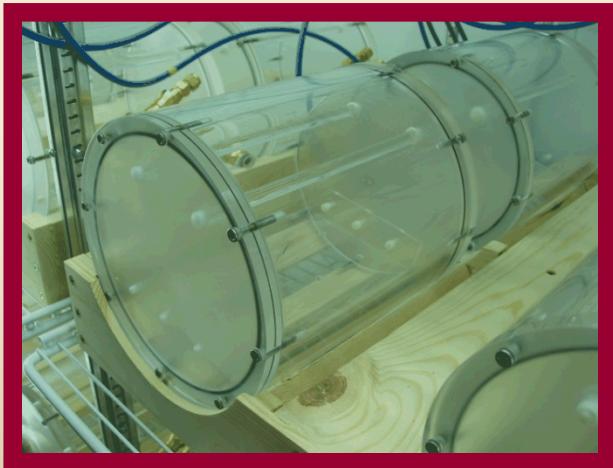
This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Purpose and Scope

- Determine the extent to which Fe and Pb consume CO_2 and H_2S^*
 - Potential for Fe and Pb to support MgO as engineered barrier
- Determine what corrosion products are likely to form
 - Kinetics of Fe and Pb corrosion
 - Potential for passivation of metal surfaces
 - Competition of CO_2 and H_2S^* in corrosion
- Determine H_2 Gas Generation Rates based on Corrosion Rates

*No H_2S experiments started yet due to ES&H and budget issues


Previous Work

- Telander and Westerman (1993, 1997)
 - Investigated H₂ generation via corrosion of steels immersed in/or hanging above brine with overpressures of different gases (H₂, N₂, CO₂, H₂S)
 - Corrosion independent of H₂ overpressure
 - N₂ overpressure results in Fe-Mg hydroxide
 - CO₂ overpressure passivates with coating of Fe-Mg-CO₃
 - Addition of H₂S de-passivates CO₃, H₂S alone passivates with FeS layer.
 - Used by Wang and Brush (1996) to derive gas generation parameters for WIPP Performance Assessment.
- Molecke et al. (1993)
 - Carbon steels and Pb exposed to Brine A in boreholes
 - No control of gas phases present (no CPR gases*, likely oxic conditions)
 - Significant corrosion seen (corrosion products not analyzed)
- Wang (2001)
 - Exposed steel coupons to ERDA-6 and G-Seep equilibrated with brucite
 - Produced green rust [Fe(II),Fe(III)]hydroxide

Experimental Setup

- WIPP-relevant environmental conditions
 - Temperature: 26°C
 - Relative humidity: approx. 72%
 - Atmosphere:
 - N₂ and N₂ + CO₂ (350 ppm, 1500 ppm, or 3500 ppm)
 - Anoxic: < 5 ppm O₂
 - Brine compositions:
 - ERDA-6 ± organics (NaCl-dominated brine)
 - GWB ± organics (NaCl-MgCl₂ dominated brine)
 - organics - EDTA, citrate, acetate, oxalate
- Materials:
 - Iron – ASTM A1008 low-carbon steel
 - Lead – QQ-L-171e Grade C chemical Pb
- Three sample positions: humid, partially submersed, fully inundated
- Experiments are being performed in a flow-through system designed to maintain above environmental conditions

Mixed Flow Gas Control System (MFGCS)

