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Softening Response (due to Heating, 
Damage, etc.) Leads to Mesh Dependence 

hardening  

softening  

hardening  softening  

softening (loss of ellipticity) behavior corrupts 
the PDE and results in mesh dependent results 

need to separate numerical issues from physics issues 

length scale 
comes from 
mesh 
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What / When / To Whom Will 
You Deliver? 

•  Verify localization elements  
•  Implement, verify, and validate 

adaptive insertion 
•  Develop variational mixed formulation 
•  Implement into Sierra when 

appropriate 

Localization and Failure (TRL 1-3) 

What are you trying to do? 
•  Provide techniques for the modeling 

of localization and failure (ductile 
fracture, shear bands, compaction 
bands, etc.) that are not mesh 
dependent: 

- localization elements 
- variational non-local method 

What difference will it make? 
•  DoD and DOE have continued need 

for ability to perform predictive 
simulations of munitions behavior 

•  Failure and localization are 
inevitably the most critical aspects 
of munitions simulations 

What makes you think you can 
do it? 

•  Follow multiple modeling techniques 
at different maturity levels  reduce 
risk 

•  Significant experience in development 
and implementation of localization 
techniques   

Q4-FY13 - Demonstrate the capability to obtain a mesh independent solution 
involving failure for a problem of realistic complexity. 
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Localization Elements 
(similar to cohesive elements) 

Yang, Mota and Ortiz, IJNME, 2005 

   Finite-deformation kinematics. 
   Simulation of strain localization. 
   No additional constitutive assumptions 

F = F ‖F⊥ h = band thickness 

IDEA: Use ANY bulk constitutive model (σ-ε) to drive surface separation 

Akin to “cohesive” element 
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Resolution and lumping dissipation 

The size of the plastic 
zone at propagation, Da = 
60 µm, The mesh size s is  
30 µm. 
 
KIc = 70 MPa-m0.5 

h = 30 µm  

m = 4, Kc = 81 m = 5, Kc = 68 m = 6, Kc = 60 

m = 7, Kc = 55 m = 8, Kc = 51 

K-field boundary  
condition Quasi-statics with SierraSM 
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Damage is Convergent 

Although at slightly different times, the evolution of damage is comparable for 03 & 04. 

Mesh: 02 
Label: Medium 
Nodes: 30k 
Elem: 24k 
s ~ 120 µm 

Mesh: 03 
Label: Fine 
Nodes: 142k 
Elem: 126k 
s ~ 60 µm 

Mesh: 04 
Label: Finest 
Nodes: 1M 
Elem: 1M 
s ~ 30 µm 

NOTE: Smooth notch – the specimen was not pre-cracked. Quasi-statics with SierraSM 
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Load-Displacement Is Convergent 

Boyce’s lab: 
  Load line rate is 0.0127 mm/s 
 
Cordova’s lab 
  Load line rate before 2.03 mm is 
0.0027 mm/s 
  Load line rate after  2.03 mm is 
0.00025 mm/s 

blind predictions differed somewhat from experimental data but showed correct trend 
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Moving the Discontinuity 
X-FEM through virtual node method in SierraSM  2 John E. Dolbow

2 Key Concepts

Figure 1: Schematic of element failure/separation.

The X-FEM is essentially approximation technology. The key is to improve element kinematics

in the presence of discontinuities. The basic approach does not make any assumption with regard

to constitutive equations, for example, and allows for both linear and nonlinear deformations.

For simplicity and concreteness, we will discuss the key ideas using two-dimensional examples,

and provide details for three-dimensional extensions when necessary. Consider a piece of material

that “wants to fail” along a plane (shown in red) and separate into two distinct pieces (Figure 1).

The standard finite-element approximation to a field u (e.g. the displacement) can be written as

(for a three-node triangle)

u
h(x, t) =

3∑
I=1

NI(x)uI(t), (2.1)

where NI denote the standard (Lagrange) shape functions, and the coefficients uI are degrees

of freedom. As the shape functions are continuous, this standard approximation is not able to

represent arbitrary failure.

In its original form, the X-FEM approximation for this case is written as

u
h(x, t) =

3∑
I=1

NI(x) (uI(t) + H(x)eI(t)) , (2.2)

where H is a generalized Heaviside function and the eI denote additional, enriched degrees of

freedom. The generalized Heaviside function can be constructed in one of several different ways,

so long as it take two different (constant) values on either side of the new surface. The enriched

element possesses all the kinematics of two separate, distinct elements. Whereas the classical

element possesses six (3 × 2) degrees of freedom, the enriched element possesses twelve.

