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Factorizations for Data Analysis
X%Z)\T a, o b,

)\1 b1 )\2 b2 AR bR

2
_|_
T
_|_

A, = weight of rth component
a, = mode-1 factor (“principal component”), assumed to be scaled to norm 1
b, = mode-2 factor (“loading”), assumed to be scaled to norm 1



Weighted Combination of Factors

)\1 b1 )\2 bg )\R bR

Q

+
+
_I_

Description of jth object (i.e., jth column): X; = Z Ve ry Ve = Ap bjr

T
Description of a single data element: mi; ~ Z Ar @iy by
T



0 :

Latent Semantic Analysis
of Term-Document Matrices

Book Titles
The Neatest Little Guide to Stock Market

Investing
Investing For Dummies, 4th Edition

The Little Book of Common Sense
Investing: The Only Way to Guarantee
Your Fair Share of Stock Market Returns
The Little Book of Value Investing

Value Investing: From Graham to Buffett
and Beyond

Rich Dad's Guide to Investing: What the
Rich Invest in, That the Poor and the
Middle Class Do Not!

Investing in Real Estate, 5th Edition
Stock Investing For Dummies

Rich Dad's Advisors: The ABC's of Real
Estate Investing: The Secrets of Finding
Hidden Profits Most Investors Miss

' J laboratories

Dimension 3

1 b, bs
] [ ] [ — ]
~ + +
X
ap as as
XY Plot of Words and Titles
o7
real.estate
.T9
T4 value
L) 5
investing. ‘
ol 2
Eg)C\Ok.dummies
H
.dads
[
.stock Jﬂarket
nch.
11 ]
e .guide
o' 6
-0.2 0.0 0.2 0.4 0.6

Dimension 2

See full details at Latent Semantic Analysis (LSA) Tutorial at
http://www.puffinwarellc.com/index.php/news-and-articles/articles/33.html



Facial Image Decomposition for LikR
Compression and Analysis

=)

Assemble

many
images to
Vectorize geta

image to get matrix
a vector

Images from Lee &
Seung, Nature, 1999.

Positive values are black; l-q_._..-_—r_- |

negative values are red.
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Many Different Two-Way Models

Images from Lee & Seung, Nature, 1999

— NMF
B0 e} a L1
e L e S Original T N ESY I .
| [ A | L2 % \ ”
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Hepie- Sy i '_-]_" 5T i "'i - r -‘T-"IL--?---::-:I-- __=.__
okt lpsptee 2 Ik = T
. 1 | ] — - | ] 1 | - 1 |

Singular Value Decomposition (SVD) and Principal Components Analysis (PCA)
* Factors are required to be orthogonal
Independent Component Analysis (ICA) [e.g., Comon, 1994]
* Factors are required to be maximally independent
* Compressive Sensing and related work [Candes, 2006/
e Sparse factors
Nonnegative Matrix Factorization [Paatero, 1997; Bro & De Jong, 1997; Lee & Seung, 2001]
* Nonnegative factors
» Alternative assumptions on distribution

October 25, 2011 T. G. Kolda — UMN DTC S&T Innovator Series 6



' J laboratories

What about 3-way or N-way Data?

THE THREE BASIC FACTOR-ANALYTIC RESEARCH
DESIGNS—THEIR INTERRELATIONS
AND DERIVATIVES

RAYMOND B. CATTELL
University of Illinois

Factor analysis began with the correlation of tests measured on
populations of persons, but other arrangements have since been



) Sandia
‘ [ ” National
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Multi-way Factorizations for Analysis

Data

CANDECOMP/PARAFAC (CP) Model

C1 Co CRr

)\1 b1 )\2 bg )\R bR

Q

+
+
_I_

Model: M = ZA"“ a,ob,oc,

Lijk =~ Mk = E Ar Qi bjr Ckr

(A



Factor Example: Epilepsy

Data measurements are recorded at
multiple sites (channels) over time.
The data is transformed via a
continuous wavelet transform.

CWT

Time Samples

Q}‘o
,\\0
2>
QY

Time Samples

Channels Frequency

fx=alobloc1+agob20c2—|—8

Acar, Bingol, Bingol, Bro and Yener,
Bioinformatics, 2007.

