

Nonnegative Tensor Factorizations for Sparse Count Data

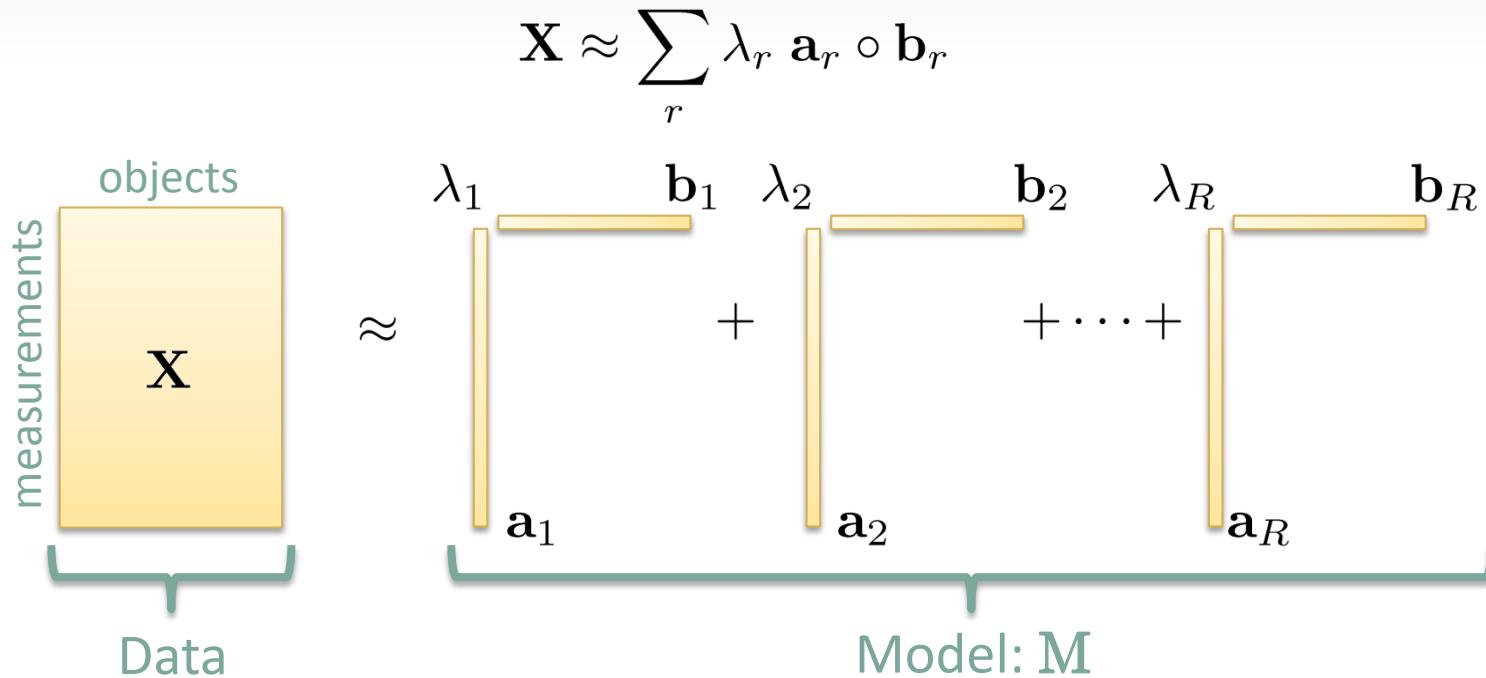
Tamara G. Kolda
Sandia National Labs

Eric C. Chi
Rice University/UCLA

U.S. Department of Energy
Office of Advanced Scientific Computing Research

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Factorizations for Data Analysis



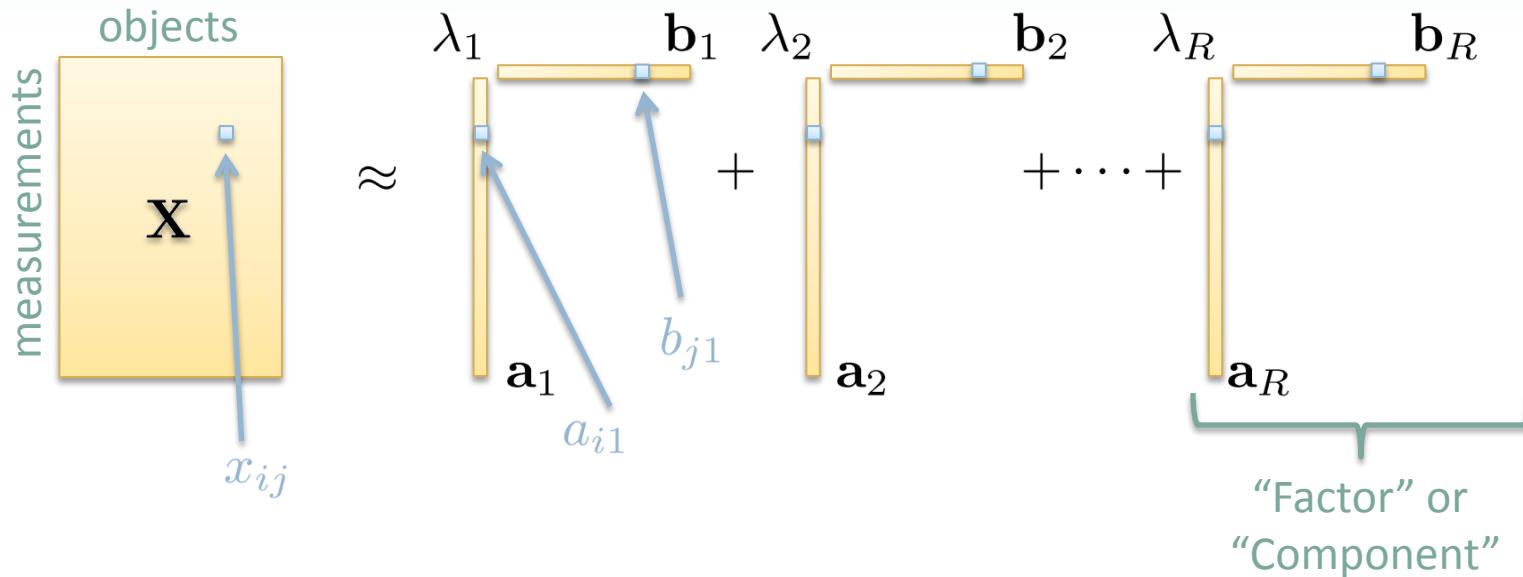
λ_r = weight of r th component

\mathbf{a}_r = mode-1 factor (“principal component”), assumed to be scaled to norm 1

\mathbf{b}_r = mode-2 factor (“loading”), assumed to be scaled to norm 1

Key references: Beltrami (1873), Pearson (1901), Eckart & Young (1936)

Weighted Combination of Factors



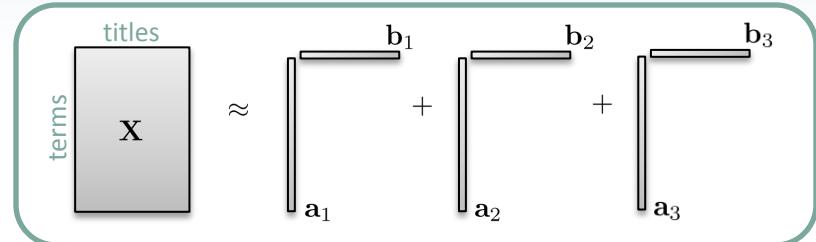
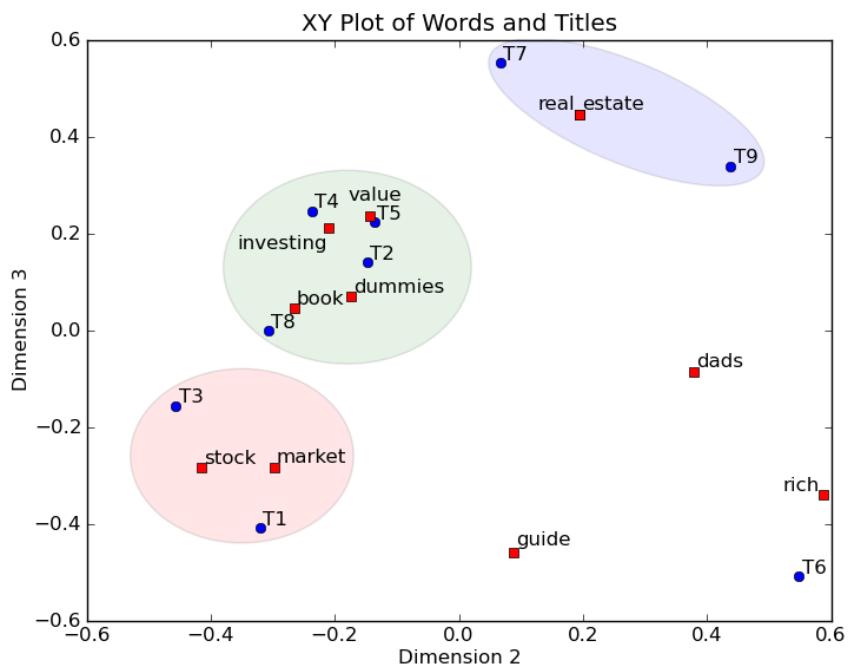
Description of j th object (i.e., j th column): $\mathbf{x}_j \approx \sum_r \gamma_r \mathbf{a}_r$, $\gamma_r \equiv \lambda_r b_{jr}$

Description of a single data element: $m_{ij} \approx \sum_r \lambda_r a_{ir} b_{jr}$