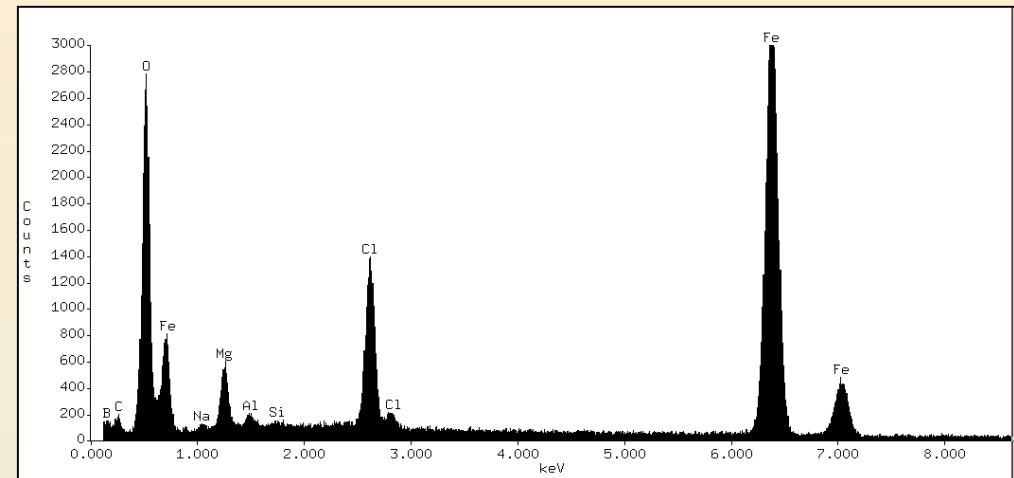
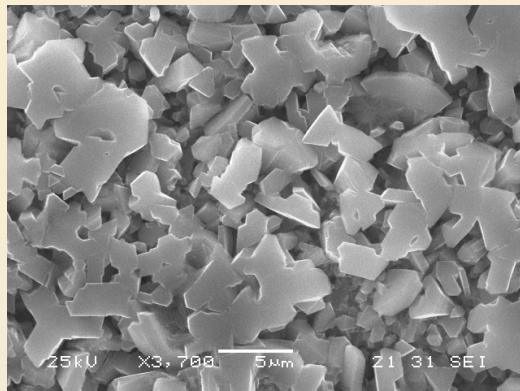
Sample Analysis

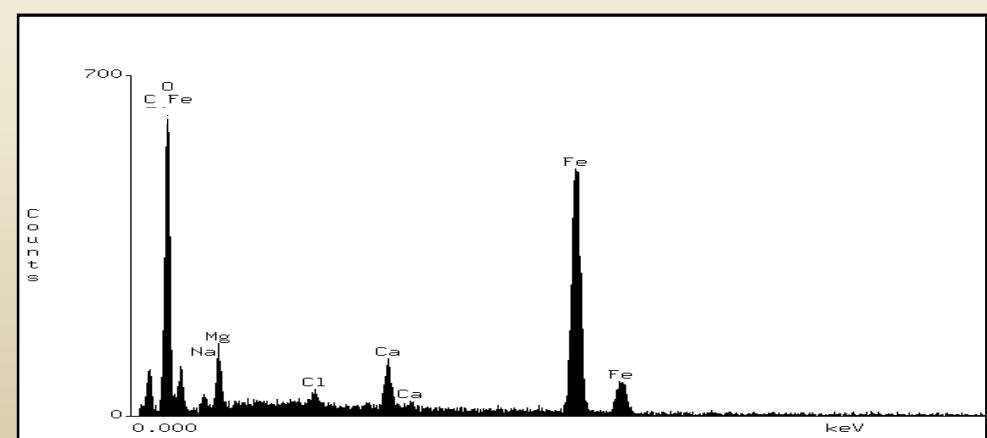
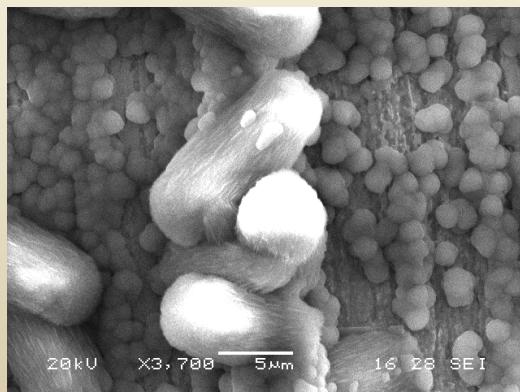
- Characterization of coupon surfaces
 - Before and after removal of corrosion products
 - SEM and digital photography
- Characterization of corrosion products
 - XRD
 - SEM with Energy Dispersive Spectroscopy (EDS)
- Weight loss after removal of corrosion products
- Determination of corrosion rates from weight loss data
- Calculation of H_2 gas generation rates from corrosion rates
- Changes in solution chemistry
 - pH and major elements