October 25, 2011

Eye Artifact
x=a10b10c1+a20b20c2+8

/

Signature in time domsin

Signature in eRCIPOSS doman
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2oz

i/ N\
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008 J N
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Time Frequency Channel

Lo

x=a10b10C1+a20b20C2+8

Signature in tima domesin

TUmn 400 600 800 1000 1200 1400 1600 1800 2000
Tims Sampies

Time Frequency

Channel
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Many Tensor Decompositions, -
Methods, Software, etc.

CANDECOMP/PARAFAC (CP)

Tensor Toolbox

/':1 /z %n
[ ] [ ] ——
mH 5 +H b +M+H b
Tucker T
B
S
X ~ A

Tensor Toolbox for MATLAB

. Bader & Kolda
See also past work in plus

* Sparse computations Acar, Dunlavy, Sun, et al.
* Model fitting

* Missing data

K. & Bader, Tensor Decompositions and * Applications to graphs

Applications, SIAM Review, 2009 http://www.sandia.gov/~tgkolda/

October 25, 2011 T. G. Kolda — UMN DTC S&T Innovator Series 10




' J laboratories

But what does “~” mean?

C1 C2 CRr * Typically, we minimize
A1 by Ag by  Agr br the least-squares error

e This corresponds to
T T maximizing the
likelihood, assuming a

Gaussian distribution
aj ag aR

Q

Lijk ~ N(mijka 02)

(.., — )2 2
Maximize this:  likelihood(M) = H eXp(—(Zijk — Mijk)”"/207)
. - 202
By monotonicity of log, o ijk ;
same as maximizing this: log-likelihood(M) = ¢1 — ¢z ) (wijx — mijn)

ijk




' J laboratories

Gaussian is often Good, But...

Gaussian (aka normal)
distribution is prominent is
statistics

— Limiting distribution of the sum of

a large number of random
variables

— Often a reasonable model for
measurement/observational errors
But, some data are better
understood via alternative
distributions
— Non-symmetric errors (e.g., data
that grows exponentially)

— Data with outliers or multiple
modes
— Count data with many low counts

* High counts can be reasonably
approximated by a Gaussian!

0.05

0.00

Poisson Distribution

5 10 15 20



) Sandia
‘LL'H-‘ National
Laboratories

Poisson for Sparse Count Data

The random variable x is a The random variable x is a
continuous real-valued number. discrete nonnegative integer.
x ~ N(m,o?) x ~ Poisson(m)
(x—m)? T
exp(—“5=—) exp(—m)m
P(X:x): 20 P(X:gc): '
V2mo? x!
035 — )
| ﬂ - m=0,0°=0.2 m=1
08 — m=0,0°=1 030 — ® m=4
m=0,0"=5 ® m=10
06 = m=-206°=05 025 7
HO.ZD —
%04 - L 015
010 —
02 —
0.05 —
é 0.00 —
00 [ | | | | | | | | I
2 5 0 5 4 0 5 10 15 20
k

October 25, 2011 T. G. Kolda — UMN DTC S&T Innovator Series 13



B %) |aboratories

Poisson Tensor Factorization

Ci C2 CR e Poisson preferred for
A1 by As by Ag br sparse count data

 Automatically

x ~ T T nonnegative
 More difficult objective
function than least
a1 az aRr
squares
z;j, ~ Poisson(m;;i) " \

exp(—m)m® .
P(X=z)= o :z:ﬁ@( ::I.\.:,,,.

Maximize this: likelihood (M) = H

By monotonicity of log, ijk

same as maximizing this: log-likelihood(M) = ¢ — Z Mk — Tijk log(mijk)
ijk

exp(—mijr) mji*

ZEZJk'
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Sparse Count Data Abounds

Computer network traffic

— User visits to websites

— IPxIP x Port communications

— Packet routing

— Computer logins
Communications

— Email traffic

— Social network interactions
Financial

— Purchase records

— Bank transfers

— Credit card transactions
Bibliometric data

— Co-authorship

— Author x Term

Any of the above binned into time
intervals

How do we make
sense of this data?