Latent Semantic Analysis of Term-Document Matrices

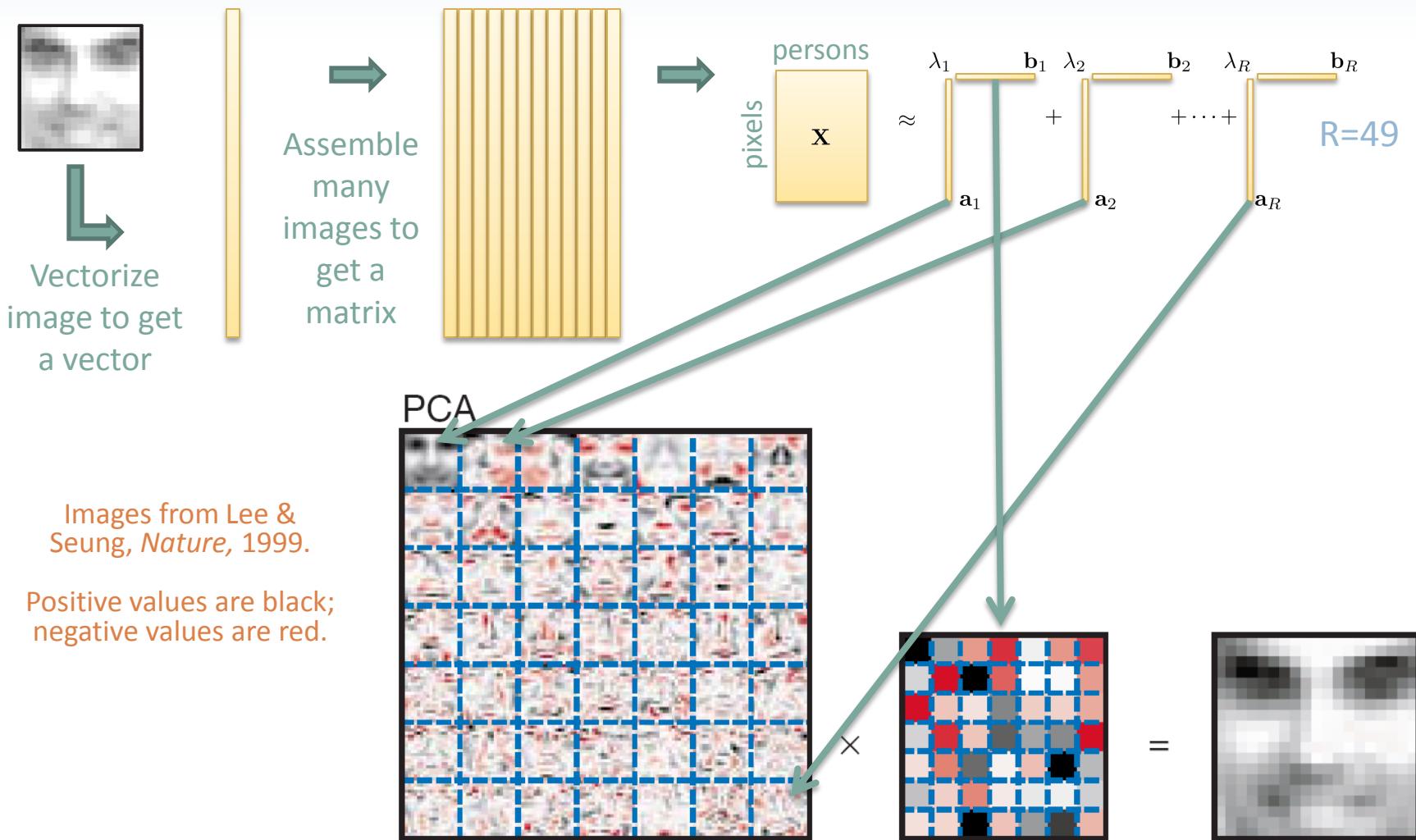
Book Titles

1. The Neatest Little Guide to Stock Market Investing
2. Investing For Dummies, 4th Edition
3. The Little Book of Common Sense Investing: The Only Way to Guarantee Your Fair Share of Stock Market Returns
4. The Little Book of Value Investing
5. Value Investing: From Graham to Buffett and Beyond
6. Rich Dad's Guide to Investing: What the Rich Invest in, That the Poor and the Middle Class Do Not!
7. Investing in Real Estate, 5th Edition
8. Stock Investing For Dummies
9. Rich Dad's Advisors: The ABC's of Real Estate Investing: The Secrets of Finding Hidden Profits Most Investors Miss



See full details at Latent Semantic Analysis (LSA) Tutorial at
<http://www.puffinwarellc.com/index.php/news-and-articles/articles/33.html>

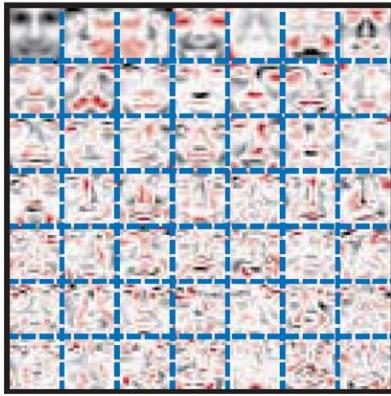
Facial Image Decomposition for Compression and Analysis



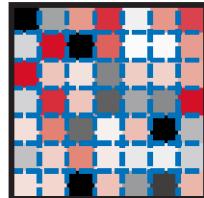
Many Different Two-Way Models

Images from Lee & Seung, *Nature*, 1999

PCA



\times

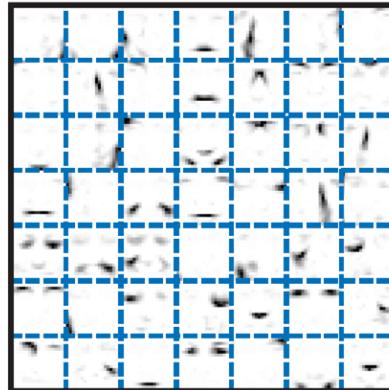


$=$

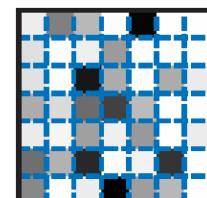


Original

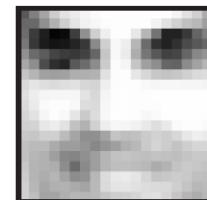
NMF



\times

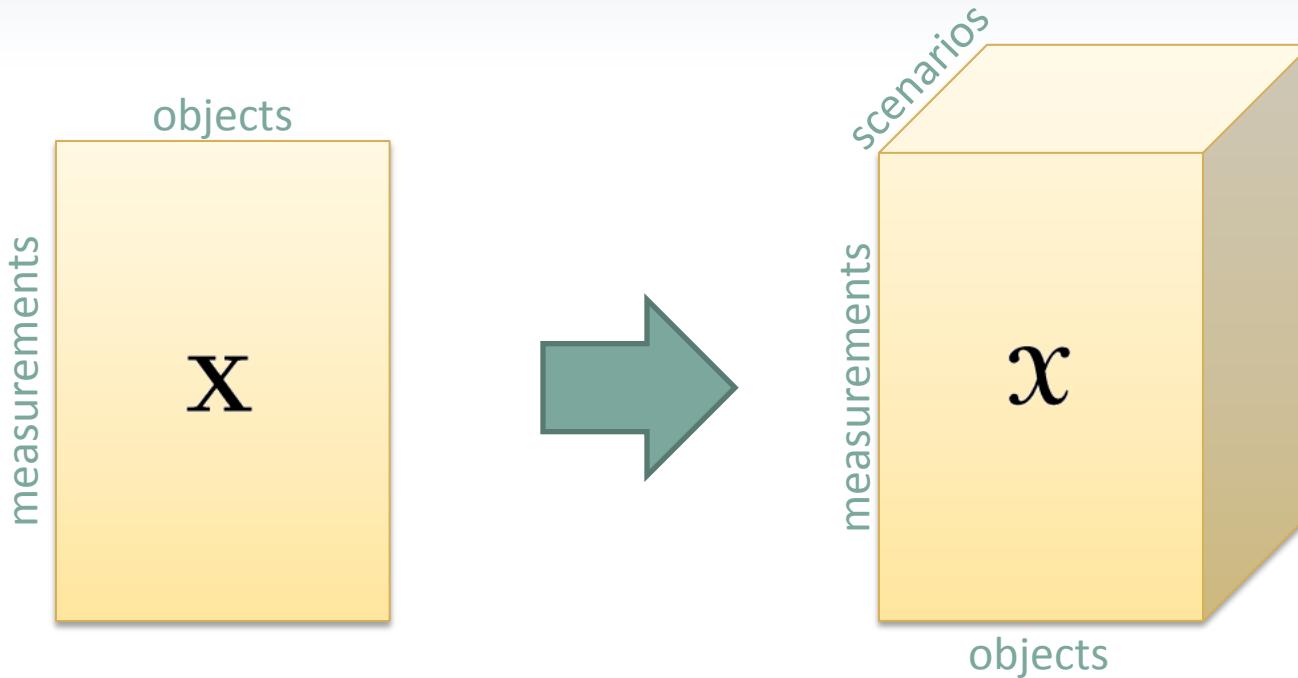


$=$



- Singular Value Decomposition (SVD) and Principal Components Analysis (PCA)
 - *Factors are required to be orthogonal*
- Independent Component Analysis (ICA) [e.g., Comon, 1994]
 - *Factors are required to be maximally independent*
- Compressive Sensing and related work [Candes, 2006]
 - *Sparse factors*
- Nonnegative Matrix Factorization [Paatero, 1997; Bro & De Jong, 1997; Lee & Seung, 2001]
 - *Nonnegative factors*
 - *Alternative assumptions on distribution*

What about 3-way or N-way Data?



Key reference: Cattell, *Psychological Bulletin*, 1952
 THE THREE BASIC FACTOR-ANALYTIC RESEARCH
 DESIGNS—THEIR INTERRELATIONS
 AND DERIVATIVES

RAYMOND B. CATTELL
University of Illinois

Factor analysis began with the correlation of tests measured on populations of persons, but other arrangements have since been

Multi-way Factorizations for Analysis

CANDECOMP/PARAFAC (CP) Model



Data

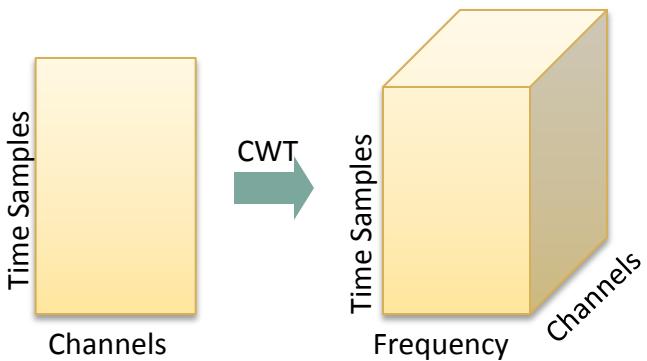
$$\text{Model: } \mathcal{M} = \sum_r \lambda_r \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

$$x_{ijk} \approx m_{ijk} = \sum_r \lambda_r a_{ir} b_{jr} c_{kr}$$

Key references: Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)

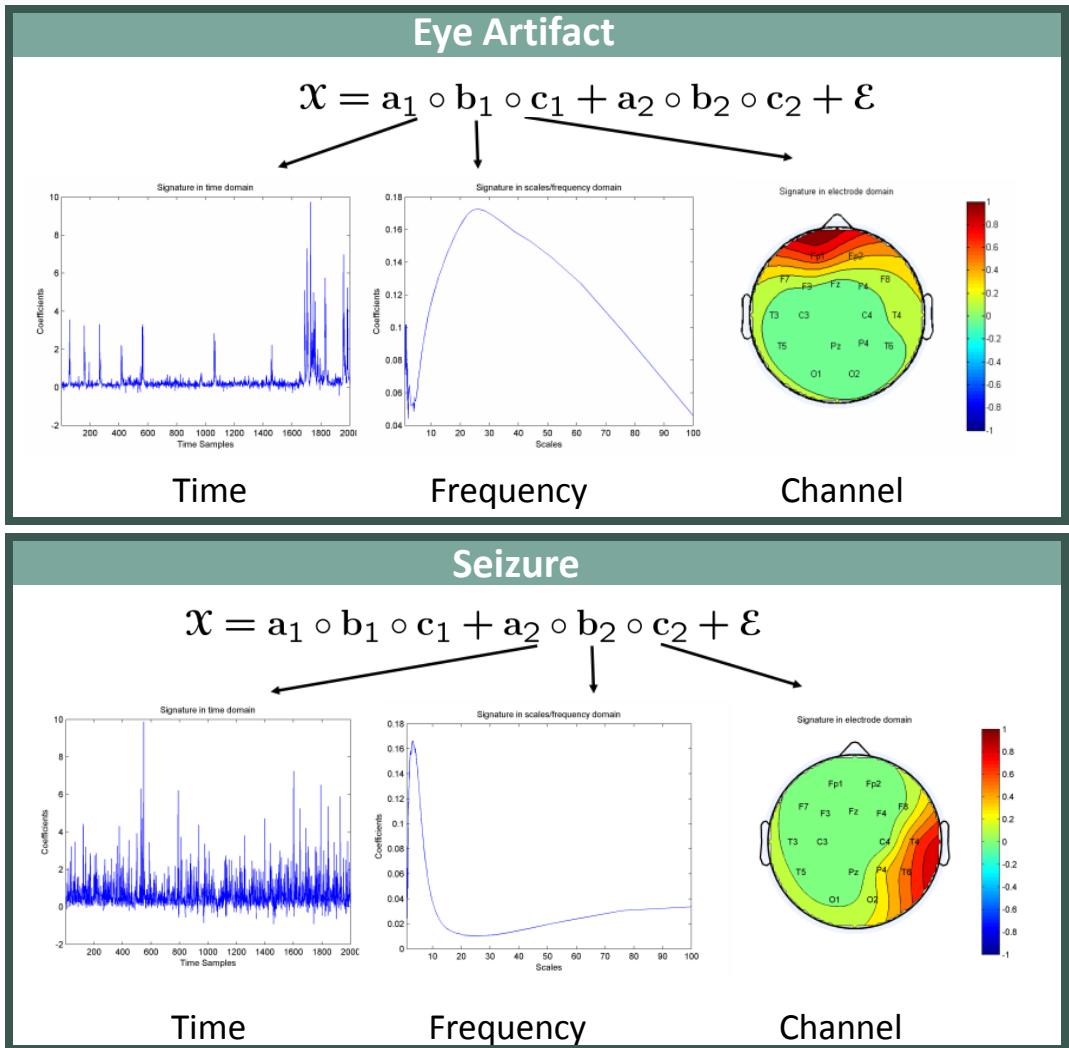
Factor Example: Epilepsy

Data measurements are recorded at multiple sites (channels) over time. The data is transformed via a continuous wavelet transform.