Typical Appearance of Steel Coupons

Coupon 021

24 month exposure, 0 ppm CO₂, ERDA-6 no organics



Before



After

EDS of Steel Corrosion Products

Coupon 104
6 month exposure, 0 ppm CO₂, ERDA-6 no organics

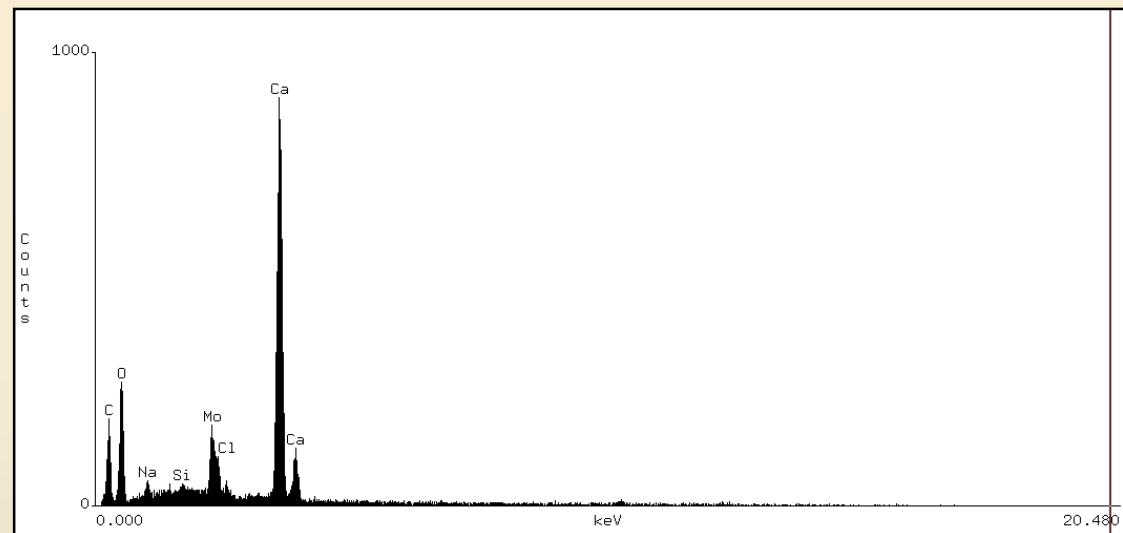
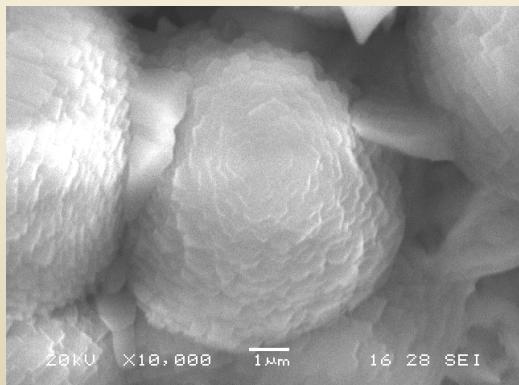
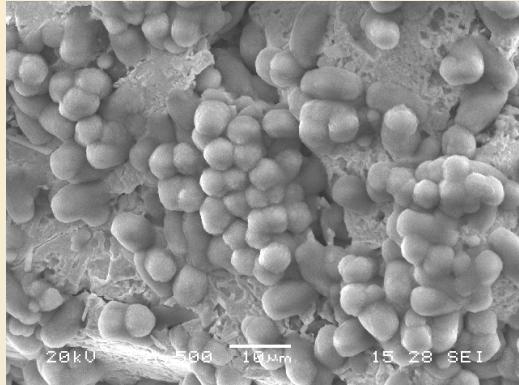
Coupon 327
6 month exposure, 1500 ppm CO₂, ERDA-6 w/ organics

Typical Appearance of Lead Coupons

Coupon L451

6 month exposure, 3500 ppm CO₂, ERDA-6 w/ organics

Before

After

EDS of Lead Corrosion Products

Coupon L451

6 month exposure, 3500 ppm CO₂, ERDA-6 w/ organics

Possible Corrosion Products

		Steel	Lead	
Low CO ₂ < ~1500 ppm	Amakinite	(Fe,Mg)(OH) ₂	N/A	N/A
	Green Rust	Fe(III) ₂ Fe(II) ₄ (OH) ₁₂ CO ₃ ·2H ₂ O		
High CO ₂ > ~1500 ppm	Siderite	(Fe,Ca)CO ₃	Cerussite	PbCO ₃
	Ankerite	CaFe(CO ₃) ₂	Tarnowitzite	(Ca,Pb)CO ₃