Can we find patterns
of behavior?

Can we spot
anomalies?

Can we predict
future behavior?



Motivating Example: Enron Email

* Emails from Enron FERC investigation

— Zhou et al., 2007 version //EJ/L/§\§>

— 8540 Messages (\ﬂ//f?\l’/l ‘_\L
e r_

— 28 Months (from Dec 1999 to Mar 2002) 0‘//—.‘.\1 \/ A

= \
— 105 People (sent and received at least one email every month) \C§/f—l\
— x,;;, = # emails from sender ¢ to recipient j in month k =
— 105 x 105 x 28 = 308,700 possible entries
— 8,500 nonzero counts
— 0.03% dense $

recipient



Fitting a Poisson Factorization

min E Misk — Tijk 108 Mk

M
ijk :
Assumption
subject to M:ZAT a,ob,oc, zlogm=0
, if =0 & m=0
A,A B C>0

We will solve for each factor matrix in turn, using a

(or Alternating Optimization) approach
We can rewrite the model by absorbing the weights A into
one of the factor matrices, e.g.,

M=) a,0b,oc, with A = A - diag()

Matrix A is only constrained by be nonnegative
This can be done for any of the three factor matrices



New Method: (=
Alternating Poisson Regression (CP-APR)

Repeat until converged...

1. A + argmin Miit — Tiik log M s.t. M = a, ob,oc, :

gA>0§;; 17k 17k 195 11tk Z T T 7 Fix B,C,

- - solve for A
2. A< eTA; A « A -diag(1/)
3. B < argmin Miik — Tiiklogm;ir s.t. M = a,ob,oc, _

gBZU%; N gk 205 ThHig Z A Fix A,C;

_ o solve for B
4. A+ e'B; B « B -diag(1/\)
5. C + arg min Mysk — Tiik 108 Mise S.b. M = a,ob,oc,

bczo; Y | Z Fix A,B;

_ _ solve for C
6. A+ e'C; C «+ C-diag(1/\)

Convergence Theorem: The CP-APR algorithm will converge to a constrained stationary point

Theory if the subproblems are strictly convex and solved exactly at each iteration.



=\ Sandia
4] National
J laboratories

Solving the Subproblem

I_IliIlE Mijk — Tijk logmp s.t. M = E a, ob,oc,

s Sj bjrcrr | — iji log Z bjrCir

17k T T

Lemma: The subproblems are strictly convex if no
columns of the factor matrices go to zero and the
data tensor has a sufficient number of reasonably
distributed nonzeros.

Sufficient number: Must have an average of at least R nonzeros
per slice to compute an R-component factorization.



%ﬁ%{!ﬁes
Majorization-Minimization for Subproblem

f(A) = S: (y: bJT’CkT‘) — Ziji log (Z bﬂck?ﬂ)

ijk T T
A function g(y,x) majorizes f(x) if g(y,x) > f(y) for all y and g(z,x) = f(x).
Majorization-minimization (MM) algorithms minimize a majorizing function |
at the current iterate, set that minimizer to be the next iterate, and repeat. 7/
(k)
€T

z* Y = argmin g(y, z™)
Y

Insight: Easy to minimize majorizer moves sum outside

Wir0irCly birCrr
G(A ) — E ”-'if'bj-rcﬁ'.'.r - x-ﬁjﬁ.‘]og e ) — L
. l - ZTJ bj-jr--" (:g.-’l'r

rijk

- - Z TijkbjrChr >0
? - —_
ik ZT! bjr’ckr’



MM Subproblem Algorithm

f(A) — y: (y: a?xrbjrckr) — Lijk log (Z awbjfrcszr)

ijh \ 7 "

Repeat until convergence:
A < A x® where %Zzz
ik

Iijkbjrckr

7! air’ bj’r’ckr’

Constrained Optimality (KKT) Conditions

A tomaticall

) A 20— "aranteed
ViA)=E—& >0

Ax(E-®)=0

Convergence criterion: |min(A,E — ®)| < tol



1.

2.

3.