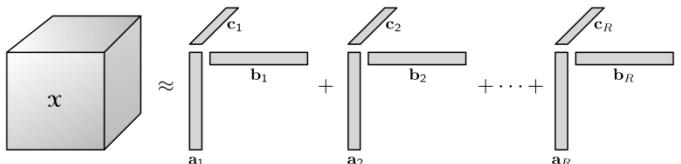
$$x = a_1 \circ b_1 \circ c_1 + a_2 \circ b_2 \circ c_2 + \varepsilon$$

Acar, Bingol, Bingol, Bro and Yener,
Bioinformatics, 2007.

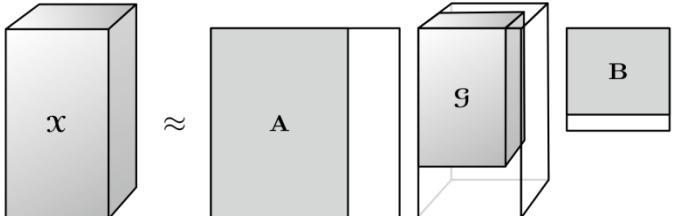


Many Tensor Decompositions, Methods, Software, etc.

CANDECOMP/PARAFAC (CP)



Tucker

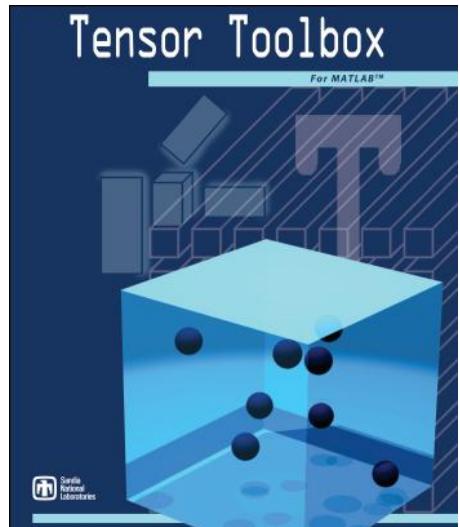


See also past work in

- Sparse computations
- Model fitting
- Missing data
- Applications to graphs

<http://www.sandia.gov/~tgkolda/>

K. & Bader, Tensor Decompositions and Applications, SIAM Review, 2009



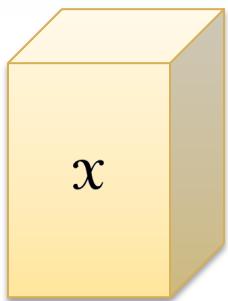
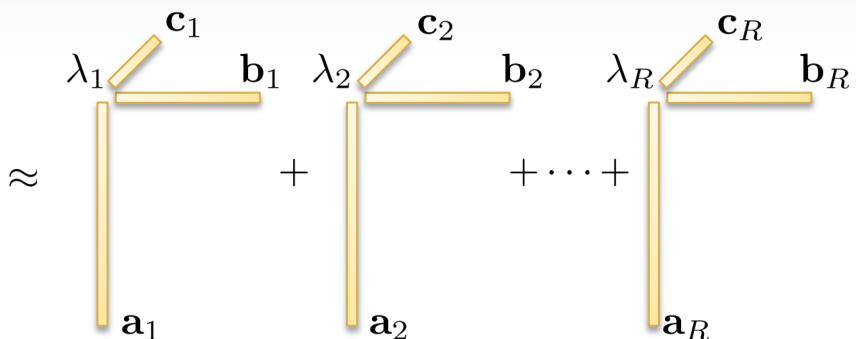
Tensor Toolbox for MATLAB

Bader & Kolda

plus

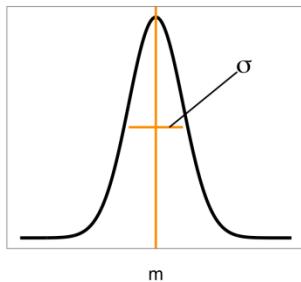
Acar, Dunlavy, Sun, et al.

But what does “ \approx ” mean?



- Typically, we minimize the least-squares error
- This corresponds to maximizing the likelihood, assuming a **Gaussian distribution**

$$x_{ijk} \sim N(m_{ijk}, \sigma^2)$$



Maximize this:

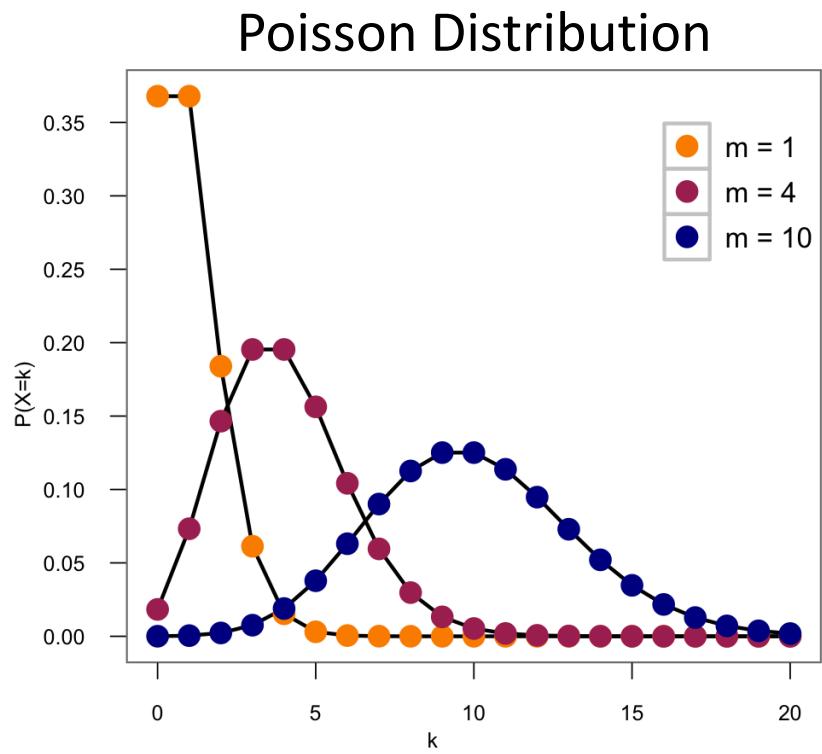
$$\text{likelihood}(\mathcal{M}) = \prod_{ijk} \frac{\exp(-(x_{ijk} - m_{ijk})^2 / 2\sigma^2)}{2\pi\sigma^2}$$

By monotonicity of \log ,
same as maximizing this:

$$\text{log-likelihood}(\mathcal{M}) = c_1 - c_2 \sum_{ijk} (x_{ijk} - m_{ijk})^2$$

Gaussian is often Good, But...

- Gaussian (aka normal) distribution is prominent in statistics
 - Limiting distribution of the sum of a large number of random variables
 - Often a reasonable model for measurement/observational errors
- But, some data are better understood via alternative distributions
 - Non-symmetric errors (e.g., data that grows exponentially)
 - Data with outliers or multiple modes
 - Count data with many low counts
 - High counts can be reasonably approximated by a Gaussian!



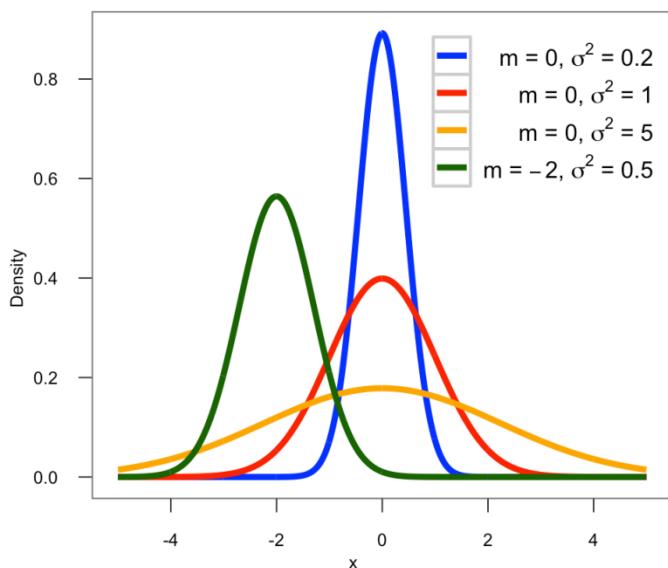
Poisson for Sparse Count Data

Gaussian (typical)

The random variable x is a continuous real-valued number.

$$x \sim N(m, \sigma^2)$$

$$P(X = x) = \frac{\exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)}{\sqrt{2\pi\sigma^2}}$$

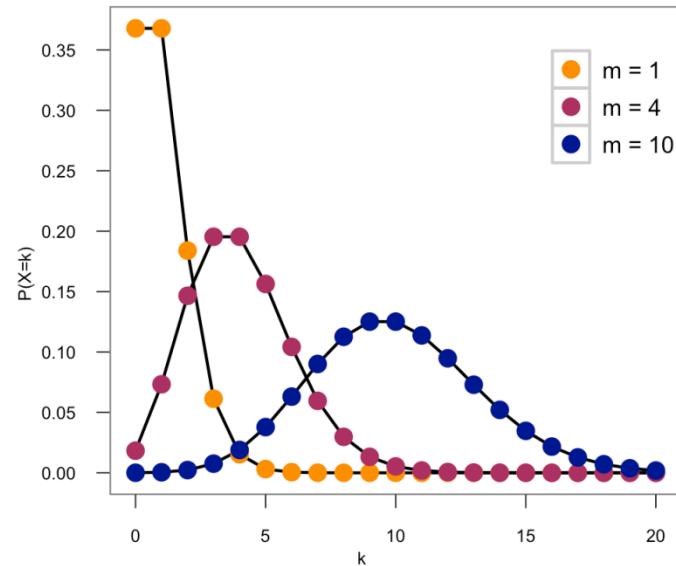


Poisson

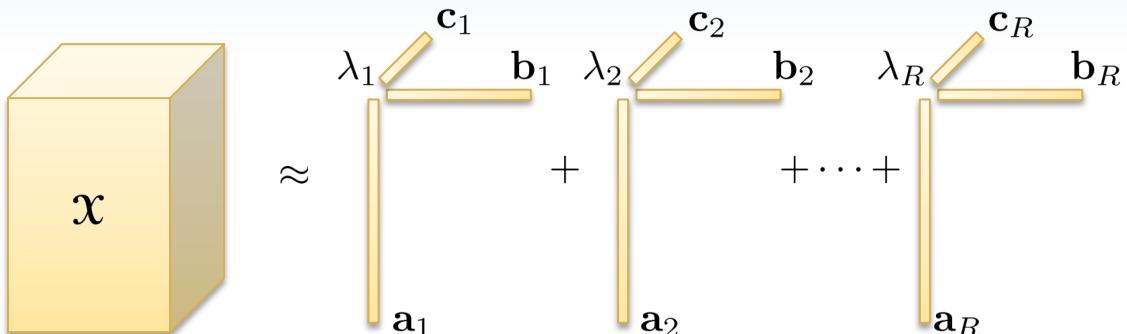
The random variable x is a discrete nonnegative integer.