Weight Loss Determination

- Coupon placed in cleaning solution for 2 minutes

Material	Chemical	Max. Time	Temp.
Iron (Fe)	500 mL conc. HCl 3.5 g hexamethylene tetramine Reagent water to make 1000 mL	10 min	20 to 25 °C
Lead (Pb)	250 g ammonium acetate Reagent water to make 1000 mL	5 min	60 to 70 °C

Source: ASTM G 1 – 03 *Standard Practice for Preparing, Cleaning and Evaluation Corrosion Test Specimens*. West Conshohocken, PA: American Society for Testing and Materials (ASTM) International.

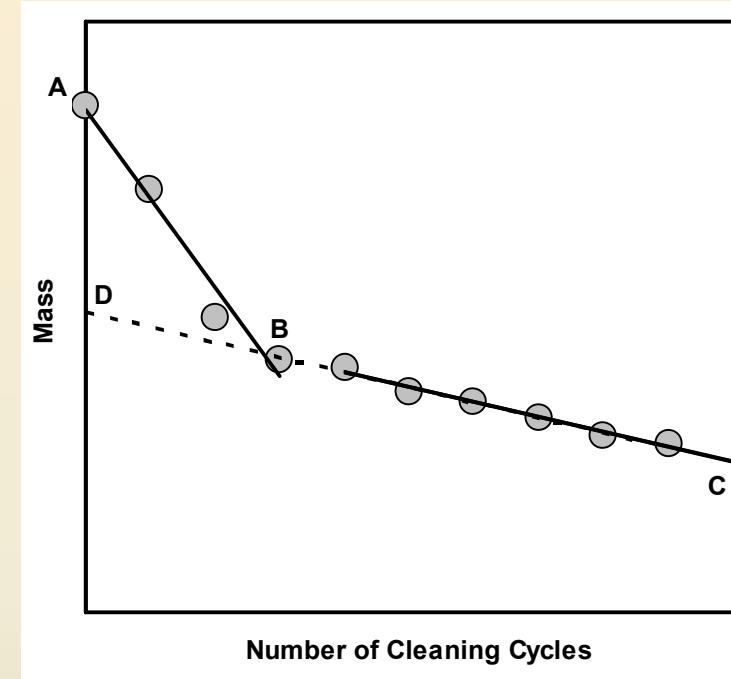
- After 2 minutes, removed, scrubbed, rinsed in DI water followed by ethanol
- Coupon weighed
- Repeat process for 5 to 10 cycles