Novel Algorithm:
CP-APR with MM Subproblem Solver

Repeat until converged...

Lijk b; rCkr

Repeat until converged: A < A x ®, where ¢;, = Z >
jk

A+eTA; A« A -diag(1/X)

! iy b_;.: r' Cly!

!T.'Jk Ay Cly

Repeat until converged: B + B * ®, where Qjr =

ik Z

A+ e'B; B « B-diag(1/\)

rr ip? bj:r'*’ Ckr’

LijkQir bj-r

Repeat until converged: C < C * ®, where ¢y, = Z 5
ij

A~ e'C; C« C-diag(1/A)

rr Qir’ bjr" Clep?

) Sandia
u ;: National
- ) Laboratories

Fix B,C;
solve for A

Fix A,C;
solve for B

Fix A,B;
solve for C



"3 ) Sandia
‘l‘ National

Lee-Seung is a Special Case of CP-APRL&M

Repeat until converged...

n =~ STEE ) i .
1. Update matrix as: A — A« ®, where ¢, = Z igkZjr Tk Fix B,C;
% 2 Gir'bjrrckr | update A

2. A< eTA; A « A -diag(1/\)

LijhQirChr Fix A,C;
s @irrbjreCrrs update B

3. Update matrix as: B < B ®, where ¢, = Z 5=

4. A+ e'B; B «+ B -diag(1/X))

5. Update matrix as: C + Cx @, where ¢y, = Z Zicufsaw bjr Fix A,B;

Ay bl;rr’ckr’ update C

6. A+ e'C; C « C-diag(1/A)

October 25, 2011 T. G. Kolda — UMN DTC S&T Innovator Series 23



New Insight:
How to Fix “Undesirable” Zeros

Zeros never change with multiplicative updates!

— — :Ckb Ck
A—Axd wheregbirzg W2 T
ik ZT’ air’bjr’ckr’

Recall the Constrained Optimality (KKT) Conditions:

A ¢ automatically
A >0 guaranteed

VI(A)=E—-® >0 These conditions enable us to
A % (E _ (I)) =0 check for “inadmissible” zeros

Undesirable Zero: a;; = 0 and ¢;; > 1

Fix: If a;; is close to zero and ¢;; > 1, then bump
a;; from zero, i,e, set a;; = 0.2,



Sparse Computations

Too big to form product.
Only form entries that

Very sparse correspond to existing data.

Tiinbirci

lzfr’ iy gr! Ck'r’l

A(—A*@Wheregbirzz
ik

Current estimate of model (dense).
Only form entries that correspond to
existing data.

October 25, 2011 T. G. Kolda— UMN DTC S&T Innovator Series 25



Generating Test Data

C1 C C
/)\1 b1 Ao 2 bs  Agr . b\

~ Poisson + + -4

\ a] a aR j

Each “occurrence” generated as follows
Choose factor r proportional to A

Given factor r: Femeel
* Choose index ¢ proportional to a,. Q

* Choose index j proportional to b,
* Choose index k proportional to c

Increment z,, by one

1

r



) Sandia
11 National
) Laboratories

Numerical Experiment
Set-up for Simulated Data

Step 1: Generate factor matrices with Step 2: Generate sparse tensor from
R=10 columns. Choose 10% entries from Poisson distribution using model
U(0,100) and remainder from U(0,1). ) ) )
Renormalize so that each column sums to = ) fp=== 4 ... +
one. Choose A entries from U(0,1). “ II
A[I A B C X ~ Poisson Z A-a, o b, oc,

Step 4: Compute FMS = factor match score of
computed factors against truth. Assume

Step 3: Factorize spares tensor columns are two-norm normalized and &, is

using CP-APR the product of the norms
_ g'r‘ T
_ ,. — Z a a.-b,b, c C,
)‘I] Al |B| LC maX(&«, &)




Accuracy is High For Very Sparse Data

Data: 1000 x 800 x 600 Tensor with R=10 Components
CP-APR: Max Iterations = 200, Max Inner Iterations = 30 (10 per mode), Tol = 1e-4 (KKT)
CP-ALS: Max Iterations = 200, Tol = 1e-8 (change in fit)