$$x \sim \text{Poisson}(m)$$

$$P(X = x) = \frac{\exp(-m)m^x}{x!}$$



Poisson Tensor Factorization



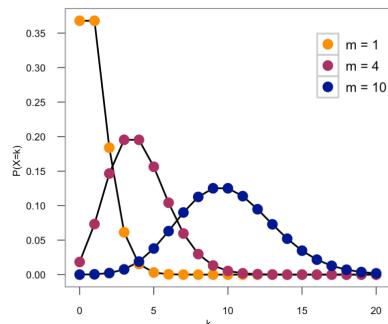
- Poisson preferred for sparse count data
- Automatically nonnegative
- More difficult objective function than least squares

$$x_{ijk} \sim \text{Poisson}(m_{ijk})$$

$$P(X = x) = \frac{\exp(-m)m^x}{x!}$$

Maximize this:

By monotonicity of log,
same as maximizing this:

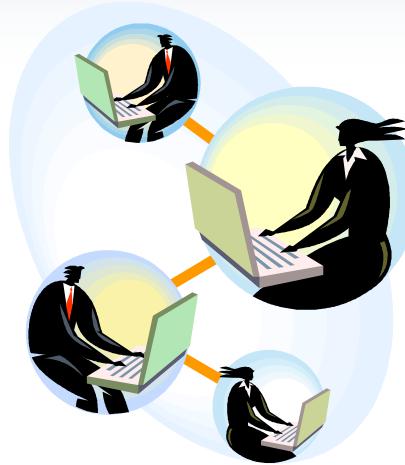


$$\text{likelihood}(\mathcal{M}) = \prod_{ijk} \frac{\exp(-m_{ijk}) m_{ijk}^{x_{ijk}}}{x_{ijk}!}$$

$$\text{log-likelihood}(\mathcal{M}) = c - \sum_{ijk} m_{ijk} - x_{ijk} \log(m_{ijk})$$

Sparse Count Data Abounds

- Computer network traffic
 - User visits to websites
 - IP x IP x Port communications
 - Packet routing
 - Computer logins
- Communications
 - Email traffic
 - Social network interactions
- Financial
 - Purchase records
 - Bank transfers
 - Credit card transactions
- Bibliometric data
 - Co-authorship
 - Author x Term
- *Any of the above binned into time intervals*



How do we make sense of this data?

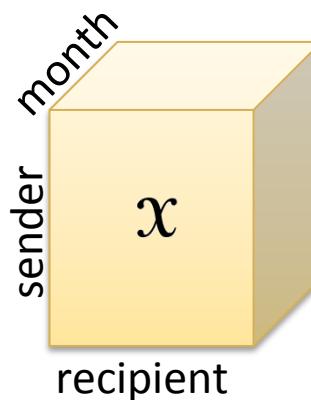
Can we find patterns of behavior?

Can we spot anomalies?

Can we predict future behavior?

Motivating Example: Enron Email

- Emails from Enron FERC investigation
 - Zhou et al., 2007 version
 - 8540 Messages
 - 28 Months (from Dec 1999 to Mar 2002)
 - 105 People (sent and received at least one email every month)
 - x_{ijk} = # emails from sender i to recipient j in month k
 - $105 \times 105 \times 28 = 308,700$ possible entries
 - 8,500 nonzero counts
 - 0.03% dense



Fitting a Poisson Factorization

$$\min_{\mathcal{M}} \sum_{ijk} m_{ijk} - x_{ijk} \log m_{ijk}$$

subject to $\mathcal{M} = \sum_r \lambda_r \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$

$$\boldsymbol{\lambda}, \mathbf{A}, \mathbf{B}, \mathbf{C} \geq 0$$

$$\|\mathbf{a}_r\|_1 = 1, \|\mathbf{b}_r\|_1 = 1, \|\mathbf{c}_r\|_1 = 1 \quad \forall r$$

Assumption
 $x \log m = 0$
 if $x=0$ & $m=0$

- We will solve for each factor matrix in turn, using a **Gauss-Seidel** (or Alternating Optimization) approach
- We can rewrite the model by absorbing the weights $\boldsymbol{\lambda}$ into one of the factor matrices, e.g.,

$$\mathcal{M} = \sum_r \bar{\mathbf{a}}_r \circ \mathbf{b}_r \circ \mathbf{c}_r \text{ with } \bar{\mathbf{A}} = \mathbf{A} \cdot \text{diag}(\boldsymbol{\lambda})$$

- Matrix $\bar{\mathbf{A}}$ is only constrained by be nonnegative
- This can be done for any of the three factor matrices

New Method: Alternating Poisson Regression (CP-APR)

Repeat until converged...

1. $\bar{\mathbf{A}} \leftarrow \arg \min_{\bar{\mathbf{A}} \geq 0} \sum_{ijk} m_{ijk} - x_{ijk} \log m_{ijk}$ s.t. $\mathcal{M} = \sum_r \bar{\mathbf{a}}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$
2. $\boldsymbol{\lambda} \leftarrow \mathbf{e}^\top \bar{\mathbf{A}}$; $\mathbf{A} \leftarrow \bar{\mathbf{A}} \cdot \text{diag}(1/\boldsymbol{\lambda})$
3. $\bar{\mathbf{B}} \leftarrow \arg \min_{\bar{\mathbf{B}} \geq 0} \sum_{ijk} m_{ijk} - x_{ijk} \log m_{ijk}$ s.t. $\mathcal{M} = \sum_r \mathbf{a}_r \circ \bar{\mathbf{b}}_r \circ \mathbf{c}_r$
4. $\boldsymbol{\lambda} \leftarrow \mathbf{e}^\top \bar{\mathbf{B}}$; $\mathbf{B} \leftarrow \bar{\mathbf{B}} \cdot \text{diag}(1/\boldsymbol{\lambda})$
5. $\bar{\mathbf{C}} \leftarrow \arg \min_{\bar{\mathbf{C}} \geq 0} \sum_{ijk} m_{ijk} - x_{ijk} \log m_{ijk}$ s.t. $\mathcal{M} = \sum_r \mathbf{a}_r \circ \mathbf{b}_r \circ \bar{\mathbf{c}}_r$
6. $\boldsymbol{\lambda} \leftarrow \mathbf{e}^\top \bar{\mathbf{C}}$; $\mathbf{C} \leftarrow \bar{\mathbf{C}} \cdot \text{diag}(1/\boldsymbol{\lambda})$

Fix \mathbf{B}, \mathbf{C} ;
solve for \mathbf{A}

Fix \mathbf{A}, \mathbf{C} ;
solve for \mathbf{B}

Fix \mathbf{A}, \mathbf{B} ;
solve for \mathbf{C}

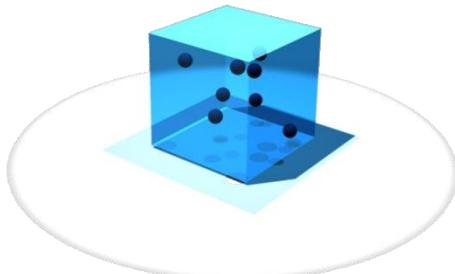
Convergence
Theory

Theorem: The CP-APR algorithm will **converge to a constrained stationary point** if the subproblems are strictly convex and solved exactly at each iteration.

Solving the Subproblem

$$\min_{\bar{\mathbf{A}} \geq 0} \sum_{ijk} m_{ijk} - x_{ijk} \log m_{ijk} \text{ s.t. } \mathcal{M} = \sum_r \bar{\mathbf{a}}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

$$\min_{\bar{\mathbf{A}} \geq 0} \sum_{ijk} \left(\sum_r \bar{a}_{ir} b_{jr} c_{kr} \right) - x_{ijk} \log \left(\sum_r \bar{a}_{ir} b_{jr} c_{kr} \right)$$



Lemma: The subproblems are **strictly convex** if no columns of the factor matrices go to zero and the data tensor has a sufficient number of reasonably distributed nonzeros.

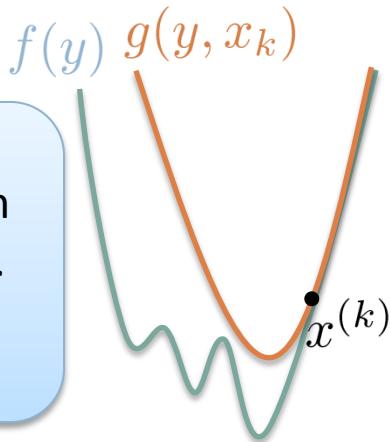
Sufficient number: Must have an average of at least R nonzeros per slice to compute an R -component factorization.

Majorization-Minimization for Subproblem

$$f(\bar{\mathbf{A}}) = \sum_{ijk} \left(\sum_r \bar{a}_{ir} b_{jr} c_{kr} \right) - x_{ijk} \log \left(\sum_r \bar{a}_{ir} b_{jr} c_{kr} \right)$$

A function $g(y, x)$ **majorizes** $f(x)$ if $g(y, x) \geq f(y)$ for all y and $g(x, x) = f(x)$. Majorization-minimization (MM) algorithms minimize a majorizing function at the current iterate, set that minimizer to be the next iterate, and repeat.

$$x^{(k+1)} = \arg \min_y g(y, x^{(k)})$$



Insight: Easy to minimize majorizer moves sum outside

$$g(\mathbf{A}; \bar{\mathbf{A}}) = \sum_{rijk} a_{ir} b_{jr} c_{kr} - \alpha_{rijk} x_{ijk} \log \left(\frac{a_{ir} b_{jr} c_{kr}}{\alpha_{rijk}} \right), \quad \alpha_{rijk} = \frac{\bar{a}_{ir} b_{jr} c_{kr}}{\sum_{r'} \bar{a}_{ir'} b_{jr'} c_{kr'}}$$

$$\bar{a}_{ir} \leftarrow \bar{a}_{ir} \phi_{ir}, \quad \phi_{ir} = \sum_{jk} \frac{x_{ijk} b_{jr} c_{kr}}{\sum_{r'} \bar{a}_{ir'} b_{jr'} c_{kr'}} \geq 0$$

$$\bar{\mathbf{A}} = \bar{\mathbf{A}} * \Phi$$

Elementwise
Multiplication

MM Subproblem Algorithm

$$f(\bar{\mathbf{A}}) = \sum_{ijk} \left(\sum_r \bar{a}_{ir} b_{jr} c_{kr} \right) - x_{ijk} \log \left(\sum_r \bar{a}_{ir} b_{jr} c_{kr} \right)$$

Repeat until convergence:

$$\bar{\mathbf{A}} \leftarrow \bar{\mathbf{A}} * \Phi \text{ where } \phi_{ir} = \sum_{jk} \frac{x_{ijk} b_{jr} c_{kr}}{\sum_{r'} \bar{a}_{ir'} b_{jr'} c_{kr'}}$$

Constrained Optimality (KKT) Conditions

$$\bar{\mathbf{A}} \geq 0 \quad \leftarrow \quad \text{automatically guaranteed}$$

$$\nabla f(\bar{\mathbf{A}}) = \mathbf{E} - \Phi \geq 0$$

$$\bar{\mathbf{A}} * (\mathbf{E} - \Phi) = 0$$

Convergence criterion: $|\min(\bar{\mathbf{A}}, \mathbf{E} - \Phi)| \leq \text{tol}$

Elementwise

Novel Algorithm: CP-APR with MM Subproblem Solver

Repeat until converged...

