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Factorizations for Data Analysis 
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Key references: Beltrami (1873), Pearson (1901), Eckart & Young (1936) 
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¸r = weight of rth component 
ar = mode-1 factor (“principal component”), assumed to be scaled to norm 1 
br = mode-2 factor (“loading”), assumed to be scaled to norm 1 

Data Model: M 



Weighted Combination of Factors 
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Description of a single data element: 

Description of jth object (i.e., jth column): 

“Factor” or  
“Component” 



Latent Semantic Analysis  
of Term-Document Matrices 
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Book Titles 
1. The Neatest Little Guide to Stock Market 

Investing  
2. Investing For Dummies, 4th Edition  
3. The Little Book of Common Sense 

Investing: The Only Way to Guarantee 
Your Fair Share of Stock Market Returns  

4. The Little Book of Value Investing  
5. Value Investing: From Graham to Buffett 

and Beyond  
6. Rich Dad's Guide to Investing: What the 

Rich Invest in, That the Poor and the 
Middle Class Do Not!  

7. Investing in Real Estate, 5th Edition  
8. Stock Investing For Dummies  
9. Rich Dad's Advisors: The ABC's of Real 

Estate Investing: The Secrets of Finding 
Hidden Profits Most Investors Miss  
 

titles 

te
rm

s 

See full details at Latent Semantic Analysis (LSA) Tutorial at  
http://www.puffinwarellc.com/index.php/news-and-articles/articles/33.html  



Facial Image Decomposition for 
Compression and Analysis 
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Images from Lee & 
Seung, Nature, 1999. 

 
Positive values are black; 
negative values are red. 

R=49 



Many Different Two-Way Models 
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• Singular Value Decomposition (SVD) and Principal Components Analysis (PCA)  
• Factors are required to be orthogonal 

• Independent Component Analysis (ICA)  [e.g., Comon, 1994] 
• Factors are required to be maximally independent 

• Compressive Sensing and related work [Candes, 2006] 
• Sparse factors 

• Nonnegative Matrix Factorization [Paatero, 1997; Bro & De Jong, 1997; Lee & Seung, 2001] 
• Nonnegative factors 
• Alternative assumptions on distribution 

Images from Lee & Seung, Nature, 1999 



What about 3-way or N-way Data? 
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Key reference: Cattell , Psychological Bulletin, 1952 



Multi-way Factorizations for Analysis 
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Data 
Model:  

CANDECOMP/PARAFAC (CP) Model 

Key references: Hitchcock (1927), Harshman (1970), Carroll and Chang (1970) 



Factor Example: Epilepsy 
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Acar, Bingol, Bingol, Bro and Yener, 
Bioinformatics, 2007. 

Data measurements are recorded at 
multiple sites (channels) over time. 
The data is transformed via a 
continuous wavelet transform. 

Time Frequency Channel 

Eye Artifact 

Time Frequency Channel 

Seizure 
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Many Tensor Decompositions, 
Methods, Software, etc. 
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K. & Bader, Tensor Decompositions and 
Applications, SIAM Review, 2009 

CANDECOMP/PARAFAC (CP) 

Tucker 

Tensor Toolbox for MATLAB 
Bader & Kolda 

plus 
Acar, Dunlavy, Sun, et al. 

See also past work in 
• Sparse computations 
• Model fitting 
• Missing data 
• Applications to graphs 
http://www.sandia.gov/~tgkolda/ 
 



But what does “¼” mean? 
• Typically, we minimize 

the least-squares error 

• This corresponds to 
maximizing the 
likelihood, assuming a 
Gaussian distribution 
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Maximize this: 

By monotonicity of log, 
same as maximizing this: 



Gaussian is often Good, But… 

• Gaussian (aka normal) 
distribution is prominent is 
statistics 
– Limiting distribution of the sum of 

a large number of random 
variables 

– Often a reasonable model for 
measurement/observational errors 

• But, some data are better 
understood via alternative 
distributions 
– Non-symmetric errors (e.g., data 

that grows exponentially) 
– Data with outliers or multiple 

modes 
– Count data with many low counts 

• High counts can be reasonably 
approximated by a Gaussian! 
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Poisson Distribution 



Poisson for Sparse Count Data 
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Gaussian (typical) Poisson 
The random variable x is a 

continuous real-valued number. 
The random variable x is a 

discrete  nonnegative integer. 