Nonzeros Poisson Gaussian
Regression FMS Regression FMS
480,000 (.100%) 0.99 0.57
240,000 (.050%) 0.81 0.49
48,000 (.010%) 0.77 0.47
24,000 (.005%) 0.74 0.46

October 25, 2011 T. G. Kolda— UMN DTC S&T Innovator Series 28



Motivating Example: Enron Email

* Emails from Enron FERC investigation

— 8540 Messages RS

— 28 Months (from Dec 1999 to Mar 2002) @OQ

— 105 People (sent and received at least one email every month)

— x,;;, = # emails from sender ¢ to recipient j in month k é X

— 105 x 105 x 28 = 308,700 possible entries 3

— 8,500 nonzero counts recipient

— 0.03% dense

e Questions: What can we learn about this data?
— Each person labeled by Zhou et al. (2007);
see also Owen and Perry (2010)
* Seniority: 57% senior, 43% junior This information is not
* Gender: 67% male, 33% female part of the tensor

* Department: 24% legal, 31% trading, 45% other factorization

—

October 25, 2011 T. G. Kolda — UMN DTC S&T Innovator Series 29



Enron Email Data

Legal Dept;
\ N {VARIMELE Component 1

10 . Senders (sorted by freq.)
-1 G
10 o] A . .
2 . L ®
10 | | 1 | | L | 1 | 1
0
10 Receivers
10"k e o ‘ O o . A R
10‘2 1 bt | 1 i ] 1 1 ] 1 | 1
3000 — T - _ — T 1
stock price peak SEC investigation Time
2000 .
1000} [ i
[ S s S S S e |
1999-12 2000-07 2001-02 2001-09 2002-03
Seniority Gender Department
. Legal (24%)
m  Senior (57%) ® Female (33%) N .
o Junior (43%) A Male (67%) = Trading (31%)

= Other (45%)
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Enron Email Data

Senior;
Mostly Male Component 3

10 Senders (sorted by freq.)
A & A
10 L. A de 2 Laa
10'2 L A | - L LA e A [ Tl YEA | L
0
10 Receivers
10" AL 4 a s A
A -~ - A
10‘2 1 A ! 1 - I "‘f" I |C¢‘.L - f - Lad 9
3000 —T - _ —T .,
2000} stock price peak SEC investigation Time |
1000 [ i
i oy —|—__...--—"""*\-,._ T . S .
1999-12 2000-07 2001-02 2001-09 2002-03
Seniority Gender Department
= Senior (57%) e Female (33%) " Legal (24%)

= Trading (31%)
= Other (45%)
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o Junior (43%) A Male (67%)



Enron Email Data

Not Legal
& Component 4
0
10 Senders (sorted by freq.)
A
1 0-1 A AA o
A A &
10'2 1 ! - l 1 A I ! - ! 1
0
10 Receivers
-1 S

10 a A D . N R . f .

10‘2 1 ] 1 ] A‘ 1 L Al - 1 | 1
3000 — T - : — T 1
2000} stock price peak SEC investigation Time |
1000} [ i

i 4 - - — ___.___-——-—-""T"-‘ ‘___‘-“"“'w-""""“-__ 1
1999-12 2000-07 2001-02 2001-09 2002-03
Seniority Gender Department
. Legal (24%)
m  Senior (57%) ® Female (33%) N .
o Junior (43%) A Male (67%) = Trading (31%)

= Other (45%)
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Enron Email Data

Other;
\ N {VARIMELE Component 5

10 Senders (sorted by freq.)
&
-1 ®
10 o ® A . O |
10° i~ ) 1 o) I I | L (a I
0
10 Receivers
1{)'1 - oo O - A A
1{]‘2 1 I 1 ® ), A 1 - 1 ! 1 | 1
3000 — - _ —T 1
stock price peak SEC investigation Time
2000 .
1000 [ i
i l 1 — [
1999-12 2000-07 2001-02 2001-09 2002-03
Seniority Gender Department
. Legal (24%)
m  Senior (57%) ® Female (33%) N .
o Junior (43%) A Male (67%) = Trading (31%)

= Other (45%)
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Enron Email Data

Mostly Other

Component 10

10 N Senders (sorted by freq.)

10" A . | N A A

10'2 L A ! I | I L | A 4 ! I

0
10 Receivers
A
10" A A A A
™ .