1. Repeat until converged: $\bar{\mathbf{A}} \leftarrow \bar{\mathbf{A}} * \Phi$, where $\phi_{ir} = \sum_{jk} \frac{x_{ijk} b_{jrc} c_{kr}}{\sum_{r'} \bar{a}_{ir'} b_{jr'} c_{kr'}}$ } Fix \mathbf{B}, \mathbf{C} ;
solve for \mathbf{A}
2. $\boldsymbol{\lambda} \leftarrow \mathbf{e}^T \bar{\mathbf{A}}$; $\mathbf{A} \leftarrow \bar{\mathbf{A}} \cdot \text{diag}(1/\boldsymbol{\lambda})$
3. Repeat until converged: $\bar{\mathbf{B}} \leftarrow \bar{\mathbf{B}} * \Phi$, where $\phi_{jr} = \sum_{ik} \frac{x_{ijk} a_{ir} c_{kr}}{\sum_{r'} a_{ir'} \bar{b}_{jr'} c_{kr'}}$ } Fix \mathbf{A}, \mathbf{C} ;
solve for \mathbf{B}
4. $\boldsymbol{\lambda} \leftarrow \mathbf{e}^T \bar{\mathbf{B}}$; $\mathbf{B} \leftarrow \bar{\mathbf{B}} \cdot \text{diag}(1/\boldsymbol{\lambda})$
5. Repeat until converged: $\bar{\mathbf{C}} \leftarrow \bar{\mathbf{C}} * \Phi$, where $\phi_{kr} = \sum_{ij} \frac{x_{ijk} a_{ir} b_{jr}}{\sum_{r'} a_{ir'} b_{jr'} \bar{c}_{kr'}}$ } Fix \mathbf{A}, \mathbf{B} ;
solve for \mathbf{C}
6. $\boldsymbol{\lambda} \leftarrow \mathbf{e}^T \bar{\mathbf{C}}$; $\mathbf{C} \leftarrow \bar{\mathbf{C}} \cdot \text{diag}(1/\boldsymbol{\lambda})$

Lee-Seung is a Special Case of CP-APR

Lee & Seung, 1999 [matrix version]; Welling & Weber, 2001 [tensor extension]

Repeat until converged...

1. Update matrix as: $\bar{\mathbf{A}} \leftarrow \bar{\mathbf{A}} * \Phi$, where $\phi_{ir} = \sum_{jk} \frac{x_{ijk} b_{jrc_{kr}}}{\sum_{r'} \bar{a}_{ir'} b_{jrc_{kr'}}}$ } Fix \mathbf{B}, \mathbf{C} ;
update \mathbf{A}
2. $\boldsymbol{\lambda} \leftarrow \mathbf{e}^T \bar{\mathbf{A}}$; $\mathbf{A} \leftarrow \bar{\mathbf{A}} \cdot \text{diag}(1/\boldsymbol{\lambda})$
3. Update matrix as: $\bar{\mathbf{B}} \leftarrow \bar{\mathbf{B}} * \Phi$, where $\phi_{jr} = \sum_{ik} \frac{x_{ijk} a_{ir} c_{kr}}{\sum_{r'} a_{ir'} \bar{b}_{jrc_{kr'}}}$ } Fix \mathbf{A}, \mathbf{C} ;
update \mathbf{B}
4. $\boldsymbol{\lambda} \leftarrow \mathbf{e}^T \bar{\mathbf{B}}$; $\mathbf{B} \leftarrow \bar{\mathbf{B}} \cdot \text{diag}(1/\boldsymbol{\lambda})$
5. Update matrix as: $\bar{\mathbf{C}} \leftarrow \bar{\mathbf{C}} * \Phi$, where $\phi_{kr} = \sum_{ij} \frac{x_{ijk} a_{ir} b_{jr}}{\sum_{r'} a_{ir'} b_{jr'} \bar{c}_{kr'}}$ } Fix \mathbf{A}, \mathbf{B} ;
update \mathbf{C}
6. $\boldsymbol{\lambda} \leftarrow \mathbf{e}^T \bar{\mathbf{C}}$; $\mathbf{C} \leftarrow \bar{\mathbf{C}} \cdot \text{diag}(1/\boldsymbol{\lambda})$

New Insight: How to Fix “Undesirable” Zeros

Zeros never change with multiplicative updates!

$$\bar{\mathbf{A}} \leftarrow \bar{\mathbf{A}} * \Phi \text{ where } \phi_{ir} = \sum_{jk} \frac{x_{ijk} b_{jr} c_{kr}}{\sum_{r'} \bar{a}_{ir'} b_{jr'} c_{kr'}}$$

Recall the Constrained Optimality (KKT) Conditions:

$$\begin{aligned} \bar{\mathbf{A}} \geq 0 & \quad \leftarrow \text{automatically guaranteed} \\ \nabla f(\bar{\mathbf{A}}) = \mathbf{E} - \Phi \geq 0 \\ \bar{\mathbf{A}} * (\mathbf{E} - \Phi) = 0 \end{aligned} \quad \left. \right\} \text{These conditions enable us to check for “inadmissible” zeros}$$

Undesirable Zero: $\bar{a}_{ij} = 0$ and $\phi_{ij} > 1$

Fix: If \bar{a}_{ij} is close to zero and $\phi_{ij} > 1$, then bump \bar{a}_{ij} from zero, i.e, set $\bar{a}_{ij} = 0.2$,

Fixes Lee-Seung updates too!

See example of problem in Gonzalez & Zhang, 2005

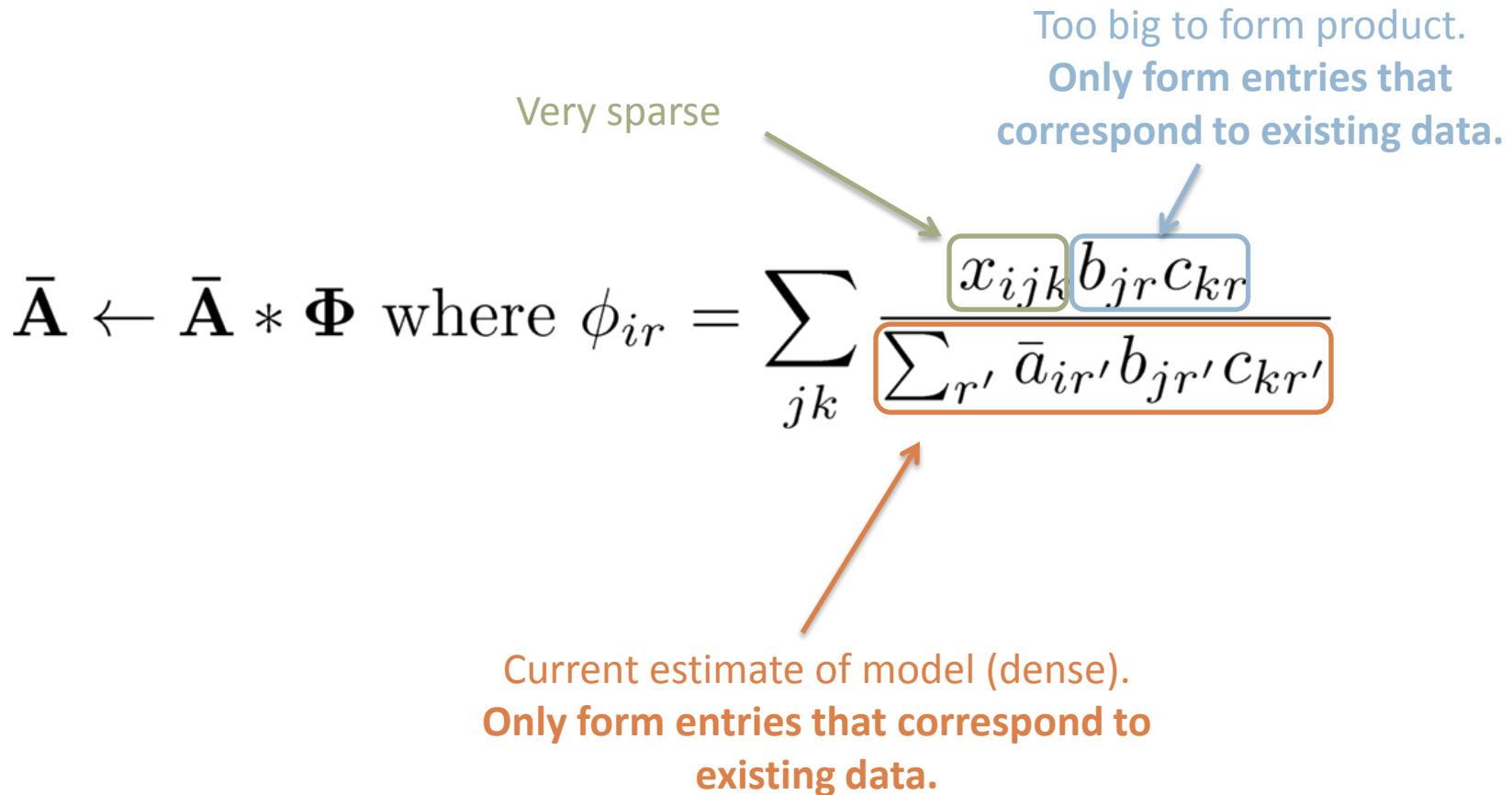
Our Code Supports Sparse Computations

Very sparse

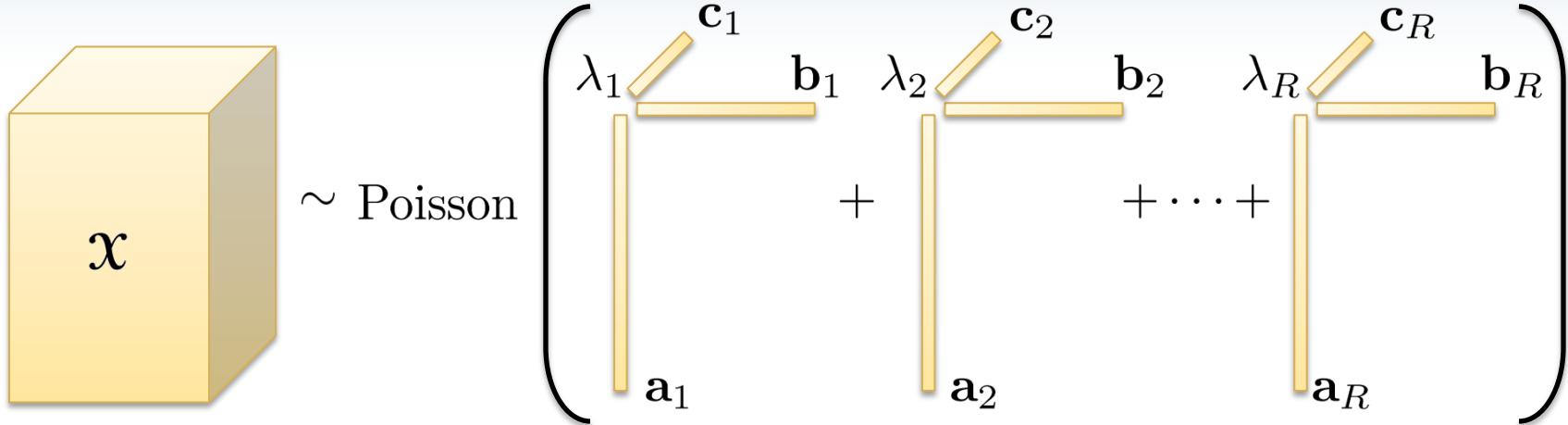
Too big to form product.
Only form entries that correspond to existing data.

$$\bar{\mathbf{A}} \leftarrow \bar{\mathbf{A}} * \Phi \text{ where } \phi_{ir} = \sum_{jk} \frac{x_{ijk} b_{jr} c_{kr}}{\sum_{r'} \bar{a}_{ir'} b_{jr'} c_{kr'}}$$

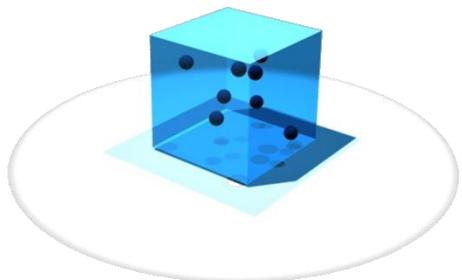
Current estimate of model (dense).
Only form entries that correspond to existing data.