Poisson Tensor Factorization 
• Poisson preferred for 

sparse count data 

• Automatically 
nonnegative 

• More difficult objective 
function than least 
squares 
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Maximize this: 

By monotonicity of log, 
same as maximizing this: 



Sparse Count Data Abounds 
• Computer network traffic 

– User visits to websites 

– IP x IP x Port communications 

– Packet routing  

– Computer logins 

• Communications 
– Email traffic 

– Social network interactions 

• Financial 
– Purchase records 

– Bank transfers 

– Credit card transactions 

• Bibliometric data 
– Co-authorship 

– Author x Term 

 

• Any of the above binned into time 
intervals 
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How do we make 
sense of this data? 

 
Can we find patterns 

of behavior? 
 

Can we spot 
anomalies? 

 
Can we predict 

future behavior? 



Motivating Example: Enron Email 
• Emails from Enron FERC investigation  

– Zhou et al., 2007 version 

– 8540 Messages 

– 28 Months (from Dec 1999 to Mar 2002) 

– 105 People (sent and received at least one email every month) 

– xijk = # emails from sender i to recipient j in month k 

– 105 x 105 x 28 = 308,700 possible entries 

– 8,500 nonzero counts 

– 0.03% dense 
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Fitting a Poisson Factorization 
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• We will solve for each factor matrix in turn, using a  
Gauss-Seidel (or Alternating Optimization) approach 

• We can rewrite the model by absorbing the weights ¸ into 
one of the factor matrices, e.g., 
 
 

• Matrix A is only constrained by be nonnegative 
• This can be done for any of the three factor matrices 

 
 

Assumption 
x log m = 0  

if x=0 & m=0 



New Method: 
Alternating Poisson Regression (CP-APR) 
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Repeat until converged… 

Fix B,C; 

solve for A 

Fix A,C; 

solve for B 

Fix A,B; 

solve for C 

Theorem: The CP-APR algorithm will converge to a constrained stationary point 
if the subproblems are strictly convex and solved exactly at each iteration. 

Convergence 
Theory 



Solving the Subproblem 
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Lemma: The subproblems are strictly convex if no 
columns of the factor matrices go to zero and the 
data tensor has a sufficient number of reasonably 
distributed nonzeros. 

Sufficient number: Must have an average of at least R nonzeros 
per slice to compute an R-component factorization. 



Majorization-Minimization for Subproblem 

October 25, 2011 T. G. Kolda – UMN DTC S&T Innovator Series 20 

A function g(y,x) majorizes f(x) if g(y,x) ¸ f(y) for all y and g(x,x) = f(x). 
Majorization-minimization (MM) algorithms minimize a majorizing function 
at the current iterate, set that minimizer to be the next iterate, and repeat.  

Elementwise  
Multiplication 

Insight: Easy to minimize majorizer moves sum outside 



MM Subproblem Algorithm 
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Repeat until convergence: 

where 

Constrained Optimality (KKT) Conditions 

automatically  
guaranteed 

Convergence criterion: 
Elementwise  



Novel Algorithm: 
CP-APR with MM Subproblem Solver 
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Repeat until converged… 

Fix B,C; 

solve for A 

Fix A,C; 

solve for B 

Fix A,B; 

solve for C 



Lee-Seung is a Special Case of CP-APR 
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Repeat until converged… 

Fix B,C; 

update A 

Fix A,C; 

update B 

Fix A,B; 

update C 

Lee & Seung, 1999 [matrix version]; Welling & Weber, 2001 [tensor extension] 



New Insight: 
How to Fix “Undesirable” Zeros 
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Zeros never change with multiplicative updates! 

Recall the Constrained Optimality (KKT) Conditions: 

automatically  
guaranteed 

These conditions enable us to 
check for “inadmissible” zeros 

Undesirable Zero: 

Fixes Lee-Seung 
updates too! 

See example of problem in Gonzalez & Zhang, 2005 

where 



Our Code Supports  
Sparse Computations 
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Current estimate of model (dense). 
Only form entries that correspond to 

existing data. 

Very sparse 

Too big to form product. 
Only form entries that 

correspond to existing data. 



Generating Test Data 

– Each “occurrence” generated as follows 
– Choose factor r proportional to ¸ 

– Given factor r: 
• Choose index i proportional to ar 
• Choose index j proportional to br 
• Choose index k proportional to cr 

– Increment  xijk by one 
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Numerical Experiment  
Set-up for Simulated Data 
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Step 1: Generate factor matrices with 
R=10 columns. Choose 10% entries from 
U(0,100) and remainder from U(0,1). 
Renormalize so that each column sums to 
one. Choose ¸ entries from U(0,1). 