10‘2 1 hd ] 1 ] 1 FANN| ] A ] 1
3000 — - _ —T 1
2000} stock price peak SEC investigation Time |
1000} .

L l 1 T~ l
1999-12 2000-07 2001-02 2001-09 2002-03
Seniority Gender Department

m  Senior (57%)
o Junior (43%)

October 25, 2011

® Female (33%)
A Male (67%)

= Legal (24%)
= Trading (31%)
= Other (45%)
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Example: Publication Data

SIAM publications 1999-2004
— 4676 articles
— 11 journals
— 6955 authors

— 4952 title terms
(after stop-word removal)

>
L ;. = occurrences of
Y term ¢ in titles of
e articles by author j in
s X i
= journal k£
)

author

Sample Publications

EIBECK A, WAGNER W, An efficient stochastic
algorithm for studying coagulation dynamics
and gelation phenomena, SIAM J SCI COMPUT,
2000

KIM S, KWON O, SEO JK, Location search
techniques for a grounded conductor, SIAM J
APPL MATH, 2002

CROWNDY D, MARSHALL J, Constructing multiply
connected quadrature domains, SIAM J APPL
MATH, 2004

LIPTON R, Optimal inequalities for gradients of
solutions of elliptic equations occurring in two-
phase heat conductors, SIAM J MATH ANAL,
2001

LAFITTE OD, Diffraction in the high frequency
regime by a thin layer of dielectric material I:
The equivalent impedance boundary condition,
SIAM J APPL MATH, 1999



W I \_J A L QJ g \ g W W g

with Authors and Journals

author

SIAM Data
1999-2004

4952 terms
6955 authors
11 journals
64k nonzeros

10 Component

Poisson Tensor
Factorization

October 25, 2011

Component 1
graphs
problem
algorithms
approximation
algorithm
complexity
optimal
trees
problems
bounds

Kao MY
Peleg D
Motwani R
ColeR
Devroye L

SIAM J Comput
SIAM J Discrete Math
SIAM Rev

Component 2 Component 3
method finite
equations methods
methods equations
problems method
numerical element
multigrid problems
finite numerical
element error
solution analysis
systems

DuQ
ShenJ
Ainsworth M
Mccormick SF
Wang JP
Manteuffel TA
Schwab C
Ewing RE
Widlund OB
Babuska |

Chan TF
SaadY
Golub GH

SIAM J Sci Comput

SIAM J Numer Anal
SIAM J Comput

T. G. Kolda — UMN DTC S&T Innovator Series

Component 4
control
systems
optimal

problems
stochastic
linear
nonlinear
stabilization
equations
equation

Zhou XY
Kushner HJ
Kunisch K
Ito K
Tang SJ
Raymond JP
Ulbrich S
Borkar VS
Altman E
Budhiraja A

SIAM J Control Optim




upblication Data Results,

Component 5

equations
solutions
problem
equation
boundary
nonlinear
system
stability
model
systems

Wei JC
Chen XF
Frid H
Yang T
Krauskopf B
Hohage T
Seo JK
Krylov NV
Nishihara K
Friedman A

SIAM J Math Anal
SIAM J Appl Dyn Syst

Component 6

October 25, 2011

matrices
matrix
problems
systems
algorithm
linear
method
symmetric
problem
sparse

Higham NJ
Guo CH
Tisseur F
Zhang ZY

Johnson CR

Lin WW

Mehrmann V

Gu M
Zha HY
Golub GH

Component 7

optimization
problems
programming
methods
method
algorithm
nonlinear
point
semidefinite
convergence