Generating Test Data

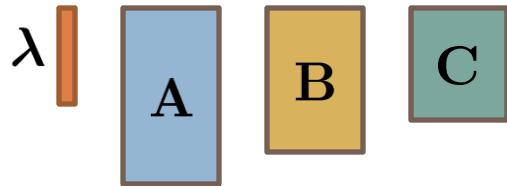


- Each “occurrence” generated as follows
- Choose factor r proportional to λ
- Given factor r :
 - Choose index i proportional to a_r
 - Choose index j proportional to b_r
 - Choose index k proportional to c_r
- Increment x_{ijk} by one

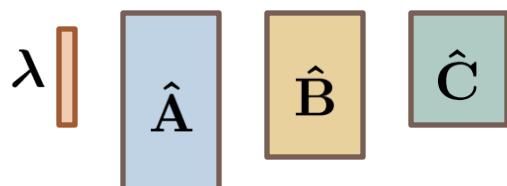


Numerical Experiment Set-up for Simulated Data

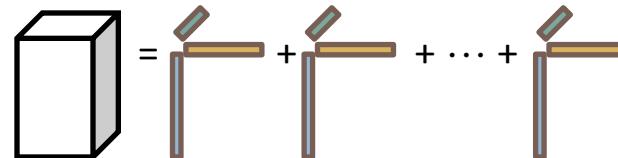
Step 1: Generate factor matrices with $R=10$ columns. Choose 10% entries from $U(0,100)$ and remainder from $U(0,1)$. Renormalize so that each column sums to one. Choose λ entries from $U(0,1)$.



Step 3: Factorize spares tensor using CP-APR



Step 2: Generate sparse tensor from Poisson distribution using model



$$\mathcal{X} \sim \text{Poisson} \left(\sum_r \lambda_r \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r \right)$$

Step 4: Compute **FMS** = factor match score of computed factors against truth. Assume columns are two-norm normalized and ξ_r is the product of the norms

$$\frac{1}{R} \sum_r \left(1 - \frac{|\xi_r - \hat{\xi}_r|}{\max(\xi_r, \hat{\xi}_r)} \right) \mathbf{a}_r^\top \hat{\mathbf{a}}_r \mathbf{b}_r^\top \hat{\mathbf{b}}_r \mathbf{c}_r^\top \hat{\mathbf{c}}_r$$

Best FMS is 1

Accuracy is High For Very Sparse Data

Data: 1000 x 800 x 600 Tensor with R=10 Components

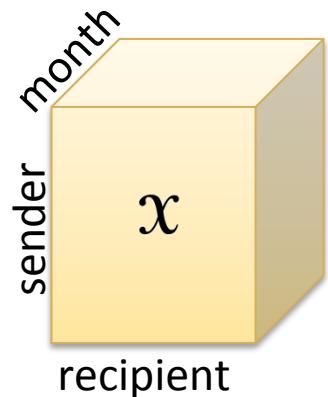
CP-APR: Max Iterations = 200, Max Inner Iterations = 30 (10 per mode), Tol = 1e-4 (KKT)

CP-ALS: Max Iterations = 200, Tol = 1e-8 (change in fit)

Nonzeros	Poisson Regression FMS	Gaussian Regression FMS
480,000 (.100%)	0.99	0.57
240,000 (.050%)	0.81	0.49
48,000 (.010%)	0.77	0.47
24,000 (.005%)	0.74	0.46

Motivating Example: Enron Email

- Emails from Enron FERC investigation
 - 8540 Messages
 - 28 Months (from Dec 1999 to Mar 2002)
 - 105 People (sent and received at least one email every month)
 - x_{ijk} = # emails from sender i to recipient j in month k
 - $105 \times 105 \times 28 = 308,700$ possible entries
 - 8,500 nonzero counts
 - **0.03% dense**
- Questions: What can we learn about this data?
 - Each person labeled by Zhou et al. (2007);
see also Owen and Perry (2010)
 - Seniority: 57% senior, 43% junior
 - Gender: 67% male, 33% female
 - Department: 24% legal, 31% trading, 45% other

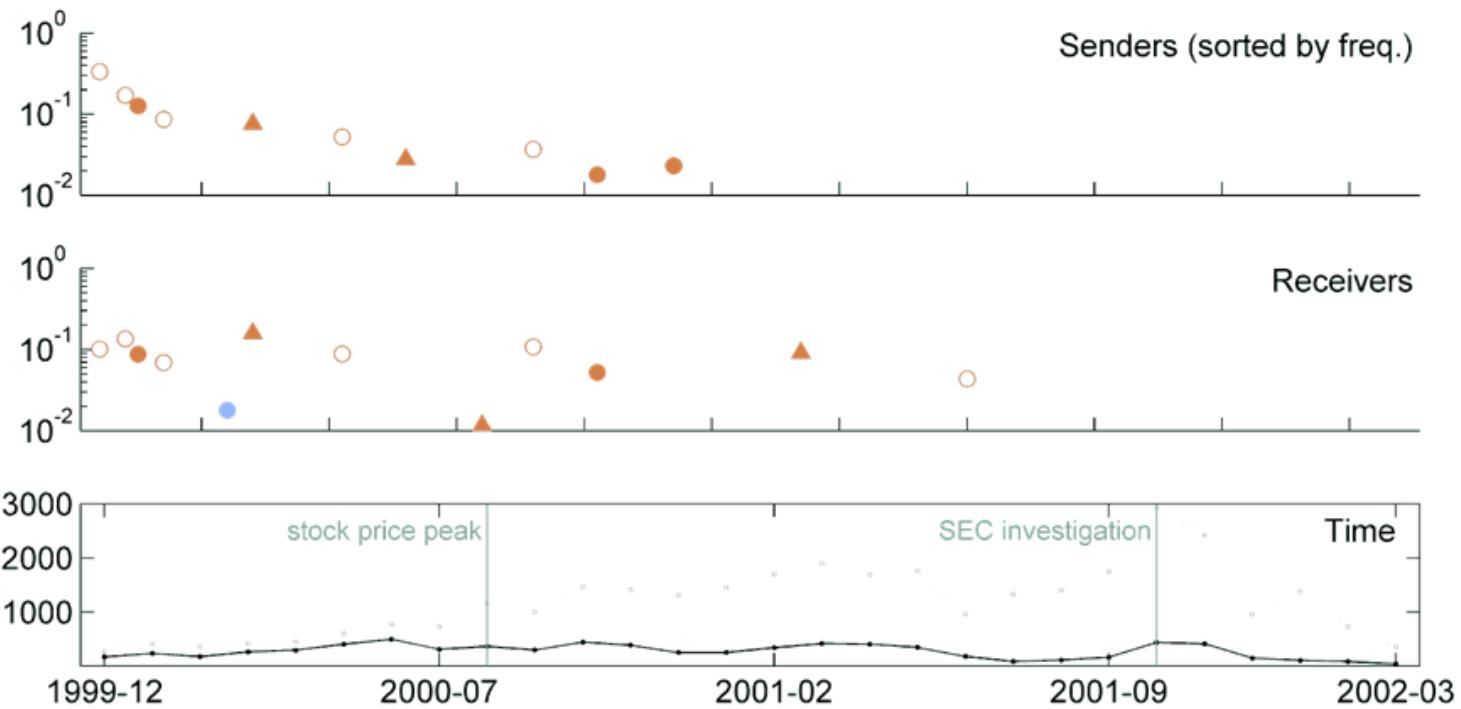


This information is not part of the tensor factorization

Enron Email Data

Legal Dept;
Mostly Female

Component 1



Seniority

- Senior (57%)
- Junior (43%)

Gender

- Female (33%)
- ▲ Male (67%)

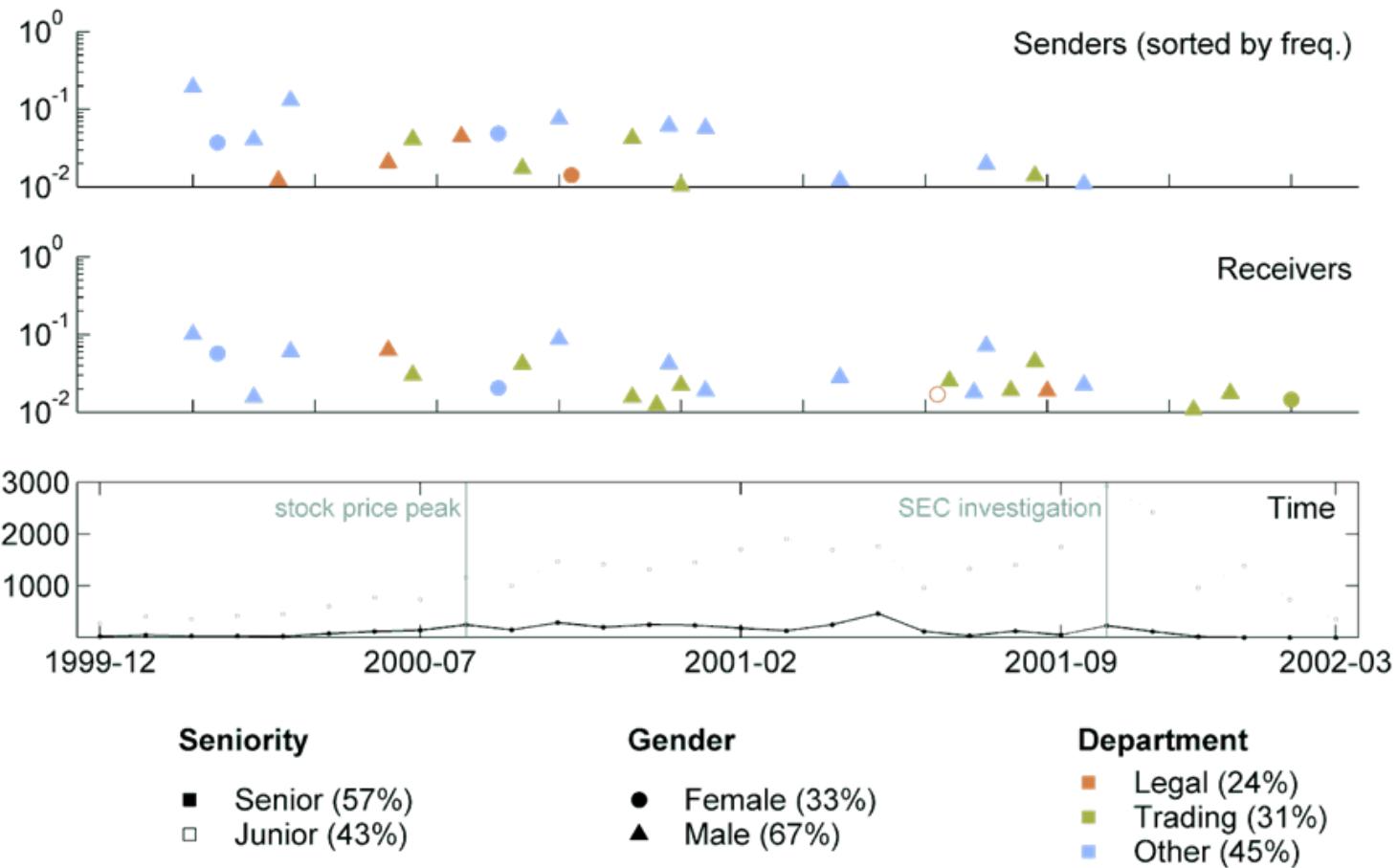
Department

- Legal (24%)
- Trading (31%)
- Other (45%)