Implementing X-FEM for Pervasive Failure 3

An equivalent approach to enhance the kinematics is to view it as one in which the element splits

into two separate, but partial elements (Figure 2). The only difference between a partial element

Figure 2: A solid element splits into two partial elements. The shaded blue regions correspond to

the physical domain.

and a classical element is that the physical domain of a partial element consists of only a portion

of the element. The shape functions NI in both cases are identical. The practical change is that

internal and external force vectors are calculated using only the physical portion of the element.

This is an example of a weighted residual method in which the topology of a basis function is

distinct from its integration domain.

A straightforward question to ask at this point: isn’t there a simpler way to do this? A naive

approach would be to employ a local remeshing of the two pieces in Figure 1. For example, the top

piece could be represented as a single three-node triangle, and the bottom could be partitioned into

two adjacent triangles. The problem is that, as a general recipe, this will create elements that are

smaller than the original. In an explicit setting, these smaller elements may trigger the requirement

of a decreased time step for stability. So such a simple approach can become prohibitively expensive

when an exceptionally small piece of the element, taking the shape of a “sliver”, is formed. This

will not be the case with the X-FEM, regardless of how small the sliver is: the stable time step for

the two partial elements will be identical to that of the original, standard element.1

1This assumes we lump the mass in a smart way, and distribute the mass associated with the partial domain

equally to each of the nodes of the partial element. Note that when we do this, the total nodal mass of the two

new partial elements will be identical to that of the original, unfractured element. While this will also be the case

if consistent masses are used, consistent mass matrices unfortunately yield smaller time steps and do not circumvent

the issue with slivers.

additional dof 

virtual nodes 

  Virtual node method enriches 
displacement field elements by 
duplicating cut elements 

  Results in same number of degrees of 
freedom as Heaviside-enriched XFEM 

  Two approaches shown to be 
equivalent 

 
FE Analysis 
•  Sierra/SM or LCM 
•  Crack evolution criteria Grow 

crack? 

Adaptive Crack Modeling 
•  FRANC3D 
•  Inserts/propagates crack(s) 

yes 

no 

crack tip notch tip crack tip notch tip 

Adaptive remeshing with refinement/coarsening  

Adaptive insertion on element boundaries w/STK 
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Variational Nonlocal Method 

Deformation Mapping 

Natural 
boundary for 
both levels 

Standard node 
fine level 
Mixed node 
coarse level 

IDEA: Derive nonlocality optimized for parallel computation for ANY bulk (σ-ε) model 

Helmholtz Free 
Energy 

Constraint Enforced by 
Lagrange Multiplier 

Deformation 
Mapping 

  Motivated through studies of non-locality 

  Fully variational approach that by-passes ad hoc 

assumptions. 

  No modifications to constitutive models. 

  Nonlocal domain is defined. 

 Natural parallelization by domain decomposition of 

coarse discretization. 

  Does not require cut-off approaches at boundary. 

Nonlocal 
Internal 
Variable 
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N=16384 
h~0.125mm 

N=2048 
h~0.25mm 

N=256 
h~0.5mm 

N=32 
h~1mm 

Simple finite-deformation elastic model with damage:  

Mesh Dependence in Baseline Case 
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Mesh Dependence in Baseline Case (2) 
N=32 

h~1mm 
N=256 

h~0.5mm 

N=2048 
h~0.25mm 

N=16384 
h~0.125mm 

damage zones and load-displacement 
curves display mesh dependent 
behavior:  as mesh is refined damaged 
region shrinks and failure load drops 
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Constant interpolation leads 
to decoupling and simple 
averaging: 

Mesh Partitioning Tools Used  
to Provide Coarse Scale 

N=16384 
h~0.125mm 

N=2048 
h~0.25mm 

N=256 
h~0.5mm 

N=32 
h~1mm 

use mesh partitioner (Zoltan in Sierra) to 
create domains D 

vol(D)=(length scale)³=(1.6mm)³ 
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Variational Nonlocal 
Technique is Convergent 

N=16384 
h~0.125mm 

N=2048 
h~0.25mm 

N=256 
h~0.5mm 

N=32 
h~1mm 

Initial studies in 3-D confirm 1-
D findings, the fields are 
damage are converging 

• Regularization effective 
• Derived naturally from variational principle 
• No special boundary considerations 
• Simple form with unit interpolation 
functions 

variational 
non-local 
results 

standard 
FEM results 
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Conclusions 

• Developing multiple methods to reduce mesh dependence in 
problems involving failure and localization, but there is no silver 
bullet! 

• Methods are convergent and have a space of applicability 
• Localization elements have broad applicability (leverage bulk 

response) and provide the regularization needed 
- issues when element size is of order of h 
- robust insertion techniques  

• Variational non-local technique establishes length that is natural 
to the FEM mesh 
- derived naturally from variational principle 
- no special boundary considerations 
- simple form with unit interpolation functions. 

We measure success by analyst adoption and not by model 
development or implementation.  