Qi LQ
Tseng P
Roos C
Sun DF

Kunisch K
Ng KF
Jeyakumar V
Qi HD
Fukushima M
Kojima M

SIAM J Matrix Anal A = SIAM J Optimiz
SIAM J Sci Comput

SIAM J Appl Math

Component 10

ont'd.=

Component 8 Component 9
model equations
nonlinear flow
equations model
solutions problem
dynamics theory
waves asymptotic
diffusion models
system method
analysis analysis
phase singular
Venakides S (ETA
Knessl C Ammari H
Sherratt JA Wegener R
Ermentrout GB Schuss Z
Scherzer O Stevens A
Haider MA Velazquez JIL
Kaper TJ Miura RM
Ward MJ Movchan AB
Tier C Fannjiang A
Warne DP Ryzhik L

T. G. Kolda — UMN DTC S&T Innovator Series

SIAM J Appl Math
SIAM J Optimiz

education
introduction
health
analysis
problems
matrix
method
methods
control
programming

Flaherty J
Trefethen N
Schnabel B

[None]

Moon G

Shor PW
Babuska IM

Sauter SA

Van Dooren P
Adjei S

SIAM Rev




Component 1
graphs
problem
algorithms
approximation
algorithm
complexity
optimal
trees
problems
bounds

Kao MY
Peleg D
Motwani R
Cole R
Devroye L

Similar Solutions found with
Different Starting Points

Component 1
graphs
problem
algorithms
approximation
algorithm
complexity
optimal
trees
problems
bounds

Kao MY
Peleg D
Motwani R
ColeR
Devroye L

Component 5

Component 5

equations
solutions
problem
boundary
equation
nonlinear
stability
model
systems
system

Wei JC
Chen XF
Frid H
Yang T
Seo JK
Hohage T
Krylov NV
Nishihara K

equations
solutions
problem
equation
boundary
nonlinear
system
stability
model
systems

Wei JC
Chen XF
Frid H
Yang T
Krauskopf B
Hohage T
Seo JK
Krylov NV

Component 10
analysis
education
health
introduction
method
problems
methods
matrix
control
survey

Flaherty J
Trefethen N
Krauskopf B
Schnabel B

[None]
Hoffman K
Guckenheimer J
Moon G

.

Component 10

education
introduction
health
analysis
problems
matrix
method
methods
control
programming

Flaherty J
Trefethen N
Schnabel B

[None]
Moon G

Shor PW
Babuska IM

Sauter SA

SIAM J Comput SIAM J Comput
SIAM J Discrete Math \M J Discrete Math
SIAM Rev

Nishihara K
Friedman A

Wu JH

Friedman A Van Dooren P

Adjei S

Osinga HM
Shor PW

SIAM J Math Anal AM J Math Anal

1AM J Appl Dyn Syst SIAM Rev

SIAM Rev
SIAM J Appl Dyn Syst
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Concluding Remarks

Data distribution matters!

— Least squares fitting implies Gaussian

C1 Co CR
— Poisson distribution better for sparse (Al b Az b2 Ar bf)
count data ~ Poisson " .
X
Model fitting via CP-APR
— Alternating algorithm with \ " o /
multiplicative updates
* Lee-Seung method is a special case CP-APR will be |
- will be in
— Candirectly check convergence
conditions the next release of
the Tensor Toolbox
* Fix for “undesirable zero” problem for MATLAB.
Future work
— Modified version of Anderson .
acceleration for fixed point iterations 33”1 o . e o
. (. o A=10 | or more information:
— Alternate optimization methods 2023 | T Tammy Kolda
. Sl ¥y | .
Other on-going tensor work o [\ N tgkolda@sandia.gov
— Generalized tensor eigenproblem N PR T T

— Symmetric tensor decompositions
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Poisson Tensor Factorization (PTF)

/ C1 Co CRr \
A b1 A2 bs  Agr br

~ Poisson + + -4

\ a] a aR j

Model: Poisson/Multinomial distribution (nonnegative factorization)

T;jr ~ Poisson(m;;x) where m;;, = Z Ar Qi by Cly
T
Useful properties of Poisson distributed variables:
* Generally preferred for describing “count” data
* Model is “naturally” nonnegative
* The expected value is equal to its parameters and so is its variance
e Sums of Poisson-distributed random variables also follow a Poisson distribution
whose parameter is the sum of the component parameters