Weight Loss Graphical Analysis

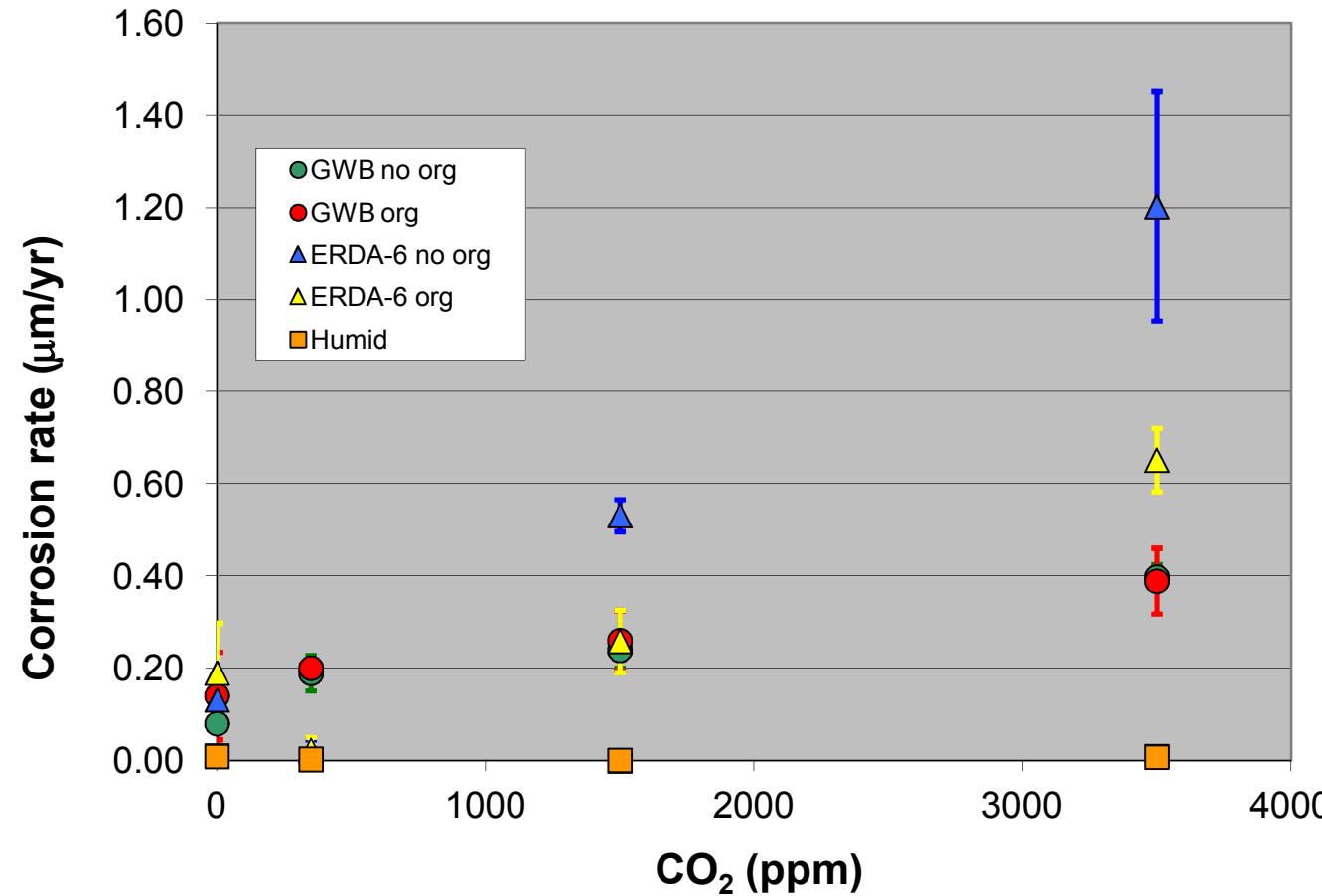
AB – Removal of corrosion product and base metal

BC – Removal of base metal only

D – Projected final weight


$$rate(\mu\text{m} / \text{yr}) \equiv \frac{W \times 87.6}{SA \times t \times \rho} \times 1000$$

W - mass loss (mg)


SA - exposed surface area (cm^2)

t - exposure duration (hours)

ρ - metal density (g/cm^3)

Corrosion Rates for Fe Coupons (6 month results)

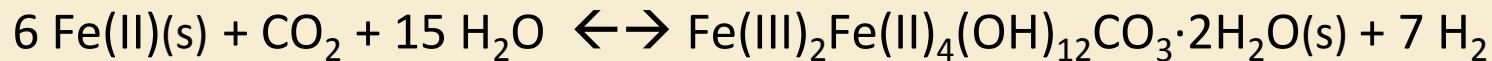
Gas Generation (H_2) Rates

- Identify possible corrosion reactions
- Convert corrosion rate ($\mu\text{m}/\text{yr}$) to molar rate ($\text{mol metal m}^{-2} \text{yr}^{-1}$)
- Based on 1 μm corrosion of 1 m^2 metal plate (consumes 1 cm^3 metal):

$$\rho (\text{g cm}^{-3}) \times 1/\text{M.W. (g mol}^{-1}\text{)} = R (\text{mol metal } \mu\text{m}^{-1} \text{ m}^{-2})$$

Example for 1 cm^3 Fe:

$$7.872 \text{ g cm}^{-3} \times 0.0179 \text{ mol g}^{-1} = 0.141 \text{ mol Fe } \mu\text{m}^{-1} \text{ m}^{-2}$$