= + +  + 

Step 2: Generate sparse tensor from 
Poisson distribution using model 

Step 4: Compute FMS = factor match score of 
computed factors against truth. Assume 
columns are two-norm normalized and »r is 
the product of the norms   

Best FMS is 1 

Step 3: Factorize spares tensor 
using CP-APR  



Accuracy is High For Very Sparse Data 
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Nonzeros Poisson 
 Regression FMS 

Gaussian 
Regression FMS 

480,000 (.100%) 0.99 0.57 

240,000 (.050%) 0.81 0.49 

48,000 (.010%) 0.77 0.47 

24,000 (.005%) 0.74 0.46 

Data: 1000 x 800 x 600 Tensor with R=10 Components 
CP-APR: Max Iterations = 200, Max Inner Iterations = 30 (10 per mode), Tol = 1e-4 (KKT) 

CP-ALS: Max Iterations = 200, Tol = 1e-8 (change in fit) 



Motivating Example: Enron Email 
• Emails from Enron FERC investigation 

– 8540 Messages 

– 28 Months (from Dec 1999 to Mar 2002) 

– 105 People (sent and received at least one email every month) 

– xijk = # emails from sender i to recipient j in month k 

– 105 x 105 x 28 = 308,700 possible entries 

– 8,500 nonzero counts 

– 0.03% dense 

• Questions: What can we learn about this data? 

– Each person labeled by Zhou et al. (2007); 
see also Owen and Perry (2010)  

• Seniority: 57% senior, 43% junior 

• Gender: 67% male, 33% female 

• Department: 24% legal, 31% trading, 45% other 
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This information is not 
part of  the tensor 

factorization 



Enron Email Data 
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Legal Dept; 
Mostly Female 



Enron Email Data 
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Senior; 
Mostly Male 



Enron Email Data 
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Not Legal 



Enron Email Data 
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Other; 
Mostly Female 



Enron Email Data 
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Mostly Other 



Example: Publication Data 

SIAM publications 1999-2004 
– 4676 articles 

– 11 journals 

– 6955 authors 

– 4952 title terms  
(after stop-word removal) 
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Sample Publications 
 

• EIBECK A, WAGNER W, An efficient stochastic 
algorithm for studying coagulation dynamics 
and gelation phenomena, SIAM J SCI COMPUT, 
2000 

• KIM S, KWON O, SEO JK, Location search 
techniques for a grounded conductor, SIAM J 
APPL MATH, 2002 

• CROWDY D, MARSHALL J, Constructing multiply 
connected quadrature domains, SIAM J APPL 
MATH, 2004 

• LIPTON R, Optimal inequalities for gradients of 
solutions of elliptic equations occurring in two-
phase heat conductors, SIAM J MATH ANAL, 
2001 

• LAFITTE OD, Diffraction in the high frequency 
regime by a thin layer of dielectric material I: 
The equivalent impedance boundary condition, 
SIAM J APPL MATH, 1999 

 

te
rm

 

author 

xijk = occurrences of 
term i in titles of 

articles by author j in 
journal k 

64,133 nonzeros 
< .01% dense 



Publication Data Yields Topics,  
with Authors and Journals 
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SIAM Data 
1999-2004 

 
• 4952 terms 
• 6955 authors 
• 11 journals 
• 64k nonzeros 

 
10 Component 
Poisson Tensor 
Factorization  
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Kao MY 
Peleg D 

Motwani R 
Cole R 

Devroye L 
 

SIAM J Comput 
SIAM J Discrete Math 

SIAM Rev 

Component 2 
method 

equations 
methods 
problems 
numerical 
multigrid 

finite 
element 
solution 
systems 

 
Chan TF 
Saad Y 

Golub GH 
 

SIAM J Sci Comput 

Component 3 
finite 

methods 
equations 
method 
element 

problems 
numerical 

error 
analysis 

 
Du Q 

Shen J 
Ainsworth M 
Mccormick SF 

Wang JP 
Manteuffel TA 

Schwab C 
Ewing RE 

Widlund OB 
Babuska I 

 
SIAM J Numer Anal 

SIAM J Comput 

Component 4 
control 
systems 
optimal 

problems 
stochastic 

linear 
nonlinear 

stabilization 
equations 
equation 

 
Zhou XY 

Kushner HJ 
Kunisch K 

Ito K 
Tang SJ 

Raymond JP 
Ulbrich S 
Borkar VS 
Altman E 

Budhiraja A 
 

SIAM J Control Optim 



Publication Data Results, Cont’d. 
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Component 5 
equations 
solutions 
problem 
equation 
boundary 
nonlinear 