Enron Email Data

Senior;
Mostly Male

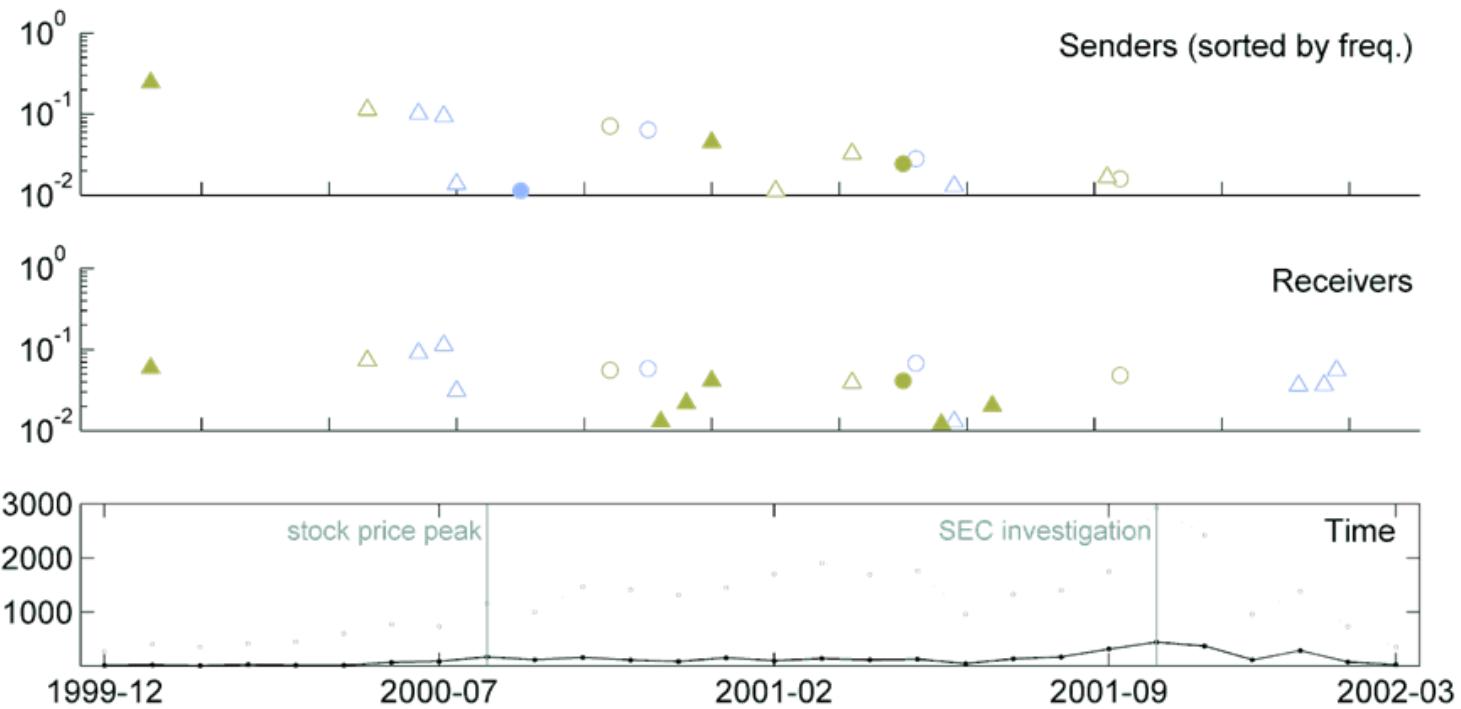
Component 3



Enron Email Data

Not Legal

Component 4



Seniority

- Senior (57%)
- Junior (43%)

Gender

- Female (33%)
- ▲ Male (67%)

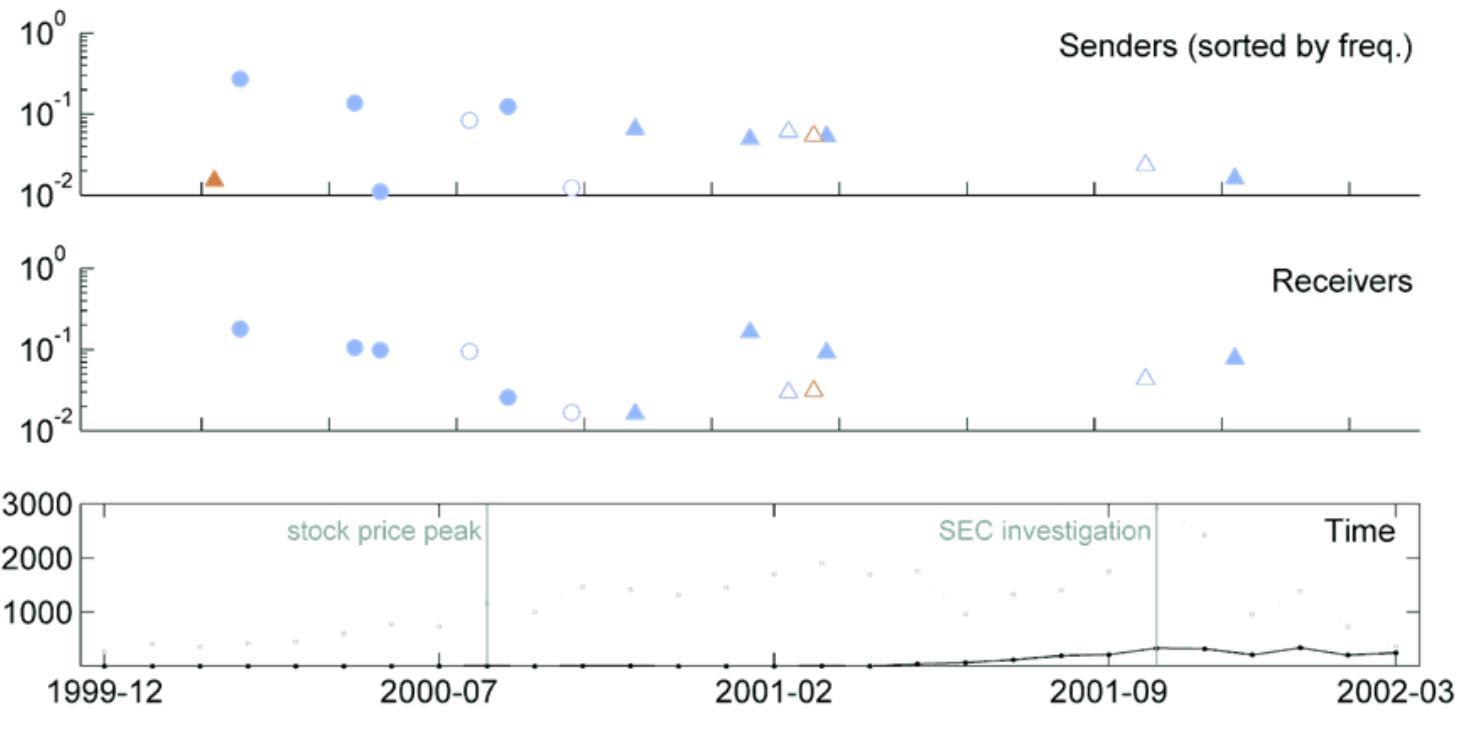
Department

- Legal (24%)
- Trading (31%)
- Other (45%)

Enron Email Data

Other;
Mostly Female

Component 5



Seniority

- Senior (57%)
- Junior (43%)

Gender

- Female (33%)
- ▲ Male (67%)

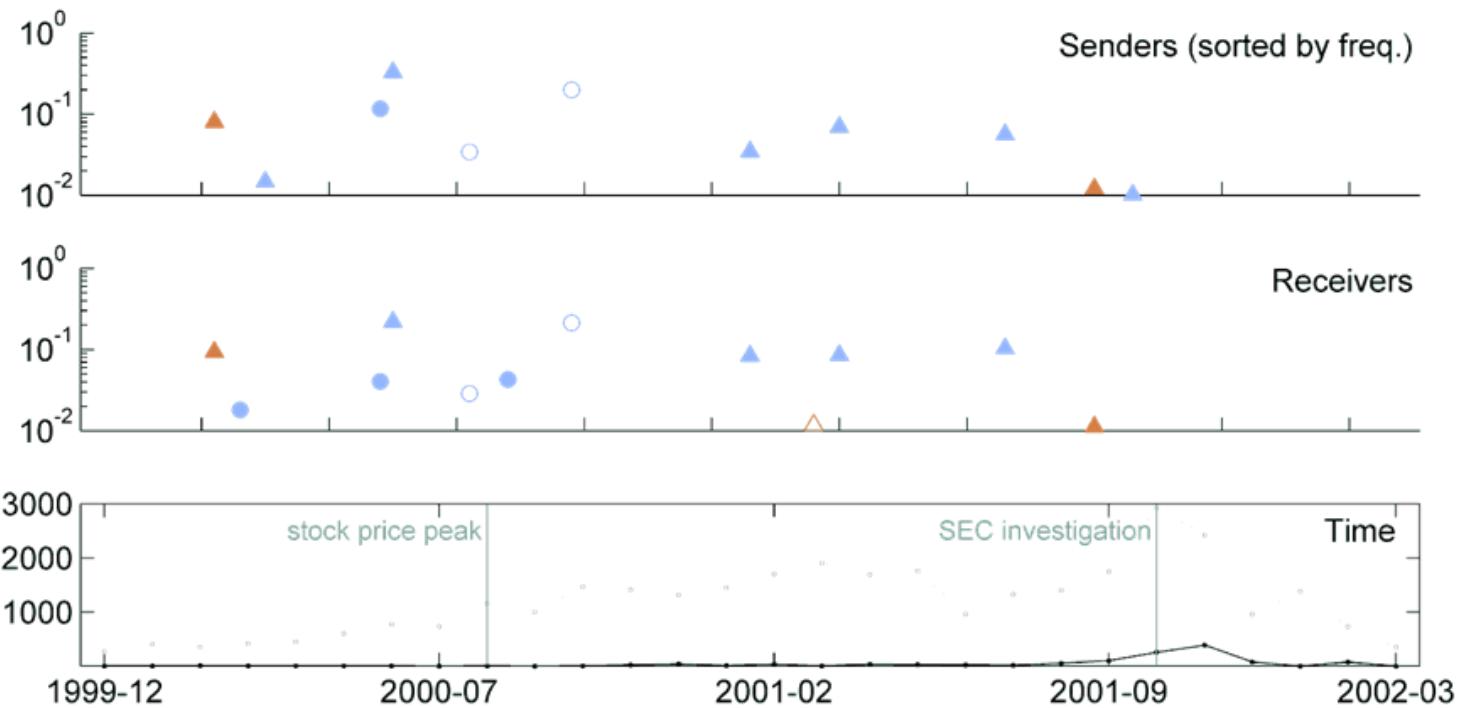
Department

- Legal (24%)
- Trading (31%)
- Other (45%)