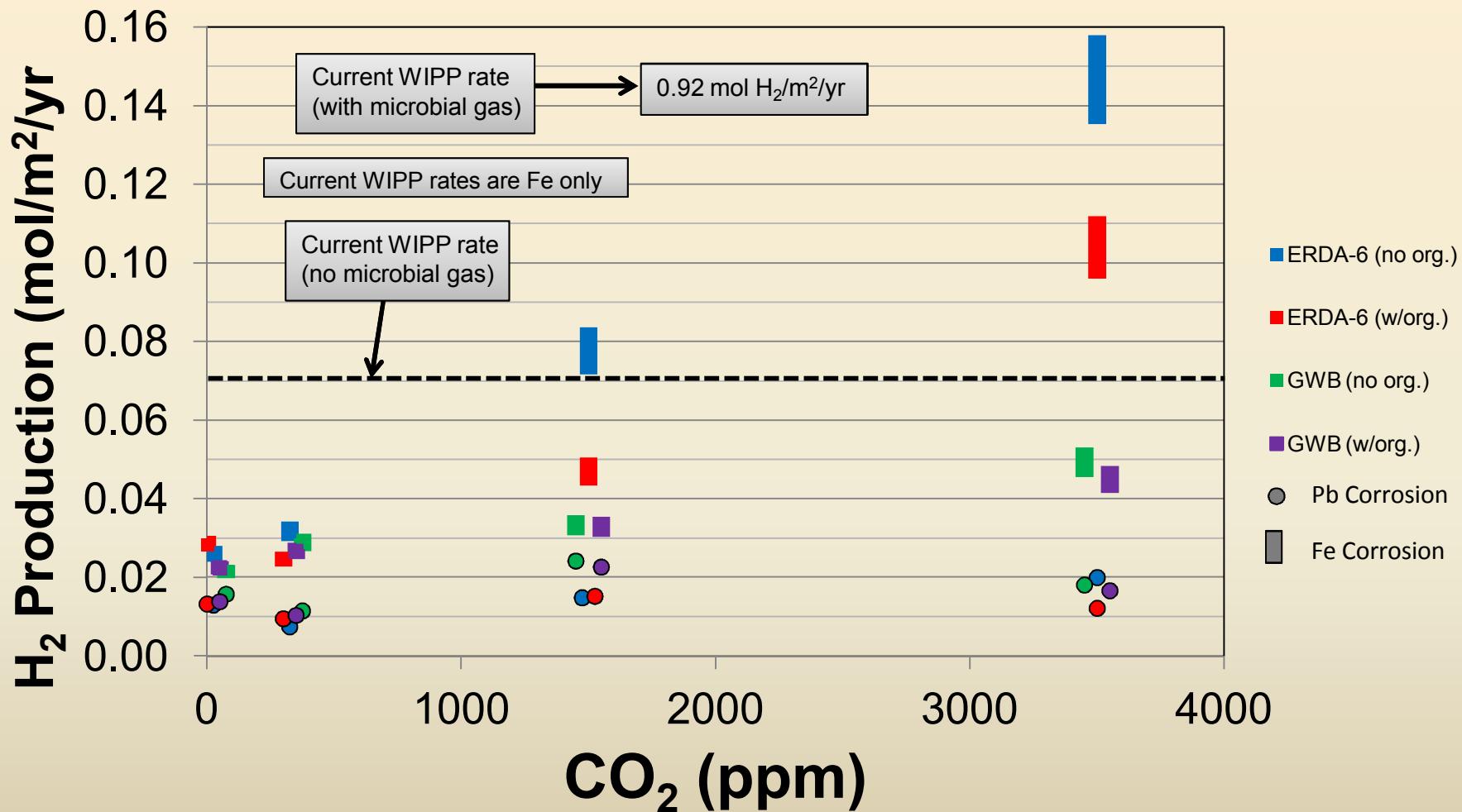

Example for 1 cm^3 Pb:

$$11.340 \text{ g cm}^{-3} \times 0.0048 \text{ mol g}^{-1} = 0.055 \text{ mol Pb } \mu\text{m}^{-1} \text{ m}^{-2}$$

- Calculate H_2 generation rate based on stoichiometry of corrosion reaction.