system 
stability 
model 

systems 
 

Wei JC 
Chen XF 
Frid H 
Yang T 

Krauskopf B 
Hohage T 

Seo JK 
Krylov NV 

Nishihara K 
Friedman A 

 
SIAM J Math Anal 

SIAM J Appl Dyn Syst 

Component 6 
matrices 
matrix 

problems 
systems 

algorithm 
linear 

method 
symmetric 
problem 
sparse 

 
Higham NJ 

Guo CH 
Tisseur F 
Zhang ZY 

Johnson CR 
Lin WW 

Mehrmann V 
Gu M 

Zha HY 
Golub GH 

 
SIAM J Matrix Anal A 

SIAM J Sci Comput 

Component 7 
optimization 

problems 
programming 

methods 
method 

algorithm 
nonlinear 

point 
semidefinite 
convergence 

 
Qi LQ 

Tseng P 
Roos C 
Sun DF 

Kunisch K 
Ng KF 

Jeyakumar V 
Qi HD 

Fukushima M 
Kojima M 

 
SIAM J Optimiz 

Component 8 
model 

nonlinear 
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solutions 
dynamics 

waves 
diffusion 
system 
analysis 
phase 

 
Venakides S 

Knessl C 
Sherratt JA 

Ermentrout GB 
Scherzer O 
Haider MA 

Kaper TJ 
Ward MJ 

Tier C 
Warne DP 

 
SIAM J Appl Math 
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model 

problem 
theory 

asymptotic 
models 
method 
analysis 
singular 

 
Klar A 

Ammari H 
Wegener R 

Schuss Z 
Stevens A 

Velazquez JJL 
Miura RM 

Movchan AB 
Fannjiang A 

Ryzhik L 
 

SIAM J Appl Math 
SIAM J Optimiz 

Component 10 
education 

introduction 
health 

analysis 
problems 

matrix 
method 
methods 
control 

programming 
 

Flaherty J 
Trefethen N 
Schnabel B 

[None] 
Moon G 
Shor PW 

Babuska IM 
Sauter SA 

Van Dooren P 
Adjei S 

 
SIAM Rev 



Similar Solutions found with  
Different Starting Points 
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Wei JC 
Chen XF 
Frid H 
Yang T 
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Hohage T 

Seo JK 
Krylov NV 

Nishihara K 
Friedman A 

 
SIAM J Math Anal 
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SIAM Rev 
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Wei JC 

Chen XF 
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Yang T 
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Hohage T 
Krylov NV 

Nishihara K 
Wu JH 

Friedman A 
 

SIAM J Math Anal 

Component 10 
analysis 

education 
health 

introduction 
method 

problems 
methods 

matrix 
control 
survey 

 
Flaherty J 

Trefethen N 
Krauskopf B 
Schnabel B 

[None] 
Hoffman K 

Guckenheimer J 
Moon G 

Osinga HM 
Shor PW 

 
SIAM Rev 

SIAM J Appl Dyn Syst 



Concluding Remarks 
• Data distribution matters! 

– Least squares fitting implies Gaussian 

– Poisson distribution better for sparse 
count data 

• Model fitting via CP-APR 
– Alternating algorithm with 

multiplicative updates 

• Lee-Seung method is a special case 

– Can directly check convergence 
conditions 

• Fix for “undesirable zero” problem 

• Future work 
– Modified version of Anderson 

acceleration for fixed point iterations 

– Alternate optimization methods 

• Other on-going  tensor work 
– Generalized tensor eigenproblem 

– Symmetric tensor decompositions 
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For more information: 
Tammy Kolda 

tgkolda@sandia.gov 

CP-APR will be in 
the next release of 
the Tensor Toolbox 

for MATLAB. 



Back-up/Old Slides 
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Model: Poisson/Multinomial distribution (nonnegative factorization) 
 
 
 
Useful properties of Poisson distributed variables: 
• Generally preferred for describing “count” data 
• Model is “naturally” nonnegative 
• The expected value is equal to its parameters and so is its variance 
• Sums of Poisson-distributed random variables also follow a Poisson distribution 

whose parameter is the sum of the component parameters 
 
 
 

Poisson Tensor Factorization (PTF) 
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