Enron Email Data

Mostly Other

Component 10



Seniority

- Senior (57%)
- Junior (43%)

Gender

- Female (33%)
- ▲ Male (67%)

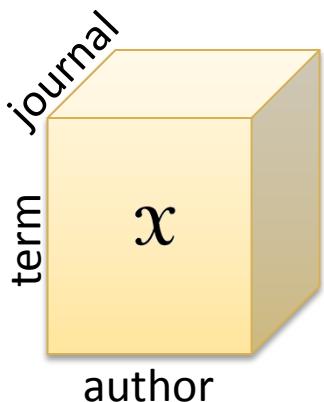
Department

- Legal (24%)
- Trading (31%)
- Other (45%)

Example: Publication Data

SIAM publications 1999-2004

- 4676 articles
- 11 journals
- 6955 authors
- 4952 title terms
(after stop-word removal)



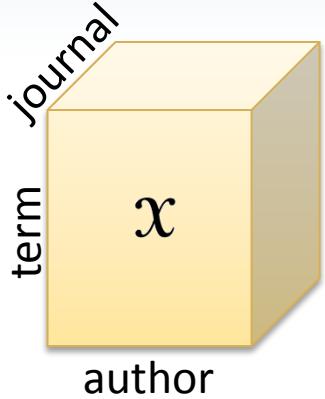
x_{ijk} = occurrences of term i in titles of articles by author j in journal k

64,133 nonzeros
< .01% dense

Sample Publications

- EIBECK A, WAGNER W, An efficient stochastic algorithm for studying coagulation dynamics and gelation phenomena, SIAM J SCI COMPUT, 2000
- KIM S, KWON O, SEO JK, Location search techniques for a grounded conductor, SIAM J APPL MATH, 2002
- CROWDY D, MARSHALL J, Constructing multiply connected quadrature domains, SIAM J APPL MATH, 2004
- LIPTON R, Optimal inequalities for gradients of solutions of elliptic equations occurring in two-phase heat conductors, SIAM J MATH ANAL, 2001
- LAFITTE OD, Diffraction in the high frequency regime by a thin layer of dielectric material I: The equivalent impedance boundary condition, SIAM J APPL MATH, 1999

Publication Data Yields Topics, with Authors and Journals



SIAM Data
1999-2004

- 4952 terms
- 6955 authors
- 11 journals
- 64k nonzeros

10 Component
Poisson Tensor
Factorization

	<u>Component 1</u>	<u>Component 2</u>	<u>Component 3</u>	<u>Component 4</u>
journal	graphs problem algorithms approximation algorithm complexity optimal trees problems bounds	method equations methods problems numerical multigrid finite element solution systems	finite methods equations method element problems numerical error analysis	control systems optimal problems stochastic linear nonlinear stabilization equations equation
author	Kao MY Peleg D Motwani R Cole R Devroye L	Chan TF Saad Y Golub GH	Du Q Shen J Ainsworth M McCormick SF Wang JP Manteuffel TA Schwab C Ewing RE Widlund OB Babuska I	Zhou XY Kushner HJ Kunisch K Ito K Tang SJ Raymond JP Ulbrich S Borkar VS Altman E Budhiraja A
term	SIAM J Comput SIAM J Discrete Math SIAM Rev	SIAM J Sci Comput	SIAM J Numer Anal SIAM J Comput	SIAM J Control Optim

Publication Data Results, Cont'd.

Component 5

equations
solutions
problem
equation
boundary
nonlinear
system
stability
model
systems

Component 6

matrices
matrix
problems
systems
algorithm
linear
method
symmetric
problem
sparse

Component 7

optimization
problems
programming
methods
method
algorithm
nonlinear
point
semidefinite
convergence

Component 8

model
nonlinear
equations
solutions
dynamics
waves
diffusion
system
analysis
phase

Component 9

equations
flow
model
problem
theory
asymptotic
models
method
analysis
singular

Component 10

education
introduction
health
analysis
problems
matrix
method
methods
control
programming

Wei JC
Chen XF
Frid H
Yang T
Krauskopf B
Hohage T
Seo JK
Krylov NV
Nishihara K
Friedman A

Higham NJ
Guo CH
Tisseur F
Zhang ZY
Johnson CR
Lin WW
Mehrmann V
Gu M
Zha HY
Golub GH

Qi LQ
Tseng P
Roos C
Sun DF
Kunisch K
Ng KF
Jeyakumar V
Qi HD
Fukushima M
Kojima M

Venakides S
Knessl C
Sherratt JA
Ermentrout GB
Scherzer O
Haider MA
Kaper TJ
Ward MJ
Tier C
Warne DP

Klar A
Ammari H
Wegener R
Schuss Z
Stevens A
Velazquez JJL
Miura RM
Movchan AB
Fannjiang A
Ryzhik L

Flaherty J
Trefethen N
Schnabel B
[None]
Moon G
Shor PW
Babuska IM
Sauter SA
Van Dooren P
Adjei S

SIAM J Math Anal
SIAM J Appl Dyn Syst

SIAM J Matrix Anal A
SIAM J Sci Comput

SIAM J Optimiz

SIAM J Appl Math

SIAM J Appl Math
SIAM J Optimiz

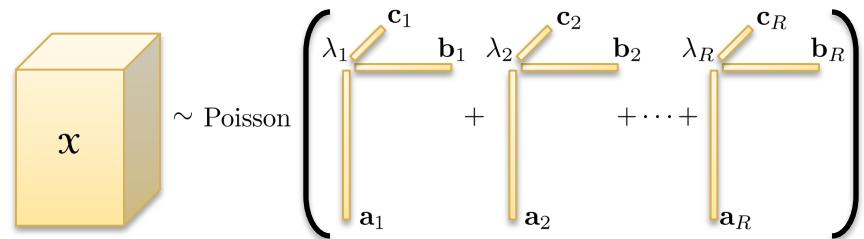
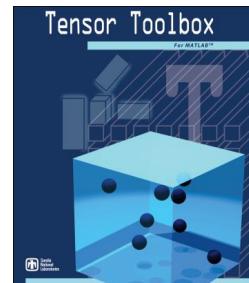
SIAM Rev

Similar Solutions found with Different Starting Points

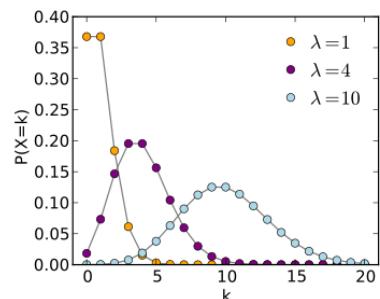
<u>Component 1</u>	<u>Component 1</u>	<u>Component 5</u>	<u>Component 5</u>	<u>Component 10</u>	<u>Component 10</u>
graphs problem algorithms approximation algorithm complexity optimal trees problems bounds	graphs problem algorithms approximation algorithm complexity optimal trees problems bounds				
Kao MY Peleg D Motwani R Cole R Devroye L	Kao MY Peleg D Motwani R Cole R Devroye L	Wei JC Chen XF Frid H Yang T Seo JK Hohage T Krylov NV Nishihara K Wu JH Friedman A	Wei JC Chen XF Frid H Yang T Seo JK Hohage T Krylov NV Nishihara K Friedman A	Flaherty J Trefethen N Krauskopf B Schnabel B [None] Hoffman K Guckenheimer J Moon G Osinga HM Shor PW	Flaherty J Trefethen N Schnabel B [None] Moon G Shor PW Babuska IM Sauter SA Van Dooren P Adjei S
SIAM J Comput SIAM J Discrete Math	SIAM J Comput SIAM J Discrete Math SIAM Rev	SIAM J Math Anal SIAM J Appl Dyn Syst	SIAM J Math Anal SIAM J Appl Dyn Syst	SIAM Rev SIAM J Appl Dyn Syst	SIAM Rev

Concluding Remarks

- Data distribution matters!
 - Least squares fitting implies Gaussian
 - Poisson distribution better for sparse count data
- Model fitting via CP-APR
 - Alternating algorithm with multiplicative updates
 - Lee-Seung method is a special case
 - Can directly check convergence conditions
 - Fix for “undesirable zero” problem
- Future work
 - Modified version of Anderson acceleration for fixed point iterations
 - Alternate optimization methods
- Other on-going tensor work
 - Generalized tensor eigenproblem
 - Symmetric tensor decompositions



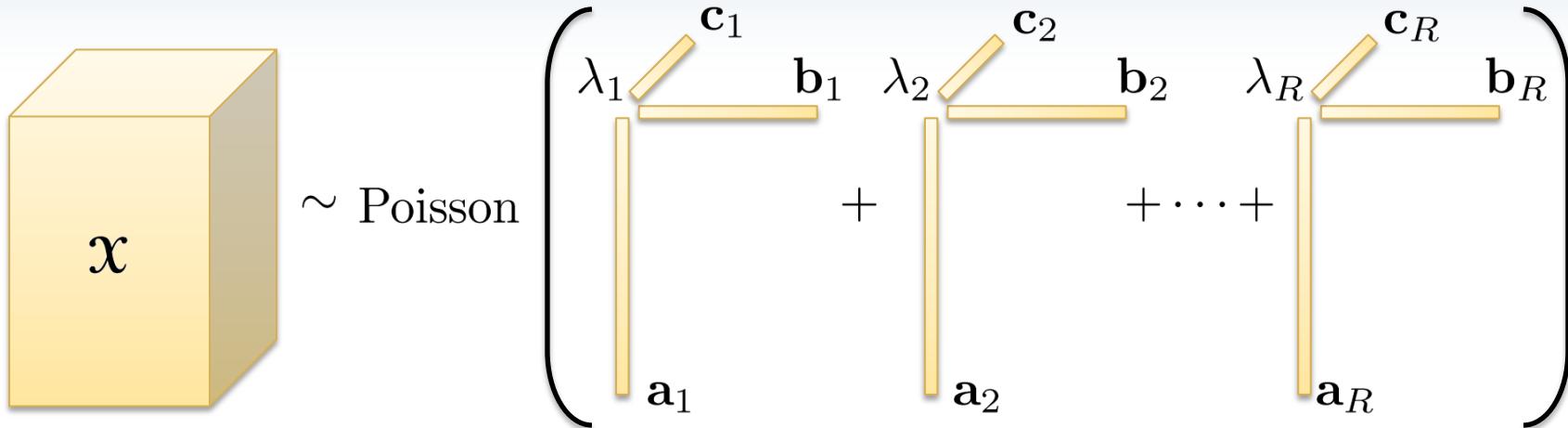
CP-APR will be in the next release of the Tensor Toolbox for MATLAB.



For more information:
Tammy Kolda
tgkolda@sandia.gov

Back-up/Old Slides

Poisson Tensor Factorization (PTF)



Model: Poisson/Multinomial distribution (nonnegative factorization)

$$x_{ijk} \sim \text{Poisson}(m_{ijk}) \text{ where } m_{ijk} = \sum_r \lambda_r a_{ir} b_{jr} c_{kr}$$

Useful properties of Poisson distributed variables:

- Generally preferred for describing “count” data
- Model is “naturally” nonnegative
- The expected value is equal to its parameters and so is its variance
- Sums of Poisson-distributed random variables also follow a Poisson distribution whose parameter is the sum of the component parameters