Potential Corrosion Reactions

- Low CO₂ conditions:


- High CO₂ conditions:

Above reactions plus:

H₂ Generation Rates

(Preliminary Estimates)

Summary

- Corrosion of Fe
 - ERDA-6 (NaCl-dominated) is more corrosive than GWB (NaCl-MgCl₂)
 - The presence of organics is important only for ERDA-6 (suppresses corrosion)
 - Corrosion increases with CO₂
- Corrosion of Pb
 - No clear trends apparent in corrosion rates
 - GWB may be more corrosive than ERDA-6
 - Further data required to support this hypothesis
- Passivation of Pb may be occurring at all P_{CO₂}
- No clear evidence of passivation for Fe
- Initial H₂ gas generation rates are approx. 5 times lower than current values used in WIPP PA

Supplemental Materials

Coupon Compositions

Steel

Element	Weight Percent
Al	0.026
C	0.050
Ca	0.001
Cr	0.040
Cu	0.110
Fe	balance
Mn	0.250
Mo	0.010
N	0.009
Nb	0.003
Ni	0.040
P	0.006
S	0.005
Si	0.010
Sn	0.007
Ti	0.002
V	0.002

Source: Material Test Report for AE960
(ERMS 551552)

Lead

Element	Weight Percent
Ag	0.010
Bi	0.015
Cd	0.001
Cu	0.070
Fe	0.001
Ni	0.001
Pb	99.900
Sb+Sn+As	0.001
Zn	0.001

Source: Certificate of Compliance and Inspection
Metal Coupon, Lot 32829 (ERMS 551551)

Brine Compositions

Total Elemental Concentration	GWB Concentration (molal)	ERDA-6 Concentration (molal)	GWB Concentration (molal)	ERDA-6 Concentration (molal)
Na ⁺	4.98	6.05	4.99	5.96
K ⁺	0.559	0.109	0.563	0.109
Li ⁺	5.05×10^{-3}	---	5.05×10^{-3}	---
Ca ²⁺	1.24×10^{-2}	1.28×10^{-2}	1.03×10^{-2}	1.22×10^{-2}
Mg ²⁺	0.635	0.121	0.663	0.179
Cl ⁻	6.30	6.00	6.24	5.98
Br ⁻	3.18×10^{-2}	1.24×10^{-2}	3.19×10^{-2}	1.24×10^{-2}
SO ₄ ²⁻	0.209	0.191	0.262	0.203
B ₄ O ₇ ²⁻	4.73×10^{-2}	1.77×10^{-2}	4.76×10^{-2}	1.77×10^{-2}
EDTA	---	---	8.85×10^{-6}	9.99×10^{-6}
Oxalate	---	---	3.38×10^{-4}	3.35×10^{-4}
Citrate	---	---	9.09×10^{-4}	9.04×10^{-4}
Acetate	---	---	1.19×10^{-2}	1.19×10^{-2}

Source: WIPP-FePb-3 p. 51, 52 (ERMS 550783)

References

Molecke, M.A., N.R. Sorensen, and G.G. Wicks. 1993. *Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers Presented at the Commission of European Communities Workshops on In Situ Testing of Radioactive Waste Forms and Engineered Barriers*. SAND93-1055. Albuquerque, NM: Sandia National Laboratories.

Telander, M.R., and R.E. Westerman. 1993. *Hydrogen Generation by Metal Corrosion in Simulated Waste Isolation Pilot Plant Environments*: progress report for the period November 1989 through 1992. SAND92-7347. Albuquerque, NM: Sandia National Laboratories.

Telander, M.R., and R.E. Westerman. 1997. *Hydrogen Generation by Metal Corrosion in Simulated Waste Isolation Pilot Plant Environments*. SAND96-2538. Albuquerque, NM: Sandia National Laboratories.

Wang, Y. and Brush, L.H. 1996. *Estimates of Gas-Generation Parameters for the Long-Term WIPP Performance Assessment*. Memo to Martin S. Tierney, January 26, 1996. ERMS 231943. Carlsbad, NM: Sandia National Laboratories.

Wang, Z., R.C. Moore, A.R. Felmy, M.J. Mason, and R.K. Kukkadapu. 2001. "A Study of the Corrosion Products of Mild Steel in High Ionic Strength Brines," *Waste Management*. Vol. 21, 335-